TD : feuille n°2 Groupe fondamental

Les exercices marqués du symbole \clubsuit sont des exercices à faire en priorité. Ce sont des grands classiques. Les résultats de certains d'entre eux seront utilisés dans des cours ou dans des exercices ultérieurs.

1 Groupe fondamental, degré.

Exercice 1. Groupe fondamental d'un produit.

Soient (X, x_0) et (Y, y_0) des espaces topologiques pointés. Montrez que l'on a un isomorphisme

$$\pi_1(X, x_0) \times \pi_1(Y, y_0) \simeq \pi_1(X \times Y, (x_0, y_0))$$
.

Exercice 2. Groupe fondamental des groupes topologiques.

- 1. **Principe de Eckmann-Hilton.** Soit X un groupe. On suppose que X est équipé de deux produits, c'est à dire de deux applications $\bullet: X \times X \to X$ et $*: X \times X \to X$ vérifiant les conditions suivantes :
 - (i) Il existe un élément $1 \in X$ qui est une unité à la fois pour \bullet et pour *.
 - (ii) l'application $*: X \times X \to X$ est compatible avec l'opération \bullet , c'est à dire :

$$(x \bullet x') * (y \bullet y') = (x * y) \bullet (x' * y') .$$

Montrez que les deux applications produits sont égales, et qu'elles définissent une structure de mono $\ddot{}$ de commutatif sur X (c'est à dire qu'on a associativité et commutativité du produit).

2. Montrez que le groupe fondamental d'un groupe topologique est abélien.

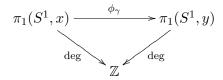
Exercice 3. Groupe fondamental des espaces fonctionnels.

Soit Y un espace métrique et $y \in Y$. On note $\mathcal{C}(S^1,Y)$ l'espace des fonctions continues de S^1 dans Y, muni de la topologie de la convergence uniforme. Soit ΩY le sous espace de $\mathcal{C}(S^1,Y)$ formé des applications continues f telles que f(1) = y. Montrez qu'on a une bijection entre $\pi_0(\Omega Y)$ et $\pi_1(Y,y)$.

\blacksquare Exercice 4. Degré d'une application $S^1 \to S^1$.

1. Soit $f: S^1 \to S^1$ une application continue et soit $x \in S^1$. On note $n_x \in \mathbb{Z}$ le nombre tel que le diagramme suivant commute :

(a) Montrez que pour tout lacet γ d'origine x et d'extrémité y, on a un diagramme commutatif de morphismes de groupes (où $\phi_{\gamma}([\alpha]) = [\gamma^{-1}\alpha\gamma]$):



(b) Montrez que le nombre n_x est indépendant de x.

Le nombre n_x est appelé le degré de f, et on le note $\deg(f)$.

- 2. Montrez que $\deg(g \circ f) = \deg(g) \circ \deg(f)$.
- 3. Montrez que deux applications sont homotopes si et seulement si elles ont même degré.
- 4. Montrez que si $\deg(f) \neq 0$, alors f est surjective. Montrez que la réciproque est fausse.
- 5. Montrez que si f est injective alors $deg(f) = \pm 1$. Montrez que la réciproque est fausse.

Exercice 5. Théorème de Borsuk-Ulam

Le théorème de Borsuk Ulam affirme que pour toute fonction continue $S^n \to \mathbb{R}^n$, il existe $x \in S^n$ tel que f(x) = f(-x). On se propose de montrer ce théorème pour n = 2 et n = 1

- 1. Montrez le cas n = 1.
- 2. On suppose maintenant n=2. On procède par l'absurde : on suppose qu'on a une application $f: S^2 \to \mathbb{R}^2$ telle que pour tout $x, f(x) \neq f(-x)$.
 - (a) Montrez que si $k: S^1 \to S^1$ vérifie k(-x) = -k(x) pour tout x alors le degré de k est impair.
 - (b) Construire une application $g: S^2 \to S^1$ telle que pour tout x, g(-x) = -g(x).
 - (c) Soit $\iota: S^1 \hookrightarrow S^2$ l'inclusion de S^1 comme équateur de S^2 . Montrez que ι est homotopiquement triviale, alors que $g \circ \iota$ ne l'est pas. Conclure.

Exercice 6. Théorème de Lusternik et Schnirelmann

Soient A, B, C trois fermés de S^2 dont la réunion recouvre S^2 . Montrez que l'un des fermés contient deux points antipodaux.

Exercice 7. Une formule analytique pour le degré.

0. Rappels d'analyse complexe. Soit U un ouvert de \mathbb{C} . On rappelle que si $F:U\to\mathbb{C}$ est une fonction continue, et $\gamma:[0,1]\to U$ un chemin continu et \mathcal{C}^1 par morceaux, l'intégrale de F le long de γ est :

$$\int_{\gamma} F(z)dz = \int_{0}^{1} F(\gamma(t))\gamma'(t)dt$$

Soit $F: U \to \mathbb{C}$ une fonction analytique complexe. Rappelez pourquoi F admet localement une primitive, et pourquoi si F admet une primitive sur U alors pour tout lacet γ d'image dans U on a $\int_{\gamma} F(z)dz = 0$.

- 1. Une démonstration de l'invariance homotopique de l'intégrale. Soient γ_0 et γ_1 deux chemins \mathcal{C}^1 de $\mathbb{C} \setminus \{a\}$ homotopes (par une homotopie H qui ne fixe pas nécessairement leurs extrémités).
 - (a) Supposons que H est de la forme $H(s,t) = s\gamma_0(t) + (1-s)\gamma_1(t)$. En découpant $[0,1] \times [0,1]$ en petits carrés, montrez que $\int_{\gamma_0} F(z)dz = \int_{\