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Introduction

When one wants to study a scheme, one can instead study the category of (coherent)
sheaves on that scheme. It is fruitful to not only study the sheaves individually, but to
study families of them as well. This naturally leads to the question of the existence of
a moduli space, which classi�es such families. Such a classifying space exists when we
restrict our attention to the so-called stable sheaves on a projective scheme X.

Stable sheaves satisfy a numerical condition in terms of the Hilbert polynomial.
Therefore, they are only de�ned for projective schemes, with a �xed embedding in pro-
jective space. It is di�cult to say when a sheaf is stable, though abstractly it can be
shown that plenty of them exist, as they generate the Grothendieck group of X.

Since in a �at family of coherent sheaves the Hilbert polynomial is constant, we may
as well restrict ourselves to families of stable sheaves with a �xed Hilbert polynomial.
In fact, we may go even further and consider families with constant Chern character.
Members of such a family share many numerical invariants, such as their rank and degree.

A scheme classifying families of stables sheaves is called a �ne moduli space. However,
such a scheme does not always exist. There is an alternative notion, that of a coarse

moduli space, which still captures the geometric intuition. When rank and degree are
coprime, the moduli space does turn out to be �ne.

Another question one might ask is whether the moduli space is projective. If we
consider instead of stable sheaves the semi-stable sheaves, then the resulting moduli
space is projective, but it is in general not a coarse moduli space. It has the moduli
space of stable sheaves as an open subscheme, which is therefore quasi-projective. When
rank and degree are coprime, all semi-stable sheaves are stable. Then the two moduli
spaces coincide and subsequently are projective and �ne. For the rest of the introduction,
let us assume that we are in this case and denote the moduli space by M .

It is possible to obtain an explicit description of the tangent bundle of the moduli
space, namely, the tangent space to a point m ∈ M corresponding to a stable sheaf E
is Ext1(E,E). There also is a global description of the tangent bundle as the relative

Ext-sheaf E xt1
πM

(E , E). Here E is the universal family, whose existence is guaranteed by
the �neness of the moduli space.

The explicit description of the tangent bundle allows us to study the smoothness of
M . When X is a K3 surface, dim Ext1(E,E) is constant for stable sheaves with a �xed
Chern character, resulting in smoothness of the moduli space.
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For a surface with trivial canonical bundle, Serre duality gives an alternating pairing

Ext1(E,E)⊗ Ext1(E,E)→ k

for any sheaf E. This pairing extends to a morphism of sheaves TM ⊗ TM → OM ,
resulting in an algebraic symplectic structure on the moduli space. In fact, one can show
that M becomes a hyperkähler variety is this case. It is true that many examples of such
varieties are constructed in this fashion [14, Sec. 6.2].

In this thesis, we investigate the construction of the moduli space and the properties
mentioned above. As a result, the material presented in this thesis is not new. However,
as a part of the thesis project, I obtained the results in Section 3.5 and Section 4.3
independently. The main reference for the material in this thesis is the book [14], which
contains much more material on sheaves on surfaces.

Outline In Chapter 1, we introduce moduli problems and de�ne coarse moduli spaces.
We then go on to prove the basic properties of stable sheaves in Chapter 2. The main
construction is outlined in Chapter 3. The construction works for all projective schemes
X. Lastly, we introduce K3 surfaces in Chapter 4 and prove that the moduli space has
a symplectic structure in this case.

Conventions In the entire thesis, we work over k = C. Thus, when we say that X
is a scheme, we implicitely mean a scheme over k. Also, �bre products are taken in
the category of k-schemes, unless otherwise mentioned. All schemes in the thesis are
in addition assumed to be Noetherian, and as such, all sheaves under consideration are
coherent sheaves. We will often drop the adjective �coherent�, simply calling the objects
�sheaves�.

By convention, X always denotes a projective scheme over k with �xed ample line
bundle. This allows us to consider the Hilbert polynomial of a sheaf on X. In Chapter
4, we will often assume that in addition, X is a K3 surface.

We have a convention for denoting projection morphisms. The projection X×Y → X
is denoted πX , so the subscript denotes where we are projecting to. This is potentially
confusing when we consider a projection X ×X → X, but these occasions are rare and
it will still be clear from context which morphism is meant.
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1. Moduli problems

In this chapter, we will introduce the notions necessary to discuss moduli problems. In
the �rst section we recall the basic formalism of the functors of points of schemes. In
the second section, we specialise to moduli problems of families of sheaves and state our
main theorem.

1.1. Representability of functors

Recall the following basic de�nition.

De�nition 1.1. Let C be a category and X an object of C. The functor hX : Cop → Set
that sends Y ∈ C to Hom(Y,X) is called the functor represented by X.

A functor F : Cop → Set is called representable if it is isomorphic to hX for some
object X of C. In this case, we say that X represents F . If C is the category of schemes,
we also say that X is a �ne moduli space for F .

The following statement about representable functors is well-known.

Proposition 1.2 (Yoneda Lemma). Let C be a category, F a functor Cop → Set and X
an object of C. There is a natural isomorphism

Nat(hX , F )→ F (X).

In particular, the assignment X 7→ hX extends to a fully faithful functor from C to the

functor category Fun(Cop ,Set).

A proof can be found in many places, such as [18, Ch. III]. It is also easy to describe
the isomorphism: it sends a natural transformation λ to λX(idX). This is especially
interesting if λ is an isomorphism of functors, in that case the corresponding element
of F (X) is called a universal object. Sometimes, there is a preferred choice of universal
object, which we then call the universal object.

We are mostly interested in examples arising from algebraic geometry. In the follow-
ing, we consider the category of schemes over a �xed �eld k.

Example 1.3. � The functor Γ(−,O) is represented by the a�ne line A1
k. We know

that Γ(A1
k,OA1

k
) = k[x]. The universal object in this case is x, the a�ne coordinate

of A1
k. Indeed, every function f ∈ Γ(X) induces a morphism ϕ : X → A1

k, and the
statement that x is universal translates to the fact that f can be recovered as ϕ∗x.
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� A more involved example is the universal property of the projective space Pnk . It
is well-known that a morphism X → Pnk is equivalent to the datum of a quotient
On+1
X → L where L is a line bundle (see e.g. [8, Thm. II.7.1]). Thus, projective

space represents the functor which sends X to the set of quotients of On+1
X which

are line bundles. The universal object is the quotient On+1
Pn
k
→ O(1), sending

(a0, . . . , an) to
∑

i aix
i. Here the xi are the homogeneous coordinates of Pnk . Indeed,

when f : X → Pnk is a morphism, we can recover the quotient On+1
X → L that

induced f by pulling back the universal quotient along f .

� Let V be a k-vector space and consider the algebraic group GL(V ). This scheme
represents the functor X 7→ Aut(V ⊗OX). More explicitely, if V is n-dimensional,
this is the set of invertible n× n-matrices with coe�cients in Γ(X,OX).

� The explicit description of a functor of points is very useful. For example, it is
immediate to compute the k-points of A1

k: it is just the set Γ(Spec k,OSpec k) ∼= k.
For projective spaces, note that a quotient kn+1 → k is given by (x0, . . . , xn) 7→∑

i aixi for some ai ∈ k; the condition that it is a quotient translating to the fact
that not all ai are zero. Two quotients given by {ai} and {a′i} are isomorphic if
and only if there is a nonzero scalar such that ai = λa′i for all i. Thus, we recover
the classical de�nition of projective space in this way.

Sometimes, a functor is not representable, but the next best thing is true.

De�nition 1.4. A functor F : Sch
op → Set is corepresented by a scheme X, if there is

a morphism of functors η : F → hX such that for all morphisms θ : F → hY there is a
unique morphism f : X → Y such that the following diagram commutes:

F hX

hY

η

θ
hf

We also say that X corepresents F .
We say that X coarsly represents F , or that X is a coarse moduli space if ηSpec k is

an isomorphism.

Note that if X corepresents F , for any scheme S and a ∈ F (S) there is a map
ηS(a) : S → X. However, the correspondence a 7→ ηS(a) is not injective or surjective in
general. In particular, there is no easy description of the closed points of X in terms of
F . By de�nition, when X is a coarse moduli space, then the set of closed points can be
identi�ed with F (Spec k). Note that every �ne moduli space is also coarse, hence we can
describe their closed points as well.

It is not so di�cult to give an example of a functor that is corepresented, yet not
represented. Completely proving that statement is much more involved. In general,
examples can be found when considering a group action on a scheme, and trying to
construct a quotient. Indeed the following example is of that form. The reader can
safely skip the details.
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Example 1.5. Consider the category of schemes over k and let F be the functor asso-
ciating to X the set of conjugacy classes of 2× 2-matrices with coe�cients in Γ(X,OX).
Consider the map F → hA2

k
, sending a matrix to its determinant and its trace (this is

well-de�ned on the conjugacy classes). In this way, A2
k universally corepresents F , but

the morphism of functors is not an isomorphism, because there exist nontrivial matrices
with vanishing determinant and trace.

To prove that the map above is indeed universal, suppose that F → hX is any
morphism. Consider the map hA2

k
→ F , sending (x, y) to the diagonal matrix with

entries x and y. Then the composition hA2
k
→ hX is symmetric, i.e. it sends (x, y) and

(y, x) to the same thing. Thus, the resulting map A2
k → X factors through the quotient

of A2
k by the action of the symmetric group S2 which interchanges x and y. The subring

of Γ(A2
k,O) = k[x, y] �xed by the action is k[x+ y, xy]. Then [3, Thm. 6.1] implies that

A2
k → A2

k given by (x, y) 7→ (xy, x+y) is a the corresponding quotient. This factorisation
A2
k → X is the required morphism. We only need to show that composition with our

universal morphism F → hA2
k
gives us back F → hX . This follows after observing that

the set of diagonalisable matrices is dense in the set of all matrices. Details are omitted.

1.2. Moduli of sheaves

De�nition 1.6. Let X be a scheme. A family of sheaves on X parameterised by S is a
coherent sheaf E on X × S which is �at over S.

For s ∈ S, we denote by E|s the pullback of E along the inclusion X ×{s} → X ×S.

Geometrically, we view the E|s as being glued together to obtain a single sheaf E.
The �atness condition informally says that this gluing is done in a continuous manner.

Families of sheaves play a central role in the study of moduli problems of sheaves.
As an example of this, we �rst consider the Quot-scheme. Suppose we have a projective
scheme X over k with �xed ample line bundle, a sheaf F on X and a polynomial P . We
de�ne a functor QuotPF : Sch

op → Set:

QuotPF (S) = {(q,Q) | q : π∗XF � Q such that Q is �at over S

and for all s ∈ S, Q|s has Hilbert polynomial P .}/ ∼
(1.1)

Here (q,Q) ∼ (q′, Q′) if there is an isomorphism ϕ : Q → Q′ with ϕ ◦ q = q′. One
might say that an element of QuotPF (S) is a family of quotients of F . For the required
background on �atness and the Hilbert polynomial, see [8] or [25]. For a summary of
properties of the Hilbert polynomial, see also Theorem 2.6.

Theorem 1.7 (Grothendieck). The functor QuotPF is representable by a projective scheme

QuotPF .

A detailed construction can be found in [22] and there is also a construction in [14,
Ch. 2].

Note that it may very well happen that a sheaf G is a quotient of E in multiple ways,
i.e., that there are quotients q : E → G and q′ : E → G which are not isomorphic. In
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this sense, QuotPF parameterises sheaves with extra structure, the extra structure being
this quotient map. In the moduli space of stable sheaves, such behaviour does not occur.

To de�ne the moduli functor, a de�nition of (semi)-stability is not required. We will
postpone the de�nition of (semi)-stability to Chapter 2.

De�nition 1.8. Let X be a projective scheme with �xed very ample line bundle L. Fix
again a polynomial P . We de�ne a functorM : Sch

op → Set by

M(S) = {F ∈ Coh(X×S) | F is �at over S and for each s ∈ S, F |s is a
semi-stable sheaf with Hilbert polynomial P .}/ ∼

Here, we set F ∼ F ′ if there is a line bundle L on S, such that F ∼= F ′ ⊗ π∗SL.
We also de�ne a functor Ms in the same way, except that we replace �semi-stable�

by �stable�.

The main result of this thesis is that this functor has a coarse moduli space.

Theorem 1.9. Let X be a projective variety with �xed very ample line bundle over an

algebraically closed �eld k of characteristic zero. Then the functor M is corepresented

by a projective scheme M . The functor Ms is corepresented by an open subscheme M s

of M . Furthermore, M s is a coarse moduli space forMs.

We will prove Theorem 1.9 in Chapter 3. Even though M does not representM in
general, there are criteria when it does, see for example the next result.

Theorem 1.10. Suppose that X is a smooth projective variety. Write the polynomial P
as

P (n) =

d∑
i=0

ai

(
n+ i− 1

i

)
.

If gcd(a0, a1, . . . , ad) = 1, then M s representsMs.

Proof. We will not prove this Theorem 1.10 in this thesis. The interested reader can �nd
a proof in [14, Sec. 4.6].

There is a general criterion for P such that sheaves with Hilbert polynomial P are
stable if and only if they are semi-stable. This implies thatM =Ms and henceM = M s.
Since M is projective, this implies that M s is projective. See Prop. 2.26 for such a
criterion.

We should notice that the Quot-functor QuotPF and Ms depend on the choice of a
very ample line bundle on X. Indeed, the notion of Hilbert polynomial changes if we
change the line bundle. Thus, one might ask if we can do without the Hilbert polynomial,
so that the moduli functor is independent of the chosen line bundle. Consider the Quot-
functor. If we omit the Hilbert polynomial-condition, the resulting functor would still be
representable, but it would decompose into in�nitely many disjoint subschemes. Such a
scheme is not of �nite type. By choosing a Hilbert polynomial, we are labelling some of
the components in such a way that the resulting subscheme is of �nite type.
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In fact, instead of �xing Hilbert polynomials one could also �x a Chern character
(see Appendix C). These are independent of a chosen ample line bundle. In Chapter 4,
we construct a variant of the moduli space of stable sheaves with �xed Chern character
instead of the Hilbert polynomial (see Prop. 4.15). This construction can be carried
out for the Quot scheme as well, making it independent of the chosen ample line bundle.
However, the moduli functor of stable sheaves is still dependent on the choice of an ample
line bundle, because the de�nition of stability depends on it.
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2. Stable sheaves

In this chapter we introduce (semi-)stable sheaves. To my knowledge, the main purpose
they serve is that families of stable sheaves admit a coarse moduli space in the sense of
Theorem 1.9.

We �rst introduce the prerequisite notion of pure sheaves. After de�ning stable
sheaves, we will prove that there exist many of them, in the sense that they satisfy a
Jordan-Hölder type theorem. As such, we may view the stable sheaves as building blocks
for general sheaves. After that, we discuss how stable sheaves behave in a family. The
reference for this material is [14].

2.1. Pure sheaves

Recall that X is a projective scheme with �xed ample line bundle.

De�nition 2.1. The dimension of a sheaf is the dimension of its support. A sheaf is
pure if all of its nonzero subsheaves have the same dimension.

When X is projective (as we assume), there is another description of the dimension
of a sheaf, namely the degree of its Hilbert polynomial, see Thm. 2.6.

Example 2.2. Let X be a variety of dimension d. The pure sheaves of dimension d are
exactly the torsion-free sheaves.

Suppose that E is a torsion-free sheaf, F is a nonzero subsheaf and dimF < d. Let U
be an a�ne open subset of X. Then there is f ∈ Γ(U,OX) such that SuppF ∩D(f) = ∅.
Therefore, f annihilates F and so F is not torsion-free. This gives a contradiction, as F
is a subsheaf of a torsion-free sheaf.

On the other hand, suppose that E is pure and that s ∈ E(U) is a section. If
u ∈ OX(U) is such that us = 0, then the subsheaf generated by s is supported on V (u),
which has dimension less then d unless u = 0. Therefore E is torsion-free.

Lemma 2.3. Given a coherent sheaf E of dimension d, then for each 0 ≤ n ≤ d, there
is a unique maximal subsheaf of E of dimension at most n.

Proof. Consider the set S of subsheaves of E of dimension at most n. Since E is a
Noetherian object in the category of coherent sheaves, every set of subsheaves of E has
an element maximal with respect to inclusion. Suppose S has two such elements, F and
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F ′. Then their sum F +F ′ also has dimension at most n. Since F and F ′ were maximal
with respect to inclusion, it follows that F = F ′. Hence such a maximal subsheaf is
uniquely determined.

De�nition 2.4. Let E be a coherent sheaf of dimension d. Denote by Tn(E) the largest
subsheaf of E with dimension at most n. The resulting �ltration

0 ⊆ T0(E) ⊆ T1(E) ⊆ . . . ⊆ Td−1(E) ⊆ Td(E) = E. (2.1)

is called the torsion �ltration of E.

Note that a d-dimensional sheaf E is pure if and only if Td−1(E) = 0.

Lemma 2.5. The quotients Ti(E)/Ti−1(E) are either zero of purely i-dimensional.

Sketch of proof. Suppose the quotient is nonzero. Then Ti(E) has dimension i. The
short exact sequence

0→ Ti−1(E)→ Ti(E)→ Ti(E)/Ti−1(E)→ 0

shows that the quotient must have dimension i as well. If F is a subsheaf of the quotient
of dimension less than i, its inverse image has dimension less than i as well. But then
it is contained in Ti−1(E) and hence goes to zero. The assertions about dimensions
appearing in this proof can be quickly checked using the Hilbert polynomial, de�ned in
Section 2.2.

Thus, even if a sheaf is not pure, we can �lter it by pure sheaves. This proposition it
most useful when i = d, because E/Td−1(E) is the largest pure quotient of E. In fact,
any map E → F of sheaves of equal dimension with F pure factors through E/Td−1(E).

2.2. Stable sheaves

Recall that χ(X,E) =
∑

i(−1)i dimH i(X,E) and that E(m) is an abbreviation for
E ⊗O(1)⊗m, where O(1) is the �xed ample line bundle on X.

Theorem 2.6. Let E be a sheaf of dimension d on a projective scheme X. Then

χ(X,E(m)) is a polynomial, denoted P (E), with rational coe�cients and of degree d.

We write P (E,m) =
∑d

i=0 αi(E)x
i

i! . In this case, αd(E) is a positive integer.

Whenever 0 → F → E → G → 0 is a short exact sequence, we have P (E) =
P (F ) + P (G) and αi(E) = αi(F ) + αi(G) for each i.

Proof. This is well-known, see [25, Sec. 18.6] or [14, Sec. 1.2]. The claims about αd(E)
can be checked using a quite explicit formula in the second reference.

De�nition 2.7. The polynomial P (E) is called the Hilbert polynomial of E. The reduced
Hilbert polynomial p(E) is de�ned as P (E)/αd(E). In addition, the integer αd(E) is
called the multiplicity of E.

For two polynomials P,Q ∈ Q[x], we say that P < Q if P (x) < Q(x) for su�ciently
large x.

13



There is a more elementary way to describe the ordering. Namely, we can consider
the lexicographic ordering of the coe�cients. That is, if we have P,Q of degree at most
d, we �rst compare their coe�cients of xd. If they are equal, we move on to xd−1, etc.
It is not di�cult to see that this gives the same ordering.

By Theorem 2.6, the multiplicity of a sheaf E is a positive integer. It is closely related
to the rank of E, see Lemma 2.22.

De�nition 2.8. A sheaf E is stable if for each proper nonzero subsheaf F ⊆ E, we have
that p(E) < p(F ). A sheaf E is semi-stable if for each proper nonzero subsheaf F ⊆ E,
we have that p(E) ≤ p(F ).

In a large amount of cases, statements about semi-stable sheaves and stable sheaves
are proven almost the same way, only replacing strict inequalities by non-strict ones or
the other way around. Thus, almost always it makes sense to give only one of the proofs.
We trust the reader will be able to give the other proof themselves.

Lemma 2.9. Let 0 → F → E → G → 0 be a short exact sequence of d-dimensional
sheaves. Then we have an equality

αd(G)(p(G)− p(E)) = αd(F )(p(E)− p(F )). (2.2)

In particular, p(F ) ≤ p(E) if and only if p(E) ≤ p(G). Similarly, p(F ) < p(E) if and

only if p(E) < p(G).

Proof. The equation is equivalent to P (G) − αd(G)p(E) = αd(F )p(E) + P (F ), since
αd(G)p(G) = P (G), etc. Rewriting, we obtain

P (G) + F (G) = (αd(F ) + αd(G))p(E).

This holds because αd(F ) + αd(G) = αd(E) and P (F ) + P (G) = P (E). The second
statement is implied by the fact that αd(F ) and αd(G) are both positive by Thm. 2.6,
so that p(E)− p(F ) ≥ 0 if and only if αd(F )(p(E)− p(F )) ≥ 0, etc.

This lemma tells us that the inequality in the de�nition of (semi-)stability may as
well be replaced by an inequality in terms of the quotients of E. An improvement of the
de�nition is given by the next lemma, which says that it su�ces to check the inequality
when the quotient is purely d-dimensional. A subsheaf F satisfying this condition is
called saturated.

Lemma 2.10. Let E be a purely d-dimensional sheaf. The following are equivalent:

1. E is semi-stable.

2. For each short exact sequence 0 → F → E → G → 0 with G d-dimensional and
F 6= 0, we have p(F ) ≤ p(E).

3. For each short exact sequence 0 → F → E → G → 0 with G d-dimensional and
F 6= 0, we have p(E) ≤ p(G).
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4. For each short exact sequence 0→ F → E → G→ 0 with G purely d-dimensional
and F 6= 0, we have p(F ) ≤ p(E).

5. For each short exact sequence 0→ F → E → G→ 0 with G purely d-dimensional
and F 6= 0, we have p(E) ≤ p(G).

For the analogous statement about stability, replace ≤ by < everywhere.

Proof. By Lemma 2.9 we see that (2) is equivalent to (3) and, similarly, (4) is equivalent
to (5). We have trivial implications from (1) to (2) and from (2) to (4). Now assume (5)
and consider a subsheaf F of E, with corresponding quotient G. De�ne G′ = G/Td−1(G),
the canoncial purely d-dimensional quotient of G. If G′ = 0, then G is of dimension less
than d, so αd(F ) = αd(F ) + αd(G) = αd(E). As a result,

p(F ) =
P (F )

αd(F )
=
P (E)− P (G)

αd(E)
<

P (E)

αd(E)
= p(E),

so we are done. If G′ is not zero, then it is d-dimensional. Since Td−1(G) has di-
mension less than d, αd(G) = αd(G

′). The same calculation as the one we just did

shows p(G′) = p(G) − P (Td−1(G))
αd(G) ≤ p(G). By assumption, p(E) ≤ p(G′), thus we �nd

p(E) ≤ p(G). Then, Lemma 2.9 again gives us that p(F ) ≤ p(E), since F is d-dimensional
by assumption. This shows (1), completing the proof.

The next lemma is a useful criterion for morphisms between (semi-)stable sheaves.
It is often contrasted with Schur's lemma in representation theory. In this comparison,
stable sheaves correspond to the irreducible representations. The analogy is strengthened
by Lemma 2.12 and the results of Section 2.3.

Lemma 2.11. Let ψ : F → G be a morphism of semi-stable sheaves.

1. If p(F ) > p(G), then ψ = 0.

2. If p(F ) = p(G) and F is stable, then ψ is injective or zero.

3. If p(F ) = p(G) and G is stable, then ψ is surjective or zero.

4. If P (F ) = P (G) and either F or G is stable, then ψ is zero or an isomorphism.

Proof. For (1), consider the image im(ψ). Assume ψ 6= 0, so that im(ψ) is nonzero.
We then see that p(F ) ≤ p(im(ψ)) ≤ p(G) by the semi-stability assumptions. This is a
contradiction.

For (2), if ψ is not injective, then im(ψ) is a proper quotient of F , so we have
p(F ) < p(im(ψ)) ≤ p(G), a contradiction. One proves (3) in a similar way.

For (4), assume also that P (F ) = P (G) and F is stable. By (2), F ⊆ G and now
P (F ) = P (G) implies P (G/F ) = 0. Hence G/F = 0 so F = G. The case where G is
stable is proved analogously.

Lemma 2.12. Every stable sheaf is simple, i.e. End(F, F ) = k for each stable sheaf F .
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Proof. By Lemma 2.11, End(F, F ) is a �nite-dimensional division algebra over k (possi-
bly non-commutative). However, the only such division algebra is k itself because k is
algebraically closed.

Another proof goes as follows: suppose λ ∈ End(F, F ). Pick x ∈ X and consider an
eigenvalue c of λ⊗ k(x) : F ⊗ k(x)→ F ⊗ k(x). Then λ− c · idF is not an isomorphism
at x, so it must be zero. Hence λ = c · idF .

Example 2.13. Using Lemma 2.10, we can prove that every line bundle L on a variety
of dimension d is stable. Note that L is purely d-dimensional, because it is torsion-free
(see Example 2.2). Suppose L→ G is a d-dimensional quotient with kernel K. Since G
is d-dimensional, it must have rank at least one. However, 1 = rkL = rkG + rkK, so
rkK = 0. Thus K = 0, since L is pure. It follows that L→ G is an isomorphism. Thus
the stability condition of Lemma 2.10 holds vacuously and we are done.

In fact, the argument shows more generally that any torsion-free sheaf of rank one
on a variety is stable.

Example 2.14. Let x ∈ X be a closed point and denote by k(x) the structure sheaf
of x as a sheaf on X. Any zero-dimensional sheaf is of the form

⊕n
i=1 k(xi) for some

integer n and points x1, . . . , xn (not necessarily distinct). Such sheaves are always pure.
It has Hilbert polynomial P = n and reduced Hilbert polynomial p = 1. Thus, every
zero-dimensional sheaf is semi-stable and it is stable when n = 1.

Note that in both of the above cases, (semi-)stability does not depend on the chosen
ample line bundle, while in general the notion of stability does depend on it.

2.3. Filtrations: Harder-Narasimhan and Jordan-Hölder

In this section we prove that every sheaf can be �ltered with stable (or semi-stable)
factors. We may view this result as saying that there are many (semi-)stable sheaves,
or that the semi-stable sheaves are the �building blocks� of arbitrary sheaves. A more
formal way of saying this is that the (semi)-stable sheaves generate the Grothendieck
group K(X).

Lemma 2.15. Let E be a purely d-dimensional sheaf. There is a subsheaf F which

has the property that for each subsheaf F ′ ⊆ E, p(F ′) ≤ p(F ) and if p(F ′) = p(F )
then F ′ ⊆ F . This sheaf is uniquely determined and is called the maximal destabilising
subsheaf. Furthermore, F is semistable.

Proof. See [14, Sec. 1.3]. The construction is as follows: consider the set of subsheaves
F of E, satisfying the additional property that any subsheaf F ′ of E properly containing
F has p(F ′) < p(F ). Among those F , take one with minimal multiplicity.

The �ltration in Theorem 2.16 is called the Harder-Narasimhan �ltration. It is similar
in spirit to the torsion �ltration and, in fact, the two can be combined (see the remarks
after Thm. 2.18).
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Theorem 2.16. Each pure sheaf E has a �ltration 0 = F0 ⊆ F1 ⊆ . . . ⊆ Fn−1 ⊆ Fn = E
such that each Fi+1/Fi is semi-stable and d-dimensional and if pi = p(Fi+1/Fi) then we

have

p0 > p1 > p2 > . . . > pn−1.

Such a �ltration is uniquely determined. We de�ne pmax(E) = p0 and pmin(E) = pn−1.

Proof. Let E be pure of dimension d. We construct the �ltration by induction on αd(E).
First, we let F1 be the maximal destabilising subsheaf of E. Then E/F1 is pure, for if it
has a subsheaf of dimension less than d, its inverse image G would satisfy p(F1) < p(G),
a contradiction (see the argument of Lemma 2.10).

Now αd(E/F1) = αd(E)−αd(F1) < αd(E), so we can apply the induction hypothesis
to get a Harder-Narasimhan �ltration G• for E/F1. We let Fi be the inverse image of
Gi−1 (note that the two de�nitions of F1 coincide) and then we set F0 = 0. Since the
quotients do not change under taking the inverse image we obtain that the factors of the
�ltration are semi-stable, also using that F1 is semi-stable. To obtain the inequality on
polynomials, �rst we use the short exact sequence

0→ F1 → F2 → F2/F1 → 0.

We know p(F2) < p(F1) because F1 is the maximal destabilising subsheaf. Lemma 2.9
then implies that p(F2) > p(F1/F2). As a result, p(F2/F1) < p(F2) < p(F1). The other
inequalities follow by the induction hypothesis.

For uniqueness, we again argue by induction on αd(E). Suppose that F• is any such
�ltration. Let M be the maximal destabilising subsheaf. Consider the smallest j with
M ⊆ Fj . Then the composition M → Fj → Fj/Fj−1 is non-trivial, by minimality of
j. Using Schur's lemma 2.11, p(M) ≤ p(Fj/Fj−1). By assumption, p(Fj/Fj−1) ≤ p(F1)
and sinceM is maximal destabilising, p(F1) ≤ p(M). Thus we have equality everywhere.
Then p(Fj/Fj−1) = p(F1) implies j = 1 by assumption on the �ltration F•. Thus
M ⊆ F1. Also, p(F1) = p(M) implies F1 ⊆M by de�nition of M . Hence F1 = M . Now
apply the induction hypothesis to E/F1.

Even though we do not use Theorem 2.16 explicitely in this text, it is used in the
proof of Theorem 3.6.

It is possible to extend Schur's lemma for stable sheaves to a more general situation,
using pmin and pmax instead of the usual reduced Hilbert polynomial, see [14, Sec. 1.3].

Example 2.17. We use Lemma 2.15 to construct additional examples of semi-stable
sheaves. Let F and G be two semi-stable sheaves with p(F ) = p(G). Then any extension
0 → F → E → G → 0 is also semi-stable. We easily calculate that p(E) = p(F ).
If E is not semi-stable, consider its maximal destabilising subsheaf E′. We must have
p(E′) > p(E). By Lemma 2.11, the map E′ → G is zero. But then E′ ⊆ F and we get
p(E′) > p(E) = p(F ), a contradiction.

The �ltration in the next result is called the Jordan-Hölder �ltration. Unlike the
Harder-Narasimhan �ltration, this one is not canonical. However, the factors of the

17



�ltration are in fact unique, much like the Jordan-Hölder theorem appearing in group
theory and module theory, hence the name of this result.

Theorem 2.18. Let E be a semi-stable sheaf with reduced Hilbert polynomial p. Then

there is a �ltration 0 = F0 ⊆ F1 ⊆ . . . ⊆ Fn−1 ⊆ Fn = E, such that Fi+1/Fi is a stable

sheaf. Moreover, the sheaf gr(F ), de�ned as ⊕iFi+1/Fi is independent of the �ltration.

Proof. Let C(p) be the full subcategory of coherent sheaves consisting of the semi-stable
sheaves with reduced Hilbert polynomial p, together with the zero sheaf. We will prove
this category is abelian. It is closed under direct sums (see Example 2.17), so we prove
that it is closed under kernels and cokernels. Let ψ : F → G be any morphism. We may
assume that im(ψ) 6= 0. Then p(im(ψ)) ≤ p(G) = p(F ) ≤ p(im(ψ)), so we have equality.
Now we have a short exact sequence

0→ im(ψ)→ G→ coker(ψ)→ 0.

If αd(coker(ψ)) = 0, then αd(im(ψ)) = αd(G), so P (im(ψ)) = P (G) which implies
P (coker(ψ)) = 0. Hence, coker(ψ) = 0, which is in C(p). Otherwise, Lemma 2.9 implies
that p(coker(ψ)) = p. The case for ker(ψ) is easier and omitted.

Now, we also claim that C(p) is a Noetherian and Artinian category, i.e. any sequence
of subobjects of any object must stabilise, both increasing and decreasing sequences. To
see this, we note that the map F 7→ αd(F ) de�ned on subobjects of E preserves the
ordering, so any sequence of subobjects of a semistable sheaf E has length at most
αd(E). Now Theorem 2.18 follows from Proposition 2.19, coupled with the observation
that the simple objects in C(p) are exactly the stable sheaves.

Proposition 2.19. Suppose C is an Abelian, Noetherian and Artinian category. Then

every object has a �ltration whose factors are simple objects of C, and these factors do

not depend on the choice of �ltration.

Proof. Any proof of the Jordan-Hölder theorem for modules which is su�ciently categor-
ical in nature immediately generalises to this case. See for example [28, Thm. 32.1].

Combining the torsion �ltration, the Harder-Narasimhan �ltration and the Jordan-
Hölder �ltration, we see that it is possible to �lter any sheaf with stable factors. In
fact, if we choose to �lter only with semi-stable factors, this �ltration becomes uniquely
determined.

De�nition 2.20. Two semi-stable sheaves E, E′ are S-equivalent if gr(E) ∼= gr(E′).

Note that a stable sheaf is the only semi-stable sheaf in its S-equivalence class. Indeed,
a stable sheaf F can be recovered from gr(F ) since F ∼= gr(F ). This will come into play
when discussing moduli spaces: it will turn out that the moduli space of semi-stable
sheaves actually parameterises S-equivalence classes of sheaves. Thus, this observation
implies that the closed points of the moduli space of stable sheaves are in bijection with
the set of stable sheaves.
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2.4. µ-stability

There is another version of stability, called µ-stability (in contrast, our notion of stability
is sometimes called Gieseker-Maruyama-stability). The advantage of using µ-stability is
that it is only in terms of a single number, instead of the more complicated Hilbert
polynomial. The two notions are not equivalent in general, but see the remark after
Lemma 2.25.

De�nition 2.21. Let E be a coherent sheaf of dimension d = dimX. Then we de�ne
rkE = αd(E)

αd(OX) . We also de�ne deg(E) = αd−1(E)− rk(E) · αd−1(OX).

When X is integral, there is a more usual notion of the rank of a sheaf E: it is the
dimension of Eη as a k(η) vector space, where η is the generic point. In this case, the
notions coincide. For general schemes one has to be more careful: the rank is not always
an integer and it depends on the choice of very ample line bundle.

Lemma 2.22. When X is integral and E is a coherent sheaf on X, the rank of E
coincides with the usual notion of rank described above. In particular, the rank is an

integer.

Furthermore, when X is smooth and integral, deg(E) is an integer.

Proof. The �rst statement is proven in Lemma C.9. One can prove the second statement
in a similar fashion, proving that deg(E) = c1(O(1))d−1 ·c1(E). We omit this calculation.

De�nition 2.23. Let E be a sheaf of dimension d. De�ne µ̂(E) =
αd−1(E)
αd(E) . For a

polynomial P =
∑d

i=0 αi
xi

i! with αi ∈ Q for each i and αd 6= 0, we de�ne µ̂(P ) =
αd−1

αd
.

Note that by de�nition, µ̂(E) = µ̂(P (E)).

De�nition 2.24. A coherent sheaf E of dimension d is called µ-semi-stable if Td−1(E) =
Td−2(E) and for every proper nontrivial subsheaf F of E with 0 < rk(F ) < rk(E), we
have µ̂(F ) ≤ µ̂(E). It is called µ-stable if strict inequality holds for all such F .

The condition that Td−1(E) = Td−2(E) means that every subsheaf of E of dimension
less than d has also dimension less than d − 1. The condition that 0 < rk(F ) < rk(E)
means that F and the corresponding quotient of E are both d-dimensional. This last
observation, combined with Lemma 2.10 allows us to compare the two notions.

Lemma 2.25. Let E be a coherent sheaf. If E is semi-stable, then it is µ-semi-stable.
Secondly, if E is pure and µ-stable, then it is stable.

Proof. Observe that µ̂(E) is the coe�cient of xd−1 in p(E). Also, the coe�cient of xd is
�xed (it is always 1

n!). Thus if p(F ) ≤ p(E) we must in particular have µ̂(F ) ≤ µ̂(E),
implying the �rst statement. For the second statement, strict inequality µ̂(F ) < µ̂(E)
implies p(F ) < p(E) by looking at the xd−1 coe�cient.
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We remark that for a one-dimensional sheaf E, the notions of µ-stability and stability
coincide. Indeed, E is pure when T0(E) = 0, which is equivalent to T0(E) = T−1(E) = 0.
We also see that p(E) = 1

2x + µ̂(E), so the required inequalities are equivalent. In
particular, when X is a curve, µ-stability equals stability for all sheaves.

There is also a general setting in which µ-stablilty and µ-semi-stability coincide. In
view of Lemma 2.25, this implies that stability and semi-stability coincide as well. This
we investigate next.

First we notice that, by de�nition, the following formula holds:

deg(E)

rk(E)
=
αd−1(E)

rk(E)
− αd−1(OX) = αd(OX)µ̂(E)− αd−1(OX).

Thus, the inequality µ̂(F ) ≤ µ̂(E) is equivalent to deg(F ) rk(E) ≤ deg(E) rk(F ) (and
similar for <). On an integral scheme, where these are both integers, this gives us an
interesting result.

Proposition 2.26. Let X be an smooth projective variety of dimension d. If a coherent

sheaf E of pure dimension d is µ-semistable and deg(E) and rk(E) are coprime, then E
is µ-stable.

In particular, if E is semi-stable and gcd(deg(E), rk(E)) = 1, then E is stable.

Proof. Suppose that deg(F ) rk(E) = deg(E) rk(F ) for some subsheaf F ⊆ E. Then
rk(E) | deg(E) rk(F ) and so by assumption, rk(E) | rk(F ). Since rk(F ) ≤ rk(E), we
must have equality or rk(F ) = 0. But we are allowed to assume that this is not the case.

The second statement is immediate when applying Lemma 2.25.

2.5. Stability is an open condition

In this section we sketch the proof of a di�cult but crucial result. Near the end of the
proof, we use the notion of bounded families, to be introduced in Section 3.1. We also use
the existence of the relative Quot-scheme. This is a generalisation of Thm. 1.7, which
can also be found in [22].

Theorem 2.27. Let X → Y be a projective morphism and L a relatively very ample line

bundle. Suppose E is a sheaf on X, �at over Y . Then the set of y ∈ Y for which E|y is
stable (resp. semi-stable) with respect to L|y is open.

Sketch of proof. Assume for simplicity that Y is connected, so that E has a constant
Hilbert polynomial P and reduced Hilbert polynomial p, both of degree d. Now the
idea is not so di�cult: for every y ∈ Y we see that Ey is not semi-stable if and only if
there is a polynomial P ′ of degree d with p′ < p and a pure quotient Es → G such that
P (G) = P ′ (in this proof, p′ is the reduced Hilbert polynomial corresponding to P ′, etc.).
We will construct a closed subset SP ′ of Y which consists of those s ∈ S for which such
a quotient exists.

Consider the relative Quot scheme QP ′ = QuotP
′

E/X/Y . The �bre above a point y ∈ Y
is the scheme QuotP

′
Ey
, which is nonempty if and only if a quotient with Hilbert polynomial
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P ′ exists. But saying that the �bre above y is nonempty is the same as saying that y is
in the image of the structure map QP ′ → Y . The image of this map is closed since QP ′

is projective (hence proper). Thus SP ′ is the image of QP ′ .
Thus, the open subset we are looking for is⋂

P ′

Y \SP ′

where P ′ runs over the polynomials such that p′ < p. This intersection is potentially
in�nite. To make it �nite, we reduce to the case that Y = SpecA is a�ne. Then L|Y
allows us to embed X in some PnA, so we reduce to the case X = PnA. Note that there is
m such that each E|y is m-regular by Theorem 3.4, since the family of E|y is bounded
by de�nition. Now we use Theorem 2.28 to see that the set

{ G is a purely d-dimensional sheaf with µ̂(G) ≤ µ̂(P )

and a quotient of E|y for some y ∈ Y }

is bounded. Since p(G) < p implies that µ̂(G) ≤ µ̂(P ), the above set contains

{ G is a pure d-dimensional sheaf with p(G) < p and a quotient of E|y for some y ∈ Y }

as a subset, hence the latter set is bounded as well. By Theorem 3.4 in a bounded family
only �nitely many Hilbert polynomials occur.

Theorem 2.28 (Grothendieck). Let P be a polynomial of degree d, m an integer and µ
a number. Let X be a projective scheme with �xed very ample line bundle. The set of

purely d-dimensional sheaves F on X which satisfy

1. there is a m-regular sheaf E with Hilbert polynomial P and a surjection E → F ,

2. µ̂(F ) ≤ µ.

is bounded.

Sketch of proof. See [14, Lemma 1.7.9] for the case of quotients of a �xed E. To get this
statement, reduce to this case by noting that all such E can be written as quotient of a
�xed sheaf by Theorem 3.4.
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3. Moduli spaces of stable sheaves

In this chapter, we give the construction of the moduli space of stable sheaves. We
will start with some generalities on families of sheaves. The subsequent three sections
describe the construction. Lastly, we describe the tangent sheaf of the moduli space in
the presence of a universal family.

The reference for the �rst four sections is again [14]. The last section is original,
though the results are already known, see e.g. [16].

3.1. Castelnuovo-Mumford regularity

Recall that a family of sheaves on X, parameterised by S is a sheaf E on X×S, which is
�at over S. If F is such a family, we have for each point s of S a sheaf F |s onX×{s} ∼= X.

Serre's theorems say that when some integer m is large enough, F (m) is globally
generated and its higher cohomology vanishes. A basic question is whether we can �nd
such m which work for all sheaves in a family. The next notion is due to Mumford.
Besides answering this question, it also gives a condition for sheaves to appear in a
family.

De�nition 3.1. Let X be a projective scheme with ample line bundle L. A sheaf E is
called m-regular if for each i > 0, H i(X,E(m− i)) = 0.

Lemma 3.2. Every sheaf is m-regular for some m.

Proof. Use Serre vanishing: H i(X,E(N)) vanishes for i > 0 and N large enough.

Prop. 3.3 makes precise the claim that when E is m-regular, then m is large enough
in the sense of Serre vanishing.

Proposition 3.3. If E is m regular, then E is also m′ regular, for m′ ≥ m. Furthermore,

whenever m′ ≥ m, E(m′) is generated by its global sections and its higher cohomology

vanishes.

Proof. See [22, Sec. 2].

Theorem 3.4. Let S be a set of sheaves on a projective scheme X over k with �xed

very ample line bundle. The following are equivalent:
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(i) There is a scheme S of �nite type over k and a sheaf E on S × X such that

S ⊆ {E|s | s ∈ S}.

(ii) There is a scheme S of �nite type over k and a family E parameterised by S such

that S ⊆ {E|s | s ∈ S}.

(iii) The set {P (E) | E ∈ S } is �nite and there is an integer m such that each E ∈ S
is m-regular.

(iv) The set {P (E) | E ∈ S } is �nite and there is a sheaf G on X, such that every

E ∈ S is a quotient of G.

De�nition 3.5. A set of sheaves satisfying the equivalent conditions above is called
bounded.

Sketch of proof. We observe that (i) to (ii) follows by the use of a �attening strati�cation
(see [14, Sec. 2.1]), which applies since X is projective.

The implication (ii) to (iii) follows if we use [22, Thm. 2.3]. Indeed, �rst notice
that in any �at family only �nitely many Hilbert polynomials occur. Now reduce to
S = SpecA and X = PnA. Then our family is a quotient of some O(−m)n. The cited
result allows us to calculate a number N such that the kernel is �brewise N -regular. Here
we used that only a �nite amount of Hilbert polynomials occur. Using the long exact
sequence of cohomology, we can now �nd an integer N ′ such that each E|s is N ′-regular.

If we assume (iii), then Prop. 3.3 implies that E(m) is a quotient of OMX , where M
is the maximum of the numbers P (E,m). Note that M is �nite because there are only
�nitely many P (E).

For (iv) implies (i), we take S to be the disjoint union of QuotPG, where P ranges
over the �nitely many P (E) that occur.

Thus, if there is a �ne moduli space of stable sheaves with Hilbert polynomial P
which is of �nite type, there must be an integer m such that all stable sheaves with
Hilbert polynomial P are m-regular. In fact, we will prove this �rst. This will supply us
with a scheme S as in (i), which we can then manipulate further to construct the moduli
space.

Theorem 3.6. Fix a polynomial P . There exists a number m, such that all semi-stable

sheaves with Hilbert polynomial P are m-regular.

Sketch of proof. By a result in [15], a family S of sheaves with constant Hilbert poly-
nomial is bounded if there is a constant C such that for each E in S we can �nd a
E-regular1 sequence of hyperplane sections Hj in X, such that h0(E|⋂

j≤iHj
) ≤ C holds

for each i. It turns out that for purely d-dimensional sheaves one can in fact bound

1The de�nition of an E-regular sequence can be found in [14, Sec. 1.1], but will not be important
for us. It turns out that almost every sequence of hyperplane sections is E-regular, hence there exists at
least one. Our argument works for any such sequence.
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h0(E|⋂
j≤iHj

) in terms of αd(E), i, d and µ̂(pmax(E)) (see Theorem 2.16 for the de�ni-

tion of pmax). For semi-stable sheaves, pmax(E) = p(E), thus this is a constant as well.
The proof of this estimate is di�cult and involves the Grauert-Mülich theorem. For the
full details, see [14, Ch. 3].

In the proof of the Grauert-Mülich theorem, another estimate comes up, which we
can use to prove the following alternative de�nition of stability. It depends on a large
integer m, but the advantage is that we only have to consider global sections instead of
Hilbert polynomials. See [14, Sec. 4.4] for a proof.

Proposition 3.7. Let p be a polynomial of degree d and let r be a positive integer. Then

for su�ciently large m, the following properties are equivalent for a purely d-dimensional
sheaf F with multiplicity r and reduced Hilbert polynomial p:

1. F is semi-stable (resp. stable).

2. r · p(m) ≤ h0(F (m)) and for all subsheaves F ′ ⊆ F of multiplicity 0 < r′ < r, we
have h0(F ′(m)) ≤ r′ · p(m) (resp. h0(F ′(m)) < r′ · p(m)).

3. For all quotient sheaves F → F ′′ with multiplicity 0 < r′′ < r, we have r′′ · p(m) ≤
h0(F ′′(m)) (resp. r′′ · p(m) < h0(F ′′(m))).

Moreover, if in (2) we have an F ′ such that we have equality, h0(F ′(m)) = r′ · p(m) then
p(F ′) = p(F ).

3.2. The construction part 1: functors

Let X be a projective scheme over k with �xed ample line bundle. Fix a polynomial P .
For convenience, we repeat the de�nition of the moduli functor:

M(S) = {F ∈ Coh(X×S) | F is �at over S and for each s ∈ S, F |s is a
semi-stable sheaf with Hilbert polynomial P .}/ ∼

where E ∼ E′ if there exists a line bundle L on S with E ∼= E′ ⊗ π∗SL. Furthermore,
we have the subfunctor Ms where we replace semi-stable by stable. We will now start
proving Theorem 1.9, the proof of which will take three sections.

The entire construction will depend on a large integer m. By Theorem 3.6, we
know that there is an integer m such that the family of semi-stable sheaves with Hilbert
polynomial P is m-regular. This is what we will use in this section. Later, in Section 3.4,
we will need stronger assumptions. In order to avoid changing our de�nition of m, we
speci�y it now. Write P = r · p, where p is the reduced polynomial corresponding to P .
We pick m such that for i = 1, 2, . . . , r the semi-stable sheaves with Hilbert polynomial
i · p are all m-regular and furthermore that the conditions of Proposition 3.7 hold for p
and r.

De�nition 3.8. Let V be a vector space of dimension P (m). De�ne H = V ⊗OX(−m).
Let Q be QuotPH, the Quot-scheme with universal quotient q : H⊗OQ → E .
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Recall that every closed point of the Quot-scheme corresponds to a quotient of H.
Every semi-stable sheaf E is m-regular, and from this it follows that E can be written
as a quotient of H. This can be extracted from the proof of Thm. 3.4. In other words,
Q is an explicit example of a scheme which parameterises a family E which includes the
set of semi-stable sheaves with Hilbert polynomial P . However, a stable sheaf may occur
multiple times in the family, see the remark after Def. 3.11.

The next technical result is easy, but I do not know of an explicit reference. It is
essentially a relative version of [25, Ex. 24.3.C] and can be proven in the same fashion.

Lemma 3.9. Suppose that Y → Z is a morphism and 0→ E → F → G→ 0 is an exact

sequence of sheaves on Y , with G �at over Z. Let f : Z ′ → Z be any morpism and let

f ′ : Y ′ = Z ′ ×Z Y → Y denote the projection. Then 0 → f ′∗E → f ′∗F → f ′∗G → 0 is

still exact.

We abbreviate E ⊗ π∗XO(m) by E(m). This is a sheaf satisfying E(m)|x = E|x(m).

Lemma 3.10. The set of points x ∈ Q such that Ex is semi-stable and V = H0(V ⊗
OX)→ H0(E|x(m)) is a bijection is open.

Proof. We know that those x where Ex is semi-stable is open by Thm. 2.27. We prove
that the subset where the above map is a bijection is an open subset.

Denote by K the kernel of V ⊗OX×Q → E(m). Since the latter sheaf is �at over Q,
Lemma 3.9 says that 0 → K|x → V ⊗OX → E|x(m) → 0 is still exact. The associated
long exact sequence shows that h0(K|x) = 0 if and only if the map V → H0(E|x(m)) is
an injection. But dimV = h0(E|x(m)) = P (m), so this means it is a bijection. Thus our
statement now follows from the semi-continuity theorem, [25, Thm. 28.1.1].

De�nition 3.11. We denote this open subset by U , i.e. U consists of those x ∈ Q
for which E|x is semi-stable and such that H0(H(m)) → H0(E|x(m)) is a bijection.
Furthermore, let U s be the open subset where E|x is in addition stable and let Ū be the
closure of U in Q.

Let F be a stable sheaf. Then F is a quotient of V ⊗OX in multiple ways. First, note
that by Lemma 2.12, any automorphism of F is scalar. Therefore, if τ is any nonscalar
automorphism of V and p : V ⊗OX → F (m) is a quotient, the quotients p and p ◦ τ are
not isomorphic. We next introduce a group action such that these points are in the same
orbit. We then need to investigate whether there exists a quotient of our action.

To de�ne the action we use a functor-of-points approach. Recall from Example 1.3
that the functor of points of the algebraic group GL(V ) is the functor S 7→ Aut(V ⊗OS).

De�nition 3.12. We have a natural map Q(S) ×GL(V )(S) → Q(S) by sending (q, τ)
to q ◦ π∗Sτ . By the Yoneda Lemma, this gives us an action of GL(V ) on Q. We denote
this action by σ.

Lemma 3.13. The subschemes U , U s and Ū are all preserved under σ.

Proof. For U and U s, this follows because the action preserves the sheaves Eq (but pos-
sibly changes the quotient maps). For Ū , it follows because U is preserved.
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Lemma 3.14. A scheme corepresents hU/GL(V ) if and only if it corepresentsM.

Here (hU/GL(V ))(S) = hU (S)/GL(V )(S), i.e., we take pointwise quotients.

Proof. We prove that M and hU/GL(V ) have equal Zariski shea��cations. Note �rst
that there is a canonical map β : hU/GL(V ) → M. Indeed, any morphism S → U
induces a family of stable sheaves on S by pulling back the universal family, and this is
invariant under the GL(V )-action.

We �rst prove that β is surjective, after shea�fying. Let F be a family of semi-stable
sheaves parameterised by S. Abbreviate F⊗π∗XO(1) by F (m). Then by the Cohomology
and Base change theorem ([25, Thm. 28.1.6]), πS,∗F (m) is locally free of rank P (m).
Thus, locally we can write F as a quotient of V ⊗ OS . This implies that F is in the
image of β after shea��ying.

We also see that β is injective. Suppose that f, g : S → U are two maps such that
when pulling back the universal sheaf we get two �at families di�ering by a line bundle
on S (recall that we modded out by this equivalence relation). Locally this line bundle
is trivial, thus we may assume that when pulling back the universal sheaf we get the
same family twice. Using that every quotient induces an isomorphism on global sections,
we can build an automorphism of V ⊗ OS relating the two quotients. Thus β is an
isomorphism after shea��cation.

This implies that corepresenting hU/GL(V ) is the same as corepresentingM, because
this is the same as corepresenting the shea��cation.

Lemma 3.15. A scheme corepresenting hU/GL(V ) is a categorical quotient of U by

GL(V ).

Proof. A map U → Y is equivariant if and only if the corresponding natural transforma-
tion hU → hY factors via hU/GL(V ). Now combine the two universal properties.

To construct such a categorical quotient, we will use results from GIT (see Appendix
A). Thus, we need to construct a linearised line bundle of Q and we need to show that
GIT-(semi-)stability is the same as our notion of (semi-)stability.

There is a problem still. Let λI denote the automorphism v 7→ λv of V (in other
words, it is the matrix with only λ's on the diagonal). Then λI acts as the identity
on Q. Thus, the stabiliser of any point is in�nite, and hence no point can be GIT-
stable. Therefore, we want to instead consider the action of SL(V ). The discussion
before De�nition 3.12 implies that the stabiliser of a stable sheaf then becomes �nite.

I included all details of the following proposition, because I could not �nd them in
the literature.

Proposition 3.16. Let X be a scheme on which GL(V ) acts in such a way that the

group D = {λI | λ ∈ Gm} acts trivially. We have an induced action of SL(V ) on X by

restriction. Then a quotient of X by GL(V ) exists if and only if a quotient by SL(V )
exists and in that case they coincide.
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Proof. Consider the group homomorphism ϕ : Gm×SL(V )→ GL(V ) de�ned by sending
(λ,M) to λ ·M . This homomorphism is surjective on k-points: if M is an arbitrary
matrix, then M can be written as ϕ(ζ, 1

ζM), where ζ satis�es ζn = detM .

We will show that ϕ is in addition �at, which does imply that it is an epimorphism,
see below. If we can show this we are done. Indeed, if f : X → Y is GL(V )-invariant,
then it is trivially SL(V )-invariant. If f is SL(V )-invariant, then it is also Gm × SL(V )-
invariant. Denote the action of GL(V ) by σ, then we need to show that f ◦ πX = f ◦ σ.
However, we know this is true when composing with ϕ, which is an epimorphism.

To show that ϕ is �at, we use the generic �atness theorem [25, Ex. 24.5.M]. It follows
that there is some closed point M in GL(V ) where ϕ is �at. Now we use a standard
translation trick to show that ϕ is �at at every point of GL(V ).

From the general theory of Grothendieck topologies, �at morphisms between �nite-
type schemes over k which are surjective on closed points are epimorphisms. Indeed,
such morphisms are coverings in the fppf-topology. See [24, tag 020K] for the results on
Grothendieck topologies.

3.3. The construction part 2: linearised line bundles

The theory of GIT requires a linearised line bundle in order to take a quotient (see Def.
A.8 and Thm. A.11). In this section we will construct such a line bundle. We will in
fact construct an ample linearised line bundle, which will resut in a projective quotient.

The construction depends on an integer `. We will choose a speci�c ` in Section
3.4. Our line bundles will be linearised for the action of GL(V ), but this makes them
automatically linearised for the action of SL(V ).

De�nition 3.17. Let ` be an integer. We construct a line bundle on Q by de�ning

L` = det(πQ,∗(E(`))).

Our proof strategy is as follows: �rst we prove that E is linearised. Then we show
step by step how this induces a linearisation of L` when ` is large enough.

Proposition 3.18. For ` large enough, the line bundle L` is ample on Q.

Proof. See [14, Sec. 2.2]. The proof depends on the construction of the Quot-scheme.

Next, we de�ne the action of GL(V ) on Q in a slightly di�erent way, using the
universal automorphism τ on GL(V ). OnX×Q×GL(V ) we have the following morphism
of sheaves, which is surjective, being a composition of surjections.

V ⊗O V ⊗O π∗X×QE .
π∗
GL(V )

τ π∗X×Qq
(3.1)

Any quotient of V ⊗ O with constant Hilbert polynomial P de�nes a morphism
Q×GL(V )→ Q, by the universal property of Q.
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Lemma 3.19. The above map is equal to σ : Q×GL(V )→ Q, the action we de�ned in

Def. 3.12.

Proof. The morphisms agree on their universal elements, hence they agree in general by
Yoneda's lemma.

The universal property of Q implies that the quotient (3.1) is isomorphic to the
quotient V ⊗ O → σ∗E . That means that there is a isomorphism ρ making the below
diagram commute.

V ⊗O V ⊗O

σ∗E π∗X×QE

π∗
GL(V )

τ

σ∗q π∗X×Qq

ρ

Lemma 3.20. The isomorphism ρ is a linearisation of E.

Proof. On X×Q×GL(V )×GL(V ) de�ne automorphisms τ1 and τ2 of V ⊗O respectively
by pulling back τ from the �rst and second factor of GL(V ), respectively. Consider the
quotient (π∗X×Qq) ◦ τ1 ◦ τ2. The functor of points of GL(V ) gives that (idX×Q×µ)∗τ =
τ1 ◦ τ2. The universal property of Q now states that the following diagram commutes.
We suppress subscripts for readability.

V ⊗O V ⊗O

(id×µ)∗σ∗E (id×µ)∗π∗E

τ1◦τ2

(id×µ)∗σ∗q (id×µ)∗π∗q

(id×µ)∗ρ

In a similar fashion, we get the following diagrams. Again we have suppressed various
subscripts.

V ⊗O V ⊗O

(σ × id)∗σ∗E (σ × id)∗π∗E

τ2

(σ×id)∗σ∗q (σ×id)∗π∗q

(σ×id)∗ρ

V ⊗O V ⊗O

π∗σ∗E π∗π∗E .

τ1

π∗σ∗q π∗π∗q

π∗ρ

Note that the last two diagrams paste together to form the �rst. This implies that
(id×µ)∗ρ = π∗ρ ◦ (σ × id)∗ρ, which is the cocycle condition from Def. A.8.

Note that E(`) is also linearised, this follows because the action of GL(V ) on X ×Q
�xes X.

Lemma 3.21. For ` large enough, πQ,∗E(`) is a linearised sheaf.

Proof. By the Cohomology and Base Change theorem, we have that

σ∗πQ,∗E(`) ∼= πQ×GL(V ),∗σ
∗
XE(`) ∼= πQ×GL(V ),∗π

∗
Q×XE(`) ∼= π∗QπQ,∗E(`)
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when ` is large enough. Here the second isomorphism comes from the fact that E(`)
is linearised and the �rst and third come from Cohomology and Base Change. The
above isomorphism gives a linearisation of πQ,∗E(`). We omit the complete veri�cation
of the cocycle condition; it follows from the cocycle condition for E(`) and various natural
isomorphisms coming from the theory of Cohomology and Base Change.

Lemma 3.22. For ` large enough, L` is a linearised line bundle.

Proof. Again by Cohomology and Base change, πQ,∗E(`), is locally free for ` large enough.
Its determinant then becomes linearised as well, because taking the determinant is a
functor which commutes with pullback. Thus L` is a linearised line bundle on Q.

3.4. The construction part 3: stability

Lastly, we need to analyse which points of Ū are GIT-stable under the action of SL(V ).
For this, we plan to use the Hilbert-Mumford criterion A.15.

Consider 1-PS λ of GL(V ), which is by de�nition a homomorphism λ : Gm → GL(V ).
In other words, this is an action of Gm on V . It turns out that it is not di�cult to describe
all such actions. Let us �rst give an example: given t ∈ Gm, we set t · v = tnv, where on
the left, we use the multiplication by scalars. We call this the action the action of weight

n. These are not all the actions, but this is almost true:

Lemma 3.23. Suppose Gm acts on V . Then there exists a decomposition V =
⊕

n∈Z Vn,
where each Vn is closed under the action and Gm acts on Vn with weight n.

Proof. See [11, Prop. 3.12].

Now of course, almost all Vn are zero. To make the above result more concrete: it
implies that there exists a basis ei of V and integers ni such that t · ei = tniei. Thus for
this basis, the action looks like a diagonal matrix. Hence, one can view Lemma 3.23 as
a diagonalisation of the action of λ.

If we have a 1-PS Gm → SL(V ), we get the same results, with the additional require-
ment that

∏
i t
ni = 1, or in other words,

∑
i ni = 0. More abstractly, we may phrase this

as
∑

n n · dim(Vn) = 0. From now on we will restrict to the action of SL(V ).

Suppose now that q is a point of Q, represented by a quotient sheaf F . The decompo-
sition of V does not carry over to F . Lemma 3.25 below implies that this only happens
if F is �xed under the action of Gm. Instead, we get a �ltration, as follows.

De�nition 3.24. Let F≤n be the �ltration of F given by the images of
⊕

i≤n Vi⊗O(−m).
De�ne Fn = F≤n/F≤n−1.

It is not hard to see that Fn is a quotient of Vn⊗O(−m), thus,
⊕

n∈Z Fn is a quotient
of V ⊗O(−m). So instead of a decomposition of F , we have this associated sheaf which
has a natural decomposition. The relation between F and this associated sheaf can be
clearly expressed in terms of GIT.
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Lemma 3.25. The sheaf
⊕

n∈Z Fn is the limit of t ·F as t→ 0. The weight of the action
with respect to L` is −

∑
n∈Z n · P (Fn, `).

Proof. Omitted, see [14].

Of course, for this to work, ` needs to be large enough in the sense of Section 3.3. The
weight is now expressed in terms of Fn, but we prefer that it is expressed in terms of F≤n.
Indeed, the latter are subsheaves of F and we hope to be able to use the (semi-)stability
condition. Let us explain how to do this. First, we use that

∑
n n · dim(Vn) = 0, which

we know because our action is by SL(V ). Then we get∑
n∈Z

n · P (Fn, `)−
P (F, `)

dimV

∑
n

n · dim(Vn)

=
1

dimV

∑
n∈Z

n · (dim(V )P (Fn, `)− dim(Vn)P (F, `)).

The next rewrite step becomes easier if we introduce some notation. So, we de�ne
an = dim(V )P (Fn, `) − dim(Vn)P (F, `) and bn = dim(V )P (F≤n, `) − dim(V≤n)P (F, `).
Then an = bn − bn−1. Furthermore, for |n| large enough, an = bn = 0. Therefore, the all
sums appearing in the next calculation are actually �nite.∑

n∈Z
n · an =

∑
n∈Z

n · (bn − bn−1) =
∑
n∈Z

n · bn −
∑
n∈Z

(n+ 1)bn = −
∑
n∈Z

bn.

Thus, we can now conclude that the Hilbert-Mumford weight of λ for a point repre-
sented by F is

∑
n dim(V )P (F≤n`)− dim(V≤n)P (F, `). In the next proposition we give

a criterion for this to be non-negative.

Lemma 3.26. Let F be a quotient of V ⊗ O(−m) with quotient map q. Then F is

GIT-semi-stable with respect to L` if and only if for each subspace V ′ ⊆ V , the induced

subsheaf F ′ := q(V ′ ⊗O(−m)) satis�es

dimV · P (F ′, `) ≥ dimV ′ · P (F, `). (3.2)

For GIT-stability, replace ≥ by > in the above inequality.

Proof. This will be an application of Theorem A.15. Note that it applies since Ū is
projective, hence proper.

If every such subsheaf satis�es the condition, then our formula of the Hilbert-Mumford
weight above clearly implies that F is semi-stable.

On the other hand, suppose that V ′ ⊆ V violates the condition. Choose a complement
V ′′ of V ′ in V . De�ne an action of Gm on V by setting t · v = t− dim(V ′′)v on V ′ and
t · v = tdim(V ′)v on V ′′. This de�nes a 1-PS of SL(V ). Plugging this into the formula
above shows that the Hilbert-Mumford weight is negative.

De�nition 3.27. Let ρ : V ⊗O(−m)→ F be a quotient and let F ′ ⊆ F be a subsheaf.
We write V ∩H0(F ′(m)) for H0(ρ(m))−1H0(F ′(m)).
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This is just a convenient notation. When H0(ρ(m)) is an isomorphism, as it is for
sheaves in U , the notation makes the most sense, since there is an isomorphism between
H0(F ′(m)) and V ∩H0(F ′(m)). In general, one needs to be a bit more careful.

Lemma 3.28. For ` large enough, a point ρ is GIT-semi-stable with respect to L` if and
only if for all proper subsheaves F ′ ⊆ F and V ′ = V ∩H0(F ′(m)), we have that

dim(V ) · P (F ′) ≥ dim(V ′) · P (F ). (3.3)

For stability, again replace ≥ by >.

Proof. Again omitted, see [14, Sec 4.4]. Note that Lemma 3.28 holds for arbitrary F ′,
not just ones which are induced by subspaces of V .

Now we can �x `, we pick it large enough so that the above Lemma holds. (It is
implicit in the Lemma that for such `, L` is an ample linearised bundle.)

Theorem 3.29. A point q ∈ Ū is GIT-semi-stable if and only if q ∈ U . It is GIT-stable
if and only if q ∈ U s.

Proof. We �rst prove the reverse direction. Let q : H → E be a point in U , i.e., E is semi-
stable. Suppose F ⊆ E is a subsheaf with multiplicity r′. Let V ′ = V ∩H0(F (m)), as
in Lemma 3.28. Because q(m) is an isomorphism by assumption, dim(V ′) = h0(F (m)).

We have picked m such that Prop. 3.7 holds, and thus we can conclude that
h0(F (m)) ≤ r′p(m). If we have strict inequality, then we get that

dim(V ′) · r = h0(F (m)) · r < r′p(m) · r = dim(V ) · r′.

These are the leading coe�cients of the polynomials in (3.3). This implies that the strict
inequality holds in (3.3). In particular, if E is stable, the point corresponding to q is GIT-
stable. However, if E is only semi-stable we might have equality in h0(F (m)) ≤ r′p(m).
In that case, Prop. 3.7 implies that F is semi-stable. By our choice of m, F is m-regular.
Thus

dim(V ) · P (F ) = (rp(m)) · (r′p) = (r′p(m)) · (rp) = dim(V ′) · P (E).

This implies that the inequality of Lemma 3.28 still holds. We conclude that the point
corresponding to q is GIT-semi-stable. Note however that if E is properly semi-stable, i.e.
semi-stable but not stable, then the point q is properly GIT-semi-stable, for the argument
above shows that a stable subsheaf of E (which exists by Theorem 2.18) gives equality in
Lemma 3.28. Thus, for the converse it su�ces to show that any GIT-semi-stable point
in Ū is contained in U .

For the converse, suppose that ρ : H → E is a point in Ū that is GIT-semi-stable.
Before we go on to prove that E is semi-stable, let us state a technical lemma. Here
Td−1(E) refers to the torsion �ltration, which we introduced in Section 2.1.

Lemma 3.30. Let ρ : H → E be a point in Ū . Then there is a pure sheaf F with Hilbert

polynomial P and a map E → F whose kernel is Td−1(E).
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Proof. See [14, Sec. 4.4]. There it is shown that the result holds for a sheaf which can
be deformed to a pure sheaf. Then it is shown that each quotient in Ū can be deformed
to a semi-stable sheaf, which is pure by de�nition.

Let F be the pure sheaf from the above Lemma. We will �rst prove that F is semi-
stable. Let F → F ′ be a quotient with multiplicity r′′. We de�ne E′ to be the kernel
of the composition E → F → F ′. Then we set V ′ = V ∩ H0(E′(m)) and let r′ be the
multiplicity of E′.

The �rst observation we make is that E/E′ is a subsheaf of F ′, which implies
h0(F ′(m)) ≥ h0(E(m)/E′(m)). Now the short exact sequence 0→ E′ → E → E/E′ → 0
gives us an exact sequence

0→ H0(E′(m))→ H0(E(m))→ H0(E(m)/E′(m))→ Q→ 0

for some vector space Q. In particular,

h0(E(m)/E′(m)) = h0(E(m)) + dim(Q)− h0(E′(m))

≥ h0(E(m))− h0(E′(m)).

Now we use that V ′ is constructed as a pullback of V and H0(E′) over H0(E). In
particular, the sequence

0→ V ′ → H0(E′(m))⊕ V → H0(E(m))→ 0

is exact, giving dimV ′ + h0(E(m)) = dimV + h0(E′(m)). Rewriting this, we obtain
h0(E(m)) − h0(E′(m)) = dimV − dimV ′. By de�nition, dimV = P (m) = rp(m).
Comparing the leading coe�cients in Lemma 3.28 gives us that

dim(V ′) · r ≤ dim(V ) · r′ = rp(m) · r′.

Thus dim(V ′) ≤ r′p(m). Combining what we got so far, we �nd that

h0(F ′(m)) ≥ h0(E(m))− h0(E′(m)) = dim(V )− dim(V ′) ≥ rp(m)− r′p(m).

If we can show that r−r′ = r′′ then Prop. 3.7 implies that F is semi-stable. This follows
from a dimension analysis. From the exact sequence

0→ Td−1(E)→ E → F → F/E → 0

it follows that P (Td−1(E)) = P (F/E) and hence that these sheaves are both of dimension
less than d. If K is the kernel of F → F ′, then it follows that the kernel and cokernel
of the induced map E′ → K are also of dimension less than d. Hence, αd(E

′) = αd(K).
By de�nition, r′ = αd(E

′) and it is immediate that r − r′′ = αd(K). This shows that F
is semi-stable.

Now we prove that V → H0(E(m)) → H0(F (m)) is injective. The kernel of this
map is V ′ = V ∩H0(Td−1(E(m))), since the kernel of E → F is Td−1(E). Lemma 3.28
implies that

dim(V ) · P (Td−1(E)) ≥ dimV ′ · P (E),

32



but when dimV ′ 6= 0, the right hand side has degree d and the left hand side has degree
less than d. This is a contradiction, so our map is injective. Since F is semi-stable with
Hilbert polynomial P it is m-regular and so, h0(F (m)) = P (m) = dimV . But then the
composition V → H0(E(m))→ H0(F (m)) is an isomorphism. Since F (m) is generated
by its global sections, it follows that

V ⊗OX → E → F

is surjective. Then E → F is surjective as well, so since P (E) = P (F ), we �nd that
E = F . Thus, E is semi-stable, as we wanted. This argument also shows that V →
H0(E(m)) is an isomorphism. The proof is now �nished.

This �nishes the hard part of the proof of Theorem 1.9. We state one more result
which allows us to compute the closed points of the moduli space.

Theorem 3.31. The orbits of two points p, q ∈ Q intersect if and only if E|p and E|q
are S-equivalent.

Proof. This is proven in the very last part of [14, Sec. 4.4]

To complete the construction, we summary what we have done in a proof of our main
theorem of Section 1.2.

Proof of Thm. 1.9. LetM be the GIT-quotient of the action of SL(V ) on the semi-stable
points of Ū . By Theorem 3.29, the set of GIT-semi-stable points is exactly U , thus, M is
a categorical quotient of U . By Lemma 3.15, M corepresents hU/GL(V ) and by Lemma
3.14, this implies that M corepresentsM.

The proof thatM s corepresentsMs is the same. To show thatM s is a coarse moduli
space, we use that M s is a geometric quotient. Theorem 3.31 and the discussion after
Def. 2.20 imply that each orbit in U s corresponds to a unique stable sheaf. Thus, M s is
a coarse moduli space.

We end with an example in which we can describe the moduli space explicitely.

Example 3.32. Even though it is not easy to write a moduli space down explicitely, we
will provide an example when this is the case. Consider the constant polynomial P = 1.
A sheaf E with P (E) = 1 is of the form k(x) for some x ∈ X. Then M = X, with the
universal family on X ×X being given by O∆.

We indicate how to construct a morphism S → X given a family E. The support of
such a family is proper over S. Furthermore, above s ∈ S, the support of E consists of
a single point. Thus, SuppE → S is a �nite map of degree one (see [25, Thm. 29.6.2])
and hence an isomorphism. Now S → X is given by the composition

S → SuppE → S ×X → X.
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3.5. The tangent sheaf of the moduli space

Denote by M the moduli space of stable sheaves on a projective scheme X with Hilbert
polynomial P and assume that M is �ne, i.e., that M representsMs. Then there exists
a universal family E parameterised by M . We will compute the tangent bundle of M .
The result, Thm. 3.41 does not require the assumption thatM is �ne, see [14, Sec. 10.2].

De�nition 3.33. For any scheme Y , denote by Y [ε] the scheme Y × Spec k[ε].

It is well-known that Spec k[ε] is closely related to the tangent space at a point, see
[7, p. VI.1.3]. The schemes Y [ε] can used to compute the tangent bundle.

Lemma 3.34. Let Y be a scheme over k and U an open subset of Y . There is a natural

bijection

TY (U) ∼= {φ : U [ε]→ U | φ ◦ i = idU}.

Here φ is a morphism of k-schemes and i : U → U [ε] is the inclusion.

Sketch of proof. A section s of the tangent sheaf over U corresponds to a map of sheaves
Ω1
U → OU . By the universal property of Ω1

U (see [4, Ch. 16]), this corresponds to a
derivation δ : OU → OU . This gives a ring morphism OU → OU [ε] by x 7→ x+ δ(x)ε. In
fact, all such ring morphisms are obtained in this way. By considering a�ne patches, we
see that these correspond to maps U [ε]→ U .

De�nition 3.35. If f : Y → Z is a morphism of sheaves, E is a sheaf on Y and U ⊆ Z
is an open or closed subscheme, we write E|U for the restriction of E to f−1(U).

This extends the notation E|z for z ∈ Z of Def. 1.6.

Lemma 3.36. Let U ⊆ M be open. There is a natural isomorphism between TM (U)
and the set of equivalence classes of sheaves F on X ×U [ε], which are �at over U [ε] and
restrict to E|U above U , where two sheaves F , F ′ are equivalent if they di�er by a line

bundle on U [ε].

Proof. This follows by the previous proposition, combined with the universal property
of M .

In order to describe the tangent sheaf, we have to introduce a relative version of Ext-
sheaves. The reader may well be familiar with the Ext-groups and sheaves from [8, Sec.
III.6], which correspond to the cases f being the structure morphsim Y → Spec(k) = Z
or f = idY and Y = Z, respectively.

De�nition 3.37. Let f : Y → Z be a morphism of schemes and suppose that E is an
OY -module on Y . Then we de�ne the relative Ext sheaves E xtif (E,−) as the i-th right
derived functor of f∗H om(E,−) as functor between categories of O-modules.
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Lemma 3.38. Suppose f : Y → Z is a morphism of schemes and E and F are sheaves

on Y . We have a presheaf on Z sending U to Exti(E|U , F |U ). Then E xtif (E,F ) is the

shea��cation of this presheaf.

Second, for any open a�ne subset U = SpecA of Z, we have that E xtif (E,F )|U is

the module Exti(E|U , F |U ) as an A-module.
If in addition f is projective and E and F are coherent, then E xtif (E,F ) is coherent.

Proof. See [1, Ch. 1].

We will now relate the modules of Lemma 3.36 and extensions of E|U on X × U . It
may be helpful to recall that U and U [ε] share the same topological space. The same
holds for X × U [ε] = (X × U)[ε] and X × U . So, sheaves of sets (or, sheaves on groups)
on both spaces coincide. In particular, the only di�erence between a OX×U -module and
a OX×U [ε]-module is an action of ε.

De�nition 3.39. Let U ⊆M be open. If we have an extension

0 E|U F E|U 0i π

of sheaves on X × U , de�ne a OX×U [ε]-module structure on F by letting multiplication
by ε be given by i ◦ π.

Note that i and π commute with multiplication by ε.

Lemma 3.40. With this de�nition, F is �at over U [ε] and restricts to E|U over U .

Proof. The restriction statement is immediate: the image of multiplication by ε is the
image of i, and when modding out we get E|U by de�nition.

For �atness, we have an exact sequence

0→ OU×X → OU×X[ε] → OU×X → 0. (3.4)

When we tensor by F , we get the sequence

0→ Tor1
X×U [ε](F,OX×U )→ E|U → F → E|U → 0.

We know that the end of the sequence is exact, so the Tor group vanishes. We have
shown that F becomes �at when restricted to U . These two conditions guarantee that
F is �at over U [ε], by [20, Thm. 49].

This gives us a map ψU : Ext1(E|U , E|U )→ TM (U). It clearly extends to a morphism
of presheaves, and then to a morphism of sheaves ψ : E xt1

πM
(E , E)→ TM by the universal

property of shea��cation. In fact, ψU is an O(U)-module homomorphism, see Prop. 3.44
at the end of this section. This implies that our map of sheaves is in fact an OM -module
homomorphism. Now we need to show that it is an isomorphism.

Theorem 3.41. The morphism ψ de�nes an isomorphism between the tangent sheaf TM
and E xt1

πM
(E , E).
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Proof. We �rst show that ψ is surjective. Consider an element of TM (U), i.e., a sheaf F
on X × U [ε], �at over U [ε], which restricts to E|U over U . If we tensor (3.4) with F , we
�nd an exact sequence 0 → E|U → F → E|U → 0, since we assumed that F restricts to
E|U over U . I claim that F is isomorphic to ψU applied to the exact sequence. Proving
this means checking that multiplication on F is given by the map F → E|U → F . This
is true, since multiplication by ε is obtained by tensoring

OX×U [ε] → OX×U → OX×U [ε]

with F , which is what we wanted. Thus the map is surjective on the level of presheaves,
and shea��cation preserves arbitrary colimits and thus preserves epimorphisms (see [19,
Thm. III.1]).

Next we show that ψ is injective. Suppose we have two extensions F and F ′ in
Ext1(E|U , E|U ) which map to the same element in TM (U). Then by de�nition, they di�er
by a line bundle L on U [ε]. Pick a Zariski cover U of U such that L is trivial on each
element of U . Then we �nd that when restricted to elements of U , F and F ′ are equal.
Hence F and F ′ are equal in the shea��cation E xt1

πM
(E , E). This implies that the map

E xt1
πM

(E , E)→ TM (U) is injective.

Proposition 3.42. Let m ∈M be a point representing a stable sheaf F . Then TmM is

naturally isomorphic to Ext1(F, F ).

The proof is exactly the same as the proof of Theorem 3.41. In fact, it is a little
easier, because there are no non-trivial line bundles on k[ε], so we won't have to worry
about those.

Let us relate the Proposition 3.42 and Theorem 3.41.

Proposition 3.43. Let m be a point in M and let U = SpecA be an open a�ne subset

of M . The map Ext1(E|U , E|U )→ Ext1(E|m, E|m) is given by tensoring by k(m).

More explicitely, the sequence 0 → E|U → F → E|U → 0 is sent to the sequence
0→ E|m → F|m → E|m → 0. This sequence is again exact because of Lemma 3.9.

Proof. We have an inclusion k[ε]→ U [ε]. Indeed, any OX×U [ε]-algebra F just gets pull-
backed to X[ε]. This is exactly what we have written above.

Proposition 3.44. The map ψU is a OM (U)-module homomorphism.

Before we go on with the proof, let us �rst explain how addition of sections of TM (U)
is de�ned. Consider the space U [ε, ε′], which is formed by adjoining two elements of
square zero. There are three possible maps U [ε]→ U [ε, ε′], which correspond to modding
out by ε, modding out by ε′ and modding out by ε− ε′. Let's call these maps i0, i1 and
δ respectively. One can verify that the following diagram is a pushout:

U U [ε]

U [ε] U [ε, ε′]

i0

i1
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Given two sections, which correspond to two maps f, g : U [ε] → U , they induce a map
(f q g) : U [ε, ε′]→ U by the above pushout diagram. The sum of f and g is then de�ned
as δ ◦ (f q g). One can derive this addition formula explicitely from Lemma 3.34, or one
can perform a similar calculation as in [7, Sec. VI.1.3].

Sketch of proof. Suppose we have two extensions F, F ′ ∈ Ext1(E|U , E|U ). Then we have
an extension F ⊕ F ′ ∈ Ext1(E|U ⊕ E|U , E|U ⊕ E|U ). Composing with the canonical map
E|U ⊕ E|U → E|U , we obtain an extension F ′′ ∈ Ext1(E|U ⊕ E|U , E|U ). In other words,
we have an exact sequence

0 E|U ⊕ E|U F ′′ E|U 0
j0+j1 π .

We give this sheaf a multiplication by ε and ε′. Indeed, we let multiplication by ε be
given by j0 ◦ π and multiplication by ε′ be given by j1 ◦ π. Now it can be veri�ed that
modding out by ε gives us back F ′ and modding out by ε′ gives us back F . This implies
the following: the induced pushout f q g corresponding to F and F ′ is given by F ′′.

Furthermore, modding out by the image of j0 − j1 corresponds to modding out by
ε− ε′. Doing this gives us again an extension of E|U by E|U . The process we have gone
through is exactly the de�nition of the Baer sum, i.e., the sum de�ned on the Ext-group
(see [26, Sec. 3.4]). But it is also the module corresponding to δ ◦ (f q g). Using our
correspondence between multiplication by ε and module structures, this implies that ψU
is a group homomorphism.

The fact that ψU commutes with multiplication is easier and is omitted.

37



4. Sheaves on K3 surfaces

In this chapter, we will consider the special case where X is a K3 surface. The main tools
to study them are Serre duality and the Hirzebruch-Riemann-Roch theorem. A general
reference on K3 surfaces is [13], which also includes a chapter on their moduli spaces of
sheaves.

It also seems to be impossible to write about K3 surfaces without mentioning their
name origins. André Weil named them after Kodaira, Kummer and Kähler and, in
addition, � la belle montagne K2 au Cachemire� [27]. Thus, contrary to popular belief
amoung Dutch students, they are not related to the Belgian-Dutch kids' music group of
the same name.

4.1. K3 surfaces and their basic properties

In this section we introduce K3 surfaces and explain some of their cohomological prop-
erties. Since we are working over k = C, we may also consider the associated complex
manifold. This allows us to use singular cohomology and the Hirzebruch-Riemann-Roch
theorem C.8.

De�nition 4.1. A K3 surface over k is a smooth projective surface X over k such that
H1(X,OX) = 0 and ωX ∼= OX .
A complex K3 surface is a two-dimensional, compact connected complex manifold such
that H1(X,OX) = 0 and ωX ∼= OX .

From now on, we let X denote a K3 surface with a �xed very ample line bundle.
Usually, we abuse notation and denote the associated manifold with X as well.

Let us give a little intuition about the condition H1(X,OX) = 0. On a simply
connected complex manifold X, π1(X) = 0 and hence H1(X,Z), the abelianisation of
π1(X), vanishes. By the universal coe�cient theorem for cohomology, 0 ∼= H1(X,Z) ∼=
H1(X,Z). By Thm. B.10, H1(X,OX) = 0. Thus this condition may be viewed as an
algebraic analogue of being simply connected. In fact, all complex K3 surfaces are simply
connected, but this is not easy to prove, see [13, Ch. 7].

Example 4.2. Let X be a smooth quartic in P3, i.e. X is de�ned by a smooth polyno-
mial, homogeneous of degree 4. Then we have an exact sequence

0→ O(−4)→ OP3 → OX → 0.
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This induces a long exact sequence in cohomology, a part of which is

H1(P3,OP3)→ H1(X,OX)→ H2(P3,O(−4)).

Since the outer two terms are zero, we �nd that the middle term is zero. Secondly, the
adjunction formula [25, Ex. 21.5.B] implies that

ωX ∼= (ωP3 ⊗O(4))|X ∼= (O(−4)⊗O(4))|X ∼= OX .

Thus, X is a K3 surface. To give an explicit example, we may take the zero set of
x4

0 + x4
1 + x4

2 + x4
3, a scheme which is known as the Fermat quartic.

As mentioned above, every K3 surface gives rise to a complex K3 surface, by the
GAGA correspondence (for more about GAGA, see [23]). All complex K3 surfaces ob-
tained in this way are projective. Conversely, supposeX is a scheme whose analyti�cation
is a complex K3 surface. Then X must be smooth and proper over k, but then X it
follows that X is projective [17, Sec. 9.3]. So X must be a K3 surface. As a result, non-
projective complex K3 surfaces do not correspond to K3 surfaces. There are examples
of complex K3 surfaces, the Kummer surfaces, which are sometimes non-projective, see
[13, Sec. 1.3].

Lemma 4.3. When X is a K3 surface, Ω1
X
∼= TX and there is a alternating nowhere

degenerate pairing TX × TX → OX .

Proof. There is an alternating nowhere degenerate morphism Ω1
X × Ω1

X → Ω2
X = ωX

de�ned by sending (x, y) to x ∧ y. Since ωX ∼= OX , this shows Ω1
X
∼=
(
Ω1
X

)∨
= TX . We

had an alternating nowhere degenerate pairing on Ω1
X which induces one on TX using

this isomorphism.

The condition ωX ∼= OX makes Serre duality even more useful. Recall that Serre
duality states that the Yoneda cup product composed with the trace map

Exti(E,F )× Extn−i(F,E ⊗ ωX)→ Extn(E,E ⊗ ωX)→ k

is a perfect pairing (here n is dimX). For K3 surfaces, the ωX disappears and n = 2.
Rewriting this in terms of the dual vector space, this gives us

Exti(E,F ) ∼= Ext2−i(F,E ⊗ ωX)∨ ∼= Ext2−i(F,E)∨. (4.1)

Since X is a complex manifold as well, we can consider its singular cohomology. We
can calculate the dimensions of the cohomology groups of X. We start with some of the
singular cohomology groups.

Lemma 4.4. We have that H0(X,Z) ∼= H4(X,Z) ∼= Z and H1(X,Z) = H3(X,Z) = 0.
Lastly, H2(X,Z) is torsion-free, hence a free group.
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Proof. Most of these statements follow from Poincaré duality [9, Thm. 3.30], combined
with the long exact sequence associated to

0→ Z→ OX → O∗X → 0. (4.2)

Indeed,H0(X,Z) = Z sinceX is connected. Second, we knowH4(X,Z) ∼= H0(X,Z) ∼= Z.
Also, we know that H0(X,OX) → H0(X,O∗X) is surjective, so the long exact sequence
shows that H1(X,Z) is a subgroup of H1(X,OX) = 0. Using another form of Poincaré
duality [9, Prop. 3.38] shows that H3(X,Z) is zero up to torsion.

To deal with the torsion, we refer to [13, Ch. 1]. This involves �rst proving that the
Picard group is torsion-free.

Lemma 4.5. The holomorphic Euler characteristic of X, χ(X,OX), is equal to 2.

Proof. This follows from Serre duality (4.1). Indeed, we know H0(X,OX) = k, as is true
for all projective schemes and H1(X,OX) = 0. Now Serre duality gives

k ∼= H0(X,OX) ∼= H2(X,OX)∗.

which implies χ(X,OX) = 1− 0 + 1 = 2.

In order to extract more information about the cohomology of X, we will use the
Chern classes and Chern characters from Appendix C. The results there hold for general
projective smooth schemes. In case of a surface, it is easy to explicitely describe the
Chern character and Todd class in terms of the Chern classes.

Lemma 4.6. On a surface X, we have, for a coherent sheaf E:

ch(E) = rk(E) + c1(E) +
1

2
c1(E)2 − c2(E).

Furthermore, we can express the Todd class of X as:

td(X) = 1 +
1

2
c1(TX) +

c1(TX)2 + c2(TX)

12
.

Sketch of proof. We already know �rst formula when E is a line bundle by Prop. C.3.
For the general case, use the splitting principle C.5 together with Prop. C.4.

The second formula is just (C.1) when X is a surface.

In general, the Chern classes are rational cohomology classes. For a K3 surface, one
can in fact show that they are integral. For this, one needs that c1(E)2 ∈ H4(X,Z) ∼= Z
is an even integer. This follows from [13, Prop. 1.2.4]. We remark that from the formula
it follows that knowing ch(E) is equivalent to knowing rk(E) and c(E).

Lemma 4.7. We have that c1(TX) = 0 and c2(TX) = 24. As a result, td(X) = (1, 0, 2).
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Proof. On a K3 surface, TX = (Ω1
X)∨ ∼= (TX)∨ by Lemma 4.3. Thus, ch(TX) = ch(TX)∨.

Considering the component in H2(X,Z) gives us c1(TX) = −c1(TX). Since H2(X,Z) is
torsion-free by Lemma 4.4, c1(TX) = 0.

Now, we use the Hirzebruch-Riemann-Roch formula with E = OX . It gives us that

2 = χ(X,OX) =

∫
X

ch(OX) td(X).

By the discussion after Prop. C.3, ch(OX) = 1. Thus we �nd that

2 =

∫
X

td(X) =
c1(TX)2 + c2(TX)

12
=
c2(TX)

12
.

Thus, c2(TX) = 24. Now td(X) = (1, 0, 2) follows from the formula of Lemma 4.6.

Using these results, we can now compute a more explicit version of the Hirzebruch-
Riemann-Roch theorem C.8. We leave the easy veri�cation to the reader.

χ(X,E) =
1

2
c1(E)2 − c2(E) + 2 rk(E). (4.3)

Recall the notation hp,q(X) = dimHq(X,Ωp
X) for the Hodge numbers of X. When

X is a K3 surface, we can calculate these numbers.

Lemma 4.8. We have that h1,1(X) = 20 and

h0,0(X) = h0,2(X) = h2,0(X) = h2,2(X) = 1

h1,0(X) = h1,2(X) = h0,1(X) = h2,1(X) = 0.

Proof. In Lemma 4.5, we already computed h0,0(X) = h0,2(X) = 1 and h0,1(X) = 0.
Since ωX is trivial, this also implies h2,0(X) = h2,2(X) = 1 and h2,1(X) = 1. Now
we use Hodge decomposition, Theorem B.10, to see that h1,0(X) = h0,1(X) = 0 and
h1,2(X) = h2,1(X) = 0. Lastly, we need to compute h1,1(X). For this, we use Hirzebruch-
Riemann-Roch. We have calculated the Chern classes of TX ∼= Ω1

X in Lemma 4.7, namely
c1(Ω1

X) = 0 and c2(Ω1
X) = 24. Plugging this in (4.3), we �nd that

−20 =
1

2
c1(Ω1

X)2 − c2(Ω1
X) + 2 rk(Ω1

X) = χ(X,Ω1
X) = −h1(X,Ω1

X) = −h1,1(X).

Thus h1,1(X) = 20.

As a result, we also �nd the rank of H2(X,Z) (see Lemma 4.4), by Theorem B.10:
its rank is h0,2 + h1,1 + h2,0 = 22. Thus, for a K3 surface the main interesting structure
on H2•(X,Z) is its multiplication structure and the Hodge decomposition of H2(X,C)
given by Thm. B.10. The Global Torelli theorem states that a K3 surface can in fact be
recovered from this decomposition and the multiplication on H2(X,Z) (see [13, Ch. 7]).

Now, we turn to de�ning another cohomological invariant, the Mukai vector.
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De�nition 4.9. When X is a K3 surface, denote by
√

td(X) the cohomology class
(1, 0, 1).

Note that
√

td(X) has indeed the property that
√

td(X)
2

= td(X). As with the
other cohomological notions in this chapter,

√
td(X) exists for more general X and this

de�nition only works for K3 surfaces. We note that
√

td(X)
∨

=
√

td(X).

De�nition 4.10. Let E be a coherent sheaf on X. The Mukai vector v(E) of E is
ch(E) ·

√
td(E).

More explicitely, let ch(E) correspond to the vector (rk(E), c1(E), 1
2(c1(E)2−2c2(E))).

If we abbreviate this as (r, c1,
1
2(c2

1−2c2)), then v(E) just becomes (r, c1,
1
2(c2

1−2c2)+r).
As for the Chern character, knowing the Mukai vector in this case is equivalent to knowing
the Chern classes and the rank.

De�nition 4.11. For two vectors v, w ∈ H2•(X,Z) we de�ne

(v, w) = −
∫
X
v∨ · w.

This is a billinear form on H2∗(X,Z) called the Mukai pairing.

Again we can give a more explicit formula: if v = (v0, v2, v4) and w = (w0, w2, w4)
then (v, w) = −v0 · w4 + v2 · w2 − v4 · w0.

De�nition 4.12. Given coherent sheavesE,F we de�ne their Euler characteristic χ(E,F )
as
∑

i(−1)i dim Exti(E,F ).

Note that χ(E) = χ(OX , E), as Exti(OX , E) = H i(X,E).

Proposition 4.13. The Euler characteristic is additive in both arguments and it is sym-

metric.

Proof. The fact that it is symmetric follows immediately from Serre duality (4.1). To
prove additivity in the second argument we use the long exact sequence associated to
the Ext-groups. This is similar to the proof that χ(E) is additive, see [25, Ex. 18.4.A].
Additivity in the �rst argument follows using symmetry.

Proposition 4.14. For coherent sheaves E, F , we have the following relationship be-

tween the Mukai pairing and the Euler characteristic:

χ(E,F ) = −(v(E), v(F )).

Proof. Expanding the right hand side, we must prove

χ(E,F ) =

∫
X
v(E)∨ · v(F ) =

∫
X

ch(E)∨ · ch(F ) · td(X).
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Suppose that E is locally free. Then since Exti(E,F ) ∼= Exti(OX , F ⊗ E∨), which is
isomorphic to H i(X,F ⊗ E∨) (see [8, Sec. III.6]), we �nd that χ(E,F ) = χ(F ⊗ E∨).

Also, v(E)∨ = ch(E)∨ ·
√

td(E)
∨

= ch(E∨) ·
√

td(E), so we can expand v(E)∨ ·v(F ) and
see that it equals ch(E∨) · ch(F ) · td(X) = ch(F ⊗ E∨) · td(X). Thus when E is locally
free, we must prove

χ(F ⊗ E∨) =

∫
X

ch(F ⊗ E∨) · td(X).

This is the Hirzebruch-Riemann-Roch formula, so this holds. For arbitrary E we choose
a locally free resolution of E and then use additivity of the left and right hand side.

4.2. Variants of the moduli space

Proposition 4.15. Let c ∈ H•(X,Z) be a cohomology class. The functor

S 7→ {E ∈Coh(X × S) | E is �at over S

and for each s ∈ S, E|s has Chern character c and is semi-stable}/ ∼

is corepresentable. Here E E′ if there is L ∈ Pic(S) such that E ∼= E′ ⊗ π∗SL.
Also, this holds when semi-stable is replaced by stable.

Sketch of proof. The Chern character of a sheaf determines its Hilbert polynomial, by
the Hirzebruch-Riemann-Roch formula:

P (E,m) =

∫
X

ch(E) · ch(O(m)) · td(X).

Thus, given a cohomology class c, let P be the corresponding polynomial and let M be
the moduli space of stable sheaves with Hilbert polynomial P . Suppose for simplicity
that there is a universal family E on M . By the above lemma, the Chern characters
are locally constant, thus we let U be the open (and closed) subset of m ∈ M with
ch(E|m) = c. Then it is clear that U represents the above functor.

In general, if there is no universal family, one has to use the universal family of the
Quot-scheme instead.

This proof also shows that if M is a �ne moduli space for the stable sheaves with
Hilbert polynomial P , then we also have a �ne moduli space for the sheaves with Chern
character c.

Instead of �xing a Chern character c, we could also �x a Mukai vector v. Indeed, for
a K3 surface, the Chern character and the Mukai vector determine each other, see the
remarks after Lemma 4.6 and Def. 4.10.

Proposition 4.16. Suppose the moduli functor of stable sheaves with Chern character

c is represented by M with universal family E. There is a open subset U of M which

represents the moduli functor of stable vector bundles on X. Furthermore, E|U is locally

free.
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The moduli functor of vector bundles is simply given by the subfunctor consisting of
those families E, parameterised by S, such that E|s is in addition locally free for each
s ∈ S.

Proof. Consider the integer-valued function on X ×M given by x 7→ dim E ⊗ k(x). This
function is always at least the rank of E and if for some x we have equality, then E is
locally free at x, see [25, Sec. 13.7.4]. The rank of all Em is �xed by c, and this is the
rank of E as well. We call this number r.

Suppose we have m ∈ M with E|m locally free. Then the rank of E|m is r at all
points. Thus there is an open set V ⊆ X ×M on which E is locally free, and Xm ⊆ V .
Properness of the projection to M now implies that there an open subset W around m
such that E|W is locally free. Thus, the set of points in m such that E|m is locally free is
open and we de�ne this to be U . Clearly U represents the intended functor.

Since E|U has rank r at all points, this immediately implies that it is locally free.

Next, we inspect a case when the M has all desired properties: given that certain
numbers are relatively prime, the moduli space of stable sheaves with Chern class c
becomes �ne and projective. Note that c determines the Hilbert polynomial, and hence
the degree and rank. For this result, we only need that X is a smooth surface, not that
it is a K3 surface.

Proposition 4.17. Let X be a smooth projective surface. Suppose r ∈ Z and c1 ∈
H2(X,Z) satisfy gcd(r, c1 · c1(O(1))) = 1. Then for any c2 ∈ H4(X,Z) the moduli

functor M of semi-stable sheaves with Chern character c = r + c1 + c2 is equal to Ms

and M represents both functors.

Proof. If E is semi-stable with Chern character c, then r = rk(E) by de�nition and
c1 · c1(O(1)) = deg(E) (see the proof of Lemma 2.22). Hence gcd(rk(E),deg(E)) = 1
and so E is stable.

The statement that M in fact representsM is closely related to Thm. 1.10. Indeed,
there we also assumed that some numbers are coprime. See [14, Sec. 4.6] for the details
on how to derive the rest of Proposition 4.17 from Theorem 1.10.

In fact, in the reference, they get away with a slightly weaker condition for this
proposition, namely that

gcd

(
r, c1 · c1(O(1)),

1

2
c1(c1 − c1(ωX))− c2

)
= 1.

Of course, for a K3 surface X, c1(ωX) = 0.

Theorem 4.18. Under the assumptions of Prop. 4.17, r > 1 and X is a K3 surface,

then M is irreducible and E is locally free, i.e., all stable sheaves with Chern character c
are locally free.

Proof. See [14, Sec. 6.1].
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Example 4.19. Let c1 ∈ H2(X,Z) be a cohomology class. We consider the moduli
space of stable sheaves with Chern character c = 1 + c1 + 1

2c
2
1. This is a �ne, projective

moduli space by Prop. 4.17. Consider the open subset U of locally free sheaves with
Chern character c (see Prop. 4.16). These vector bundles are all of rank one. Since all
line bundles are stable, U represents a variant of the Picard functor. It is de�ned much
like our moduli functorM:

S 7→ {E ∈Coh(X × S) | E is �at over S

and for each s ∈ S, E|s is a line bundle with Chern character c}/ ∼ .

Here we have again E ∼ E′ if E ∼= E′ ⊗ π∗SL for some L ∈ Pic(S). In this case, U is
denoted PiccX and is called the Picard scheme of X with Chern character c. This scheme
comes up often in algebraic geometry. Here we have used that X is a surface, but the
argument works for all smooth projective varieties, using the results of [14, Sec. 4.6].

For a construction of the Picard scheme over arbitrary base schemes which does not
use the smoothness assumption, see [2, Ch. 8].

4.3. Moduli of stable sheaves on K3 surfaces

In this section we will show that, in the presence of a universal bundle, the moduli
space of stable vector bundles on a K3 surface is always smooth and carries a natural
holomorphic nowhere degenerate two-form. For this, �x a Mukai vector v, let M be the
moduli space of stable sheaves with Mukai vector v. Assume M is �ne and let E be the
universal bundle on X ×M .

We will only construct the two-form on the open subset of M of locally free sheaves,
see Prop. 4.16. Note that this open subset is sometimes equal to M , see Thm. 4.18.
The result is in fact more general. The two-form not only exists on all of M , but the
assumption that M is �ne is not required, see [14, Ch. 10].

Proposition 4.20. The moduli space M of stable sheaves is smooth of dimension 2 +
(v, v).

Proof. Let m be a point in M and let E = Em. First, we �nd by Schur's lemma 2.11
that Hom(E,E) ∼= k. By Serre duality,

Ext2(E,E) ∼= Ext2(E,E ⊗ ω) ∼= Hom(E,E)∗ ∼= k.

Thus, we �nd that χ(E,E) = 2 − dim Ext1(E,E). But χ(E,E) = −(v, v), see Prop.
4.14. Since dim Ext1(E,E) = dimTmM by Prop. 3.42, the dimension of the tangent
space is 2 + (v, v) at each point of M , which is what we want.

Recall that Ext2(E,F ) is the set of 2-extensions 0 → F → H → G → E → 0.
Two such sequences are equivalent if there is a morphism between them. This is not an
equivalence relation, but it generates one. We will drop the �2� in 2-extensions, simply
calling such sequences extensions.

45



De�nition 4.21. Let Y and Z be schemes and f : Y → Z a morphism. Let E,F be
sheaves on Y , �at over Z. An extension

0→ F → H → G→ E → 0 (4.4)

is called �at over Z if H and G are �at over Z.

We will mostly be interested in the case Z = M and Y = X ×M . Note that the
terminology does not mention f , but this will not cause confusion. In fact, we will usually
call such extensions just �at and it will be clear from context what is meant.

Suppose we are in the setting of Def. 4.21. Denote by Ext′ the set of all �at 2-
extensions of E through F , where two extensions are equivalent if there is a morphism
between them (again this generates an equivalence relation). There is a natural map
Ext′ → Ext2(E,F ) by sending an extension to itself. This is clearly well-de�ned. We
will formulate a condition which implies it is an isomorphism.

Lemma 4.22. Let f : Y → Z be a morphism, as above. The map Ext′ → Ext2(E,F )
is an isomorphism if for every sheaf G on Y , there is a surjection G′ → G with G′ �at
over Z.

Proof. We �rst prove surjectivity of our map. Let

0→ F → H → G→ E → 0

be an extension. Let G′ → G be a surjection from a sheaf �at over Z to G. Then, let H ′

be the �bre product of H and G′ over G. It is easy to see that the following sequence is
still exact:

0→ F → H ′ → G′ → E → 0.

Here F → H ′ is de�ned by the universal property of the �bre product. Now G′ is �at
over Z by assumption, and the formal properties of �atness imply H ′ is �at over Z as
well. The maps G′ → G and H ′ → H give a morphism of exact sequences, thus our old
and new sequence are equivalent. This shows that Ext′ → Extn(F,E) is surjective.

To prove injectivity, we �rst show that any morphism between extensions is actually
constructed similarly to the �bre product we saw above. To this end, suppose that
0→ F → H → G→ E → 0 and 0→ F → H ′ → G′ → E → 0 are extensions and there
is a morphism from the second to the �rst. We let H ′′ be the �bre product of H and G′

over G. Then we can draw the following large diagram:

0 F H ′ G′ E 0

0 F H ′′ G′ E 0

0 F H G E 0
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The dotted arrow exists by universal property of the �bre product. Now we apply a
variant of the �ve lemma to the top two rows: except for the dotted arrow, we know that
all other arrows from the top row to the second are isomorphisms. This implies that the
dotted arrow is an isomorphism.

Now we can show injectivity. The reader is warned that this proof is notationally
very inconvenient. It su�ces to show the following: if we consider extensions 0 → F →
H → G→ E → 0 (which we denote by S) and 0→ F → H ′ → G′ → E → 0 (which we
denote by T ), a map S → T , and surjections Ḡ→ G and Ḡ′ → G′ from sheaves �at over
Z which give rise to extensions S̄ and T̄ , then S̄ and T̄ are equivalent.

Let G′′ be the �bre product of Ḡ and Ḡ′ over G′. Applying our construction above,
we get another extension 0 → F → H ′′ → G′′ → E → 0, which we denote by U .
The statement about morphisms of extensions we proved above shows that there are
morphisms of sequences U → S̄ and U → T̄ . However, U does not have to be a �at
extension anymore. To solve this, we take a map Ḡ′′ → G′′ with Ḡ′′ �at, giving us a �at
extension Ū → U . The compositions Ū → S̄ and Ū → T̄ then show that S̄ and T̄ are
equivalent in Ext′.

Lemma 4.23. Let f : Y → Z again be a morphism and assume that Lemma 4.22 holds.

If F and G are sheaves on Y �at over Z and z ∈ Z is a point, then there is a natural

map Ext2(G,F )→ Ext2(G|z, F |z), which is natural in G and F .

Furthermore, if E is locally free, then our restriction map commutes with the map

Ext2(G,F )→ Ext2(G⊗ E,F ⊗ E) given by tensoring an extension by E.

Proof. Given any extension in Ext2(G,F ), we pick an equivalent �at extension, and
restrict that extension. The �atness property ensures that the sequence remains exact.
Again, Lemma 4.22 implies that this is well-de�ned. To prove naturality in G and F ,
note that maps of extensions are de�ned in terms of pullbacks and pushforwards. Since
restriction is a left adjoint, it preserves pushfowards. Also, it preserves a pullback over a
�at base, since the pullback of p1 : E → G and p2 : E′ → G is the kernel of

E ⊕ E′ G
p1−p2

,

which is preserved because G is �at. The second statement is obvious given our explicit
description of the restriction map.

Lemma 4.24. When Z = M , Y = X ×M and f is the projection, the conditions of

Lemma 4.22 are satis�ed.

Proof. Note that M is quasi-projective over k. Since πM is projective1, X ×M can be
embedded in PnM for some integer n. This shows that any sheaf G on X ×M can be
written as a quotient of O(−N)m for some integers N and m. These are �at over M
since they are locally free and πM is a �at morphism. So, we can take Ḡ = O(−N)m.

1There are multiple notions of projective morphisms. However, when the target is quasi-projective
over an a�ne scheme, they all coincide. See also [22]

47



Theorem 4.25. Let M be the moduli space of stable vector bundles, and assume that

there is a universal family E on M . There is a natural alternating nowhere degenerate

pairing TM × TM → OY .

Recall from Theorem 3.41 that TM ∼= E xt1(E , E). This allows us to use the construc-
tions on Ext-groups in this section.

Proof. We construct the morphism locally on a�ne patches of M . So, let U = SpecA
be an a�ne open of M . We construct the morphism in four stages, investigating each
time what its restriction to a point m ∈ U is.

For the �rst stage, we use the Yoneda cup product

Ext1(E|U , E|U )× Ext1(E|U , E|U )→ Ext2(E|U , E|U ).

To be explicit, given 1-extensions F and F ′ of E|U , we have a composition F → E|U → F ′

and then we send these two extensions to 0 → E|U → F → F ′ → E|U → 0. Notice that
this last extension is always �at over U . Thus, it is easy to see that when we restrict
to m ∈ M , we get a map which is de�ned in exactly the same way. In other words, the
Yoneda cup product commutes with restriction to a point m ∈M .

In the second stage, we have a composition

Ext2(E|U , E|U )→ Ext2(E|U ⊗ E|∨U , E|U ⊗ E|∨U )→ Ext2(O,O)

The �rst is obtained by tensoring extensions with E|∨U and the second by using functori-
ality for Ext with the canonical maps O → E|U ⊗ E|∨U and E|U ⊗ E|∨U → O. By Lemma
4.23, we �nd that when we de�ne an analogous map at a point m ∈ M , it commutes
with restriction.

The third stage is a bit less intuitive, as it involves Cohomology and Base change.
For this, we �rst note that Ext2(O,O) = H2(X×U,O). We now apply Flat base change
[25, Thm. 24.2.8] to the structure map U → Spec k to see that

H2(X × U,O) ∼= H2(X,OX)⊗A.

Thus we have an isomorphism Ext2(O,O) ∼= H2(X,OX)⊗ A. If we restrict to m ∈ M ,
we get a map Ext2(OX ,OX)→ H2(X,OX). The theory of Cohomology and Base change
ensures that this is the usual, canonical identi�cation. (Use that {m} → U → Spec k is
the identity and that base-change maps can be composed.)

For the last stage, we use that OX ∼= ωX . We know that there is a trace map
H2(X,ωX) → k. We use this trace map to �nd a morphism H2(X,OX) ⊗ A → A.
Clearly, when restricted to a point m ∈M , we get the usual trace map back.

Composing our four stages, we �nd a morphism TU × TU → A. At a point m, we
have made sure that the resulting morphism

Ext1(E|U , E|U )× Ext1(E|U , E|U )→ k

equals the Serre duality pairing. As a consequence, our pairing is alternating and non-
degenerate. Thus, we have a symplectic structure on U . Our construction clearly extends
to a pairing on M . This proves Theorem 4.25.

48



As mentioned before, Theorem 4.25 is also true whenM is the moduli space of stable
sheaves, even in the absence of a universal family. For this, see [14, Thm. 10.4.3].

This is especially interesting when there are no strictly semi-stable sheaves with Mukai
vector v. For we �nd thatM is a Kähler manifold by Prop. B.5, and for Kähler manifolds,
a symplectic structure is always closed, by Prop. B.11. A more di�cult statement is the
following:

Theorem 4.26. Write v = (v0, v2, v4). Suppose v2 is indivisible as a cohomology class in

H2(X,Z). Then there exists an ample line bundle on X such that M is simply connected

and the symplectic form ω spans H2(X,Ω2
X). That is, M is irreducible symplectic.

Proof. See [14, Sec. 6.2].

In fact there are many ample line bundles which make Theorem 4.26 true. The set of
these H forms an open chamber, a term we informally describe by saying that H satis�es
some inequalities. See the reference for the details.

Theorem 4.27. Suppose X is a K3 surface. Suppose v = (v0, v2, v4) ∈ H2•(X,Z) such

that (v, v) = 0, gcd(v0, v2 · c1(O(1))) = 1 and v0 > 1. Then M is a K3 surface.

Sketch of proof. By Prop. 4.20, M is smooth of dimension 2. Also, by Prop. 4.17 and
Thm. 4.18, M is a smooth projective surface and parameterises only locally free sheaves.
Now Theorem 4.25 shows thatM admits a nowhere degenerate two-form ω. This implies
that Ω1

M
∼= TM , from which it follows that the canonical bundle ωM satis�es ωM = ω∨M .

Note that ω is a global section of ωM . But on a projective scheme, there is only one
line bundle L such that L and L∨ have a nonzero global section, namely, L = O. Thus,
ωM ∼= OM .

It is more di�cult to proveH1(M,OM ) = 0. We sketch a proof found in [14, Sec. 6.1].
First one proves that M is a variety. Then one introduces a Fourier-Mukai transform,
namely the function fE : H•(M,Z)→ H•(X,Z) by c 7→ πX,∗(π

∗
Mc·v(E)). Here v(E) is the

Mukai vector of E (as mentioned in Sec. 4.1, the Mukai vector is de�ned for any smooth
projective variety). Just as for K3 surfaces, v(E) takes only values in even degrees. This
implies that fE preserves the odd and even parts of H•(M,Z) and H•(X,Z). Since the
odd part of the latter space is zero by Lemma 4.4, so is the odd part of H•(M,Z). Now
we apply Thm. B.10 to see that H1(M,O) ⊆ H1(M,Z) = 0 to prove what we want.

The proof not only shows thatM is a K3 surface, but also that the cohomology rings of
M andX are isomorphic, that is, fE preserves the Hodge structure and the multiplication,
but not necessarily the gradation. Such K3 surfaces are called Fourier-Mukai partners.
For a K3 surface, this is equivalent to showing that there is an equivalence between the
bounded derived categories D(M) → D(X). In this case, the equivalence is given by
F 7→ πX,∗(π

∗
MF ⊗ E), which is also called a Fourier-Mukai transform. We conclude by

mentioning that a K3 surface only has �nitely many Fourier-Mukai partners. We refer
to [13, Ch. 16] for the details.
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A. Geometric Invariant Theory

The theory of GIT is one of the main construction tools in Chapter 3 for the moduli
space of stable sheaves. Here, we will summarise the important de�nitions and results
from GIT, without proofs. The original reference for GIT is [21], in which the proofs of
all statements in this chapter can be found. However, there is also an introduction, in
the language of varieties, in [3]. There are also the lecture notes [11].

De�nition A.1. A group scheme over k is a scheme G over k equipped with a multipli-
cation µ : G ×k G → G, a unit e : Spec k → G and an inverse i : G → G such that the
group axioms hold (they can be stated using only commutative diagrams).

For example, the axiom e ·g = e of groups can be stated as the following commutative
diagram:

G G× Spec k G×G

G

∼=

idG

idG×e

µ

By the Yoneda Lemma, this is the same as saying that the functor of points hG of
G factors through the category of groups, i.e., for each scheme T , hG(T ) is a group and
morphisms of schemes induce group homomorphisms.

Example A.2. It is easy to give examples of group schemes. For instance, A1
k is a group

scheme, with µ being de�ned by addition. Similarly, A1
k\{0} is a group scheme with µ

being multiplication. When considered as group schemes, these are usually written as
Ga and Gm for additive and multiplicative, respectively.

We also encountered the general linear group GL(V ) in Chapter 1. Note that Gm is
a special case of GL(V ); it can be identi�ed with GL(k).

We have seen the functor of points of these schemes before, and indeed, they all carry
natural group structures. For example, the functor of points of A1

k is Γ(−,O), which
takes schemes to rings, which can be considered groups under addition.

De�nition A.3. An action of a group scheme G on a scheme X is a morphism X×G→
X, which makes the usual diagrams commute.

Suppose G acts on X and Y . A morphism X → Y is called G-equivariant if it
commutes with the action of G.

In particular, if G acts on X and Y is an arbitrary scheme then a morphism X → Y
is called invariant if it is equivariant with respect to the trivial action of G on Y .
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The de�nition given here correspond to a right action of G on X. Left actions also
exist, but in this text, all actions will be right actions. The more general notion of
equivariant morphisms will not be so important to us, but invariant morphisms will
be. Indeed, the goal of GIT is to �nd a universal invariant morphism. By de�nition, a
morphism f : X → Y is invariant if the following diagram commutes:

X ×G X

X Y

σ

πX f

f

where we have denoted the action of G on X by σ.

De�nition A.4. Suppose G acts on X. A categorical quotient of this action is a scheme
Y with a map q : X → Y which is invariant and universal with respect to all invariant
morphisms. In other words, if f : X → Z is invariant there is a unique g : Y → Z such
that f = g ◦ q.

Before we go on, we say what it means for various notions to be invariant.

De�nition A.5. Suppose G acts on X via σ : X × G → X. A function s ∈ Γ(X,OX)
is called invariant if the corresponding morphism X → A1

k is invariant.

Let Y be an open or closed subset of X. We say that Y is invariant if the morphism
Y ×G→ X factors through Y .

When Y is invariant, we have an induced action of G on Y . Note that when s is an
invariant function, that Xs is an invariant open subset of X and V (s) is an invariant
closed subset of X.

When G is an a�ne group scheme, and X = SpecA is an a�ne scheme, there is an
algebraic construction of a quotient, namely, we take the ring of invariants AG. The
following de�nition, taken from [21, Ch. 0], attempts to mimic this construction for
schemes (although the terminology good quotient is not used).

De�nition A.6. Suppose G acts on X. A good quotient of this action is a scheme Y
with an invariant morphism q : X → Y satisfying:

1. For every open subset U ⊆ Y , the map Γ(U,OY )→ Γ(q−1(U),OX) is injective and
its image is the ring of invariant functions.

2. If W is a closed invariant subset of X, then q(W ) is closed in Y .

3. If Wi, i ∈ I is a set of closed invariant subsets satisfying
⋂
i∈IWi = ∅, then⋂

i∈I q(Wi) = ∅.

We call q a geometric quotient if in addition:

4. The induced map Ψ : X×G→ X×YX given by (x, g) 7→ (x·g, x) is an isomorphism.
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When considering a set X and an action by a group G, the points of the quotient
X/G can be identi�ed with the orbits of the action on X. For schemes, such a statement
cannot be true. See Ex. 1.5 for a counterexample. The notion of a geometric quotient
makes precise when this will hold. Indeed, it says that two points x, y ∈ X map to the
same point in Y if and only if there is g ∈ G with gx = y. This observation allows us to
work with orbits in the scheme-theoretic setting.

The next result veri�es for us that the method above works, i.e., produces a categorical
quotient. It is still not clear when such a quotient exists or when it is geometric.

Lemma A.7. Any good quotient is a categorical quotient.

De�nition A.8. Let G act on X via σ : X×G→ X. A linearisation of a sheaf F on X
is an isomorphism ρ : σ∗F → π∗XF on X×G, such that the following diagram of sheaves
on X ×G×G commute:

(idX ×µ)∗σ∗F (idX ×µ)∗π∗XF

(σ × idG)∗σ∗F (σ × idG)∗π∗XF π∗12σ
∗F π∗12π

∗
XF

.

Here π12 denotes the projection X × G × G → X × G to the �rst two factors. The
equalities above hold because we pullback along equal maps.

A global section s of F is called invariant if the two sections σ∗s and π∗Xs get identi�ed
under ρ.

As we will see below, the GIT-construction requires a linearised line bundle. We will
need the more general notion of a linearised sheaf in the construction of the linearised
line bundle in Section 3.3.

Note that the structure sheaf OX is trivially linearised and that a function on X is
invariant in this sense if and only if it is invariant in the sense of Def. A.5. When L is a
linearised line bundle and s is a global section of L, then Xs is an invariant subset of X.
In particular, the open subset of GIT-(semi-)stable points (see below) is invariant.

De�nition A.9. An action of G on X is closed if for every x ∈ X, the set-theoretic
image of G→ X which maps g to x · g is closed.

De�nition A.10. Let L be a linearised line bundle on X. A point x ∈ X is called
GIT-semi-stable if there is an integer n and an invariant section s ∈ Ln such that Xs is
a�ne and x ∈ Xs. If in addition we can pick s such that the action of G on Xs is closed
and the stabiliser of x is �nite, x is called GIT-stable.

The set of GIT-semi-stable points is denoted Xss(L) and the set of GIT-stable points
is denoted Xs(L).

The set of GIT-semi-stable and GIT-stable subsets is an open subset of X. An
interesting result is that L is ample on Xss(L), by [25, Thm. 16.6.2].

The next statement is the main result of GIT. In it, there appears one notion we did
not explain, the notion of a linearly reductive group. This is a delicate notion, with subtle
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variations once the ground �eld is not of characteristic zero. We content ourselves with
stating here that GL(V ) and SL(V ) are linearly reductive, as we will only need to take
a quotient of an action by SL(V ) in the main text.

Theorem A.11. Let X be a �nite-type scheme over k and let G be a linearly reductive

group acting on it. Let L be a G-linearised line bundle. Then a good quotient Y of

Xss(L) exists, where the quotient map is a�ne and submersive (i.e. the quotient has the

quotient topology). Furthermore, there is an ample invertible sheaf M on Y which pulls

back to Ln for some n, so Y is quasi-projective over k. Lastly, there is an open U ⊆ Y
whose inverse image is Xs(L) and U is a geometric quotient of Xs(L).

Furthermore, if X is projective and L is ample on X, then Y is projective.

Note that Xss(L) and Xs(L) are indeed invariant, so that it makes sense to take a
quotient of it.

We are now left with the problem of �nd the GIT-(semi-)stable points. There is a
numerical criterion to determine GIT-(semi-)stability, which we explain now.

De�nition A.12. A 1-parameter subgroup (or 1-PS ) λ of G is a morphism λ : Gm → G.

The terminology is slightly confusing: we do not actually require λ to be injective.
So, the image of λ might not be Gm. In particular, we allow λ to be the �zero morphism�
t 7→ eG.

De�nition A.13. Suppose that X is proper over k. If λ is a 1-PS of G which acts on
X and x ∈ X, then the morphism Gm → X given by t 7→ x · λ(t) extends uniquely to a
morphism A1 → X. The image of 0 is called the limit of x and denoted limt→0 x · λ(t).

The fact that this extends follows from the properness of X, in particular from the
valuative criterion of properness.

The limit y = limt→0 x · λ(t) is a �xed point for the induced action of Gm on X. It
therefore induces an action of Gm on the �bre of L at y. Since the �bre at y is simply
a one-dimensional vector space, this amounts to giving a morphism Gm → Gm. Such a
morphism is simply given by an integer r, the morphism is then given by sending t to tr

(see also Lemma 3.23).

De�nition A.14. We de�ne the Hilbert-Mumford weight µL(x, λ) to be −r, where r is
as above.

The next result allows us to prove stability by calculating the Hilbert-Mumford weight
of various 1-PS's λ.

Theorem A.15. Let X be proper over k. A point x is stable if and only if µL(x, λ) > 0
for each 1-PS λ. A point x is semi-stable if and only if µL(x, λ) ≥ 0 for each 1-PS λ.
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B. The Hodge decomposition theorem

Every smooth scheme X over C gives rise to a complex manifold Xan. This formation
gives rise to a functor and this assignment also induces an equivalence between the cate-
gory of coherent sheaves on X and the analytic coherent sheaves on Xan. Furthermore,
the sheaf cohomology of a sheaf on X and the corresponding analytic coherent sheaf
coincide. For all these and related statements, see [23]. Here we state aspects of the
anaytic theory of complex manifolds. A reference on complex geometry is [12].

We start by considering a smooth n-dimensional manifold X. We denote its structure
of sheaf of smooth functions by A. Recall that any such manifold has a tangent bundle

TX, which is a vector bundle of rank n. We also recall the notion of a di�erential k-form:
this is an A-linear map

∧k TX → A. We denote by Ak the sheaf of di�erential k-forms.
Note that A = A0. It is well-known that we can identify Ak with

∧k TX∨, the exterior
power of the cotangent bundle.

The sheaves of di�erential forms �t into the de Rham complex :

0→ R→ A0 → A1 → . . .→ An → 0, (B.1)

where the di�erentials are given by the exterior derivative d. This complex is useful,
because it gives rise to the de Rham cohomology.

Theorem B.1 (de Rham). The cohomology of the de Rham complex (B.1) is isomorphic
to the singular cohomology Hk(X,R) of X.

It is useful to complexify the above notions. We denote by AC the sheaf of smooth
complex-valued functions on X. We de�ne TXC = TX ⊗ AC, the complexi�ed tangent

bundle. Similarly, the sheaf of complex-valued di�erential forms AkC is de�ned as the sheaf

of AC-linear maps
∧
TXC → AC. We have the alternative de�nition Ak =

∧k(TXC)∨.
Here we by −∨ we mean the dual with respect to AC. This dicussion leads to the
complexi�ed de Rham complex, the di�erential of which we denote by dC.

Suppose now that X is a complex manifold (to prevent confusion, we do not mean the
related notion of an almost complex manifold). If X is of complex dimension n, it is of
real dimension 2n. There are the following structure sheaves on X: A and AC introduced
above and the structure sheaf of holomorphic functions OX . Interestingly, the sheaves
AC and OX are both de�ned by being sections of the trivial bundle X × C, the former
with respect to the smooth structure and the latter with respect to the holomorphic
structure.
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On a complex manifold, TX is already an AC-module. Then sections of TXC can be
multiplied by i in two ways. The bundle splits into two factors

TXC = TX1,0 ⊕ TX0,1.

Here TX1,0 is the subbundle where the two multiplications by i coincide and TX0,1 is
the subbundle where they di�er by a sign. As complex vector bundles, TX1,0 ∼= TX.
We also have an isomorphism TX0,1 ∼= TX. The latter bundle is de�ned as having TX
as underlying real vector bundle, but with multiplication by i replace by multiplication
by −i.

Now we introduce Ap,qC as
∧p(TX1,0)∨⊗

∧q(TX0,1)∨ (again the dual is over AC here).
This sheaf is called the sheaf of (p, q)-forms. The reason for this de�nition is that we
now have a decomposition

AnC =
n∧

(TX1,0 ⊕ TX0,1)∨ =
⊕
p+q=n

p∧
(TX1,0)∨ ⊗

q∧
(TX)∨ =

⊕
p+q=n

Ap,qC . (B.2)

The complexi�ed de Rham complex behaves well with this composition, in a way
which is described in the next proposition.

Lemma B.2. For any p, q there are maps ∂ : Ap,qC → Ap+1,q
C and ∂̄ : Ap,qC → Ap,q+1

C ,

such that dC = ∂ + ∂̄.
These maps ∂ and ∂̄ satisfy ∂2 = ∂̄2 = 0 and ∂∂̄ = −∂̄∂.

Note that the second statement of the lemma just follows from the relation d2
C = 0.

Thus, the lemma tells us that the sheaves Ap,qC form a double complex with ∂ and ∂̄ as
di�erentials. This double complex is called the Dolbeault complex.

Before we go on to describe to cohomology of this complex, we �rst introduce the
notion of holomorphic di�erential forms. These are analogous to the above notions as
di�erential forms; a holomorphic k-form is a map of OX -modules

∧k TX → OX . The

corresponding sheaf is denoted by Ωk
X . Note that Ωk

X is naturally a subsheaf of Ak,0C .

Indeed, the former are de�ned by being holomorphic sections of the bundle
∧k(TX)∨,

while the latter corresponds to smooth sections of the same bundle (here we think of∧k(TX)∨ as a manifold).
We will see that the cohomology of the Dolbeault complex is related to the cohomol-

ogy of the Ωk
X . We �x an integer p and consider the complex Ap,•C with di�erential ∂̄.

The resulting cohomology theory is called Dolbeault cohomology.

Theorem B.3 (Dolbeault). The cohomology of Ap,•C (X) with di�erential ∂̄ is canonically

isomorphic to Hq(X,Ωp
X).

Sketch of proof. The idea of the proof is that Ap,• is an acyclic resolution of Ωp
X , thus

computing its cohomology. This statement consists of three ingredients. (1) The complex
is exact at Ap,qC for q > 0. This statement is now as the Poincaré ∂̄-lemma. (2) The

subsheaf Ωp
X ⊆ A

p,0
C can be identi�ed with the kernel of ∂̄. This essentially follows from

the Cauchy-Riemann equations. (3) The sheaves Ap,qC are all acyclic. This one can show
using a partition of unity argument.

55



De�nition B.4. A Kähler structure on a complex manifold is a hermitian form h on X,
such that the associated real form g = Re h is closed.

A manifold with a Kähler structure is called a Kähler manifold.

We will not go into the details of this de�nition. It turns out that for some results,
the speci�c Kähler structure is not important, just that there exists one. Therefore, some
authors (for example, [12]) de�ne a Kähler manifold as a manifold admitting a Kähler
structure, without choosing a preferred one. We prefer not to go into the subtleties and
instead just state when a result does not depend on the metric chosen.

Proposition B.5. The projective space Pn admits a Kähler structure. Any closed sub-

manifold of a Kähler manifold is naturally again a Kähler manifold.

This example is crucial for us. It implies that the manifold corresponding to a smooth
projective scheme is a Kähler manifold. Thus the results of this section apply to them
as well.

Using a Kähler structure, one can de�ne additional operations. For example, there
turns out to be an inner product on the space of n-forms, such that the decomposition
(B.2) is orthogonal. We will not need the speci�c product, but we will need the next
operations.

Lemma B.6. There exists operations ∂∗ : Ap,qC → A
p−1,q
C and ∂̄∗ : Ap,qC → A

p,q−1
C . These

are adjoint to ∂ and ∂̄, respectively, with respect to the inner product mentioned above.

Here, we de�ne d∗ = ∂∗ + ∂̄∗.

Proposition B.7. Let X be a compact Kähler manifold. For a form α ∈ Ap,qC (X), the
following are equivalent:

1. ∂α = ∂∗α = 0.

2. ∂̄α = ∂̄∗α = 0.

3. dα = d∗α = 0.

De�nition B.8. Forms satisfying the above equivalent conditions are called harmonic.
The set of global harmonic forms on X of degree (p, q) is denoted Hp,qX .

The notion of harmonic forms is important, since it appears in the next result, which
is known as the Hodge decomposition theorem.

Theorem B.9. Let X be compact Kähler. There exist two natural orthogonal decompo-

sitions:

Ap,qC (X) = ∂Ap−1,q
C (X)⊕Hp,qX ⊕ ∂

∗Ap+1,q
C (X)

and

Ap,qC (X) = ∂̄Ap,q−1
C (X)⊕Hp,qX ⊕ ∂̄

∗Ap,q+1
C (X).
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If one has slightly more theory at their disposal, Theorem B.9 has an interesting
corollary. One can show that ∂̄ is injective on ∂̄∗Ap,q+1

C and zero on the other summand.
Thus, the cohomology of the Dolbeault complex is equal to Hp,qX . However, we already
know that it is also equal to Hq(X,Ωp

X) by Theorem B.3. Hence these vector spaces are
naturally isomorphic.

For the next result, we recall the operation of complex conjugation on cohomology.
We can write Hk(X,C) = Hk(X,R) ⊗ C. Then we de�ne the complex conjugation of
c⊗ z, with c ∈ Hk(X,R) and z ∈ C, as c⊗ z = c⊗ z̄. This gives a conjugation operation
on Hk(X,C).

Theorem B.10 is sometimes also known as the Hodge decomposition theorem.

Theorem B.10. Let X be a compact Kähler manifold. Then there exists a decomposition

Hk(X,C) =
⊕
p+q=k

Hq(X,Ωp
X)

which does not depend on the chosen Kähler metric. Furthermore, in this decomposition

we have Hq(X,Ωp
X) = Hp(X,Ωq

X).

In particular, the second part of Theorem B.10 implies that hp,q(X) = hq,p(X), where
hp,q(X) = dimHq(X,Ωp

X).

Proposition B.11. Let X be a Kähler manifold and let ω be a holomorphic p-form.
Then ω is closed.

Proof. By the proof of Theorem B.3, ∂̄ω = 0. Also, ∂̄∗ω = 0, because it lives in Ap,−1
C ,

which is a zero sheaf. Therefore, by Prop. B.7, ∂ω = 0. Then by Lemma B.2, we �nd
that dω = ∂ω + ∂̄ω = 0.
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C. Chern classes and characters

In this section we introduce the basic properties of Chern characters. These are de�ned
on a complex manifold X. Because of GAGA, [23], we might also take X to be a smooth
scheme of �nite type over k. (Recall that k = C.)

We assume their basic properties and the Hirzebruch-Riemann-Roch formula. We
will provide proofs for the other statements.

De�nition C.1. We denote the i-th Chern class of a vector bundle E on X by ci(E),
which is an element of H2i(X,Z). The total Chern class is de�ned as c(E) =

∑
i ci(E).

We denote the Chern character of a vector bundle E on X by ch(E) =
∑

i chi(E)
where chi(E) ∈ H2i(X,Q).

For a construction of the Chern classes and characters, see [12, Ch. 4]. There is also
an algebraic approach, for which see [5, Ch. 3] and a topological approach, see [10, Ch.
3]

Proposition C.2. Let f : X → Y be a �at morphism. If E is a vector bundle on Y ,
then f∗c(E) = c(f∗E) and f∗ ch(E) = ch(f∗E).

Proof. See [5, Ch. 3].

It is well-known that the Picard group Pic(X) of a scheme or manifold can be inden-
ti�ed with H1(X,O∗X), see e.g. [8, Ex. III.4.5]. Now we consider the exponential exact
sequence.

0→ Z→ OX → O∗X → 0.

The associated long exact sequence of cohomology gives us a connecting homomorphism
δ : H1(X,O∗X)→ H2(X,Z).

Proposition C.3. The total Chern class of a line bundle L is 1 + δ(L), in particular,

c1(L) = δ(L). The Chern character of a line bundle is

ch(L) = ec1(L) = 1 + c1(L)
1

2!
c1(L)2 +

1

3!
c1(L)3 + . . .

Proof. See [12, Ch. 4].

The above power series is �nite since since c1(L)n = 0 for n > dimX. We remark
that Prop. C.3 implies that c(OX) = 1 and c1(L∨) = −c1(L).

58



Proposition C.4. Let 0→ F → E → G→ 0 be an exact sequence of vector bundles on

X. Then ch(E) = ch(F ) + ch(G). We call this property additivity. In this case, we also

have that c(F ) · c(G) = c(E).
We also have ch(E ⊗ F ) = ch(E) · ch(F ). We call this property multiplicativity.

Proof. See [5, Ch. 3].

When X is projective, every coherent sheaf has a �nite resolution by locally free
sheaves. This can be used to de�ne the Chern classes and character for a coherent sheaf,
by forcing the above proposition to be true.

Theorem C.5 (Splitting principle). Given any scheme X over k and a vector bundle

E on X, then there is a scheme X ′ and a smooth projective morphism f : X ′ → X such

that f∗E admits a �ltration

0 = E0 ⊆ E1 ⊆ . . . ⊆ En = f∗E

such that the factors Ei/Ei−1 are line bundles. In particular, when X is smooth, so is

X ′ and on singular cohomology H•(X,Z)→ H•(X ′,Z) is injective.

Proof. See [5, Ch. 3].

Using Theorem C.5, we see that Prop. C.2, Prop. C.3 and Prop. C.4 determine the
Chern character of any vector bundle on any smooth scheme. This observation is called
the axiomatic characterisation of the Chern characters. A similar characterisation exists
for the Chern classes, see [6].

In Lemma C.7 one can �nd a typical application of Theorem C.5. In fact, it is
so typical that the splitting principle is often informally stated by saying that one can
assume that for the purpose of Chern classes, every vector bundle has a �ltration by line
bundles (or, even more extreme, that any vector bundle is a direct sum of line bundles).

Denote by H2•(X,Z) the subring of H•(X,Z) of elements of even degree. It will be
convenient to denote an element v ∈ H2•(X,Z) by (v0, v2, . . .).

De�nition C.6. Let v = (v0, v2, v4, v6, . . .) ∈ H2•(X,Z) be a cohomology class. Then
we de�ne v∨ = (v0,−v2, v4,−v6, . . .).

The same de�nition also applies if we take cohomology with Q-coe�cients rather
than Z-coe�cients. We notice also that v 7→ v∨ is a ring homomorphism and that it
commutes with pullback.

Lemma C.7. For E a vector bundle on X, ch(E∨) = ch(E)∨.

Proof. First we prove it when E is a line bundle. In that case, Prop. C.3 gives that
c1(E∨) = −c1(E). Now we use the second formula of Prop. C.3:

ch(E∨) =

∞∑
i=0

c1(E∨)i

i!
=

∞∑
i=0

(−1)i
c1(E)i

i!
= ch(E)∨.
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Now assume that E is a vector bundle admitting a �ltration by line bundles. Denote the
line bundles by Li. Then

ch(E∨) =
∑
i

ch(L∨i ) =
∑
i

ch(Li)
∨ = ch(E)∨.

Lastly, we take E to be an arbitrary vector bundle. By the splitting principle C.5, we
can �nd a f : X ′ → X such that f∗E admits a �ltration by line bundles. Then we get

f∗ ch(E∨) = ch(f∗E∨) = ch(f∗E)∨ = f∗ ch(E)∨.

Since f∗ is injective on cohomology in this case, we �nd the general result.

We would also like to state the Hirzebruch-Riemann-Roch theorem. For this, we need
the Todd class of X. We refrain from de�ning this class for arbitrary X. Its �rst few
terms are

td(X) = 1 +
1

2
c1(TX) +

1

12
(c1(TX)2 + c2(TX)) +

1

24
c1(TX)c2(TX) + . . . (C.1)

This determines the Todd class for schemes up to dimension three. For a general
formula, see [5, Ch. 3] or [12, Ch. 4].

When X is a projective variety, Poincaré duality implies that H2 dimX(X,Q) ∼= Q in
a canonical way. For c ∈ H2•(X,Q), we de�ne

∫
X c as the rational number corresponding

to the component in degree 2 dimX.

Theorem C.8 (Hirzebruch-Riemann-Roch). Let X be a projective variety and let E be

a coherent sheaf on X. Then we have an equality

χ(E) =

∫
X

ch(E) · td(X).

Proof. [5, Ch. 15].

Lemma C.9. When X is a projective variety, the zeroeth Chern class ch0(E) of a co-

herent sheaf E is equal to rkE.
Furthermore, if dimX = d, rkE · αd(OX) = αd(E).

Proof. For the �rst statement, note that the rank is an additive function in exact se-
quences. Using this, we reduce to the case that E is a vector bundle. Using the splitting
principle C.5, we see that we can reduce to the case that E is a line bundle. But for line
bundles we already know it by Prop. C.3.

For the second statement, we use the Hirzebruch-Riemann-Roch theorem C.8. Denote
c1 = c1(O(1)). Note that

ch(E(m)) = ch(E) · ch(O(m)) = ch(E) · emc1 .

Thus, we now �nd

P (E,m) =

∫
X

ch(E(m)) · td(X) =

∫
X

ch(E) ·
(

1 + c1m+
c2

1

2!
m2 + . . .+

cd1
d!
md

)
· td(X).
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We are interested in the coe�cient of md. By considering the degrees, we see that

αd(E) = cd1 · ch0(E) · td0(X) = cd1 · rk(E).

Indeed, this is the only term with md which lives in H2 dimX(X,Q). Plugging in E = OX
gives αd(OX) = cd1 and hence αd(E) = αd(OX) · rkE. This is what we want.

We lastly have a result stating that Chern classes behave well in families.

Lemma C.10. Let S be a smooth connected scheme of �nite type and let E be a coherent

sheaf on X × S, �at over S. Then for each s, s′ ∈ S, the Chern characters of E|s and
E|s′ coincide.

Proof. We may reduce to S = SpecA is a�ne. Since X ×S is projective over S, we may
choose a locally free resolution of E. Since E is �at over S, this locally free resolution
restricts to a locally free resolution of Es. Thus, if we can prove the result when E is a
vector bundle, additivity gives the result for general E.

When E is a vector bundle, we invoke the splitting principle C.5. Then we can assume
that E has a �ltration by line bundles. Again by additivity, we may now assume that E
is a line bundle.

Let s, s′ be points in S. Since S is connected, there is a path γ : [0, 1]→ S connecting
s and s′. Then the inclusion id×γ : X × [0, 1] → X × S gives a homotopy between the
inclusions is : X = X ×{s} → X ×S and is′ : X = X ×{s′} → X ×S. By functoriality,
Prop. C.2, we �nd that

c1(E|s) = c1(i∗sE) = i∗sc1(E) = i∗s′c1(E) = c1(i∗s′E) = c1(E|s′)

since homotopic maps induce the same pullback map on cohomology. Now the result
follows by the explicit formula of Prop. C.3.
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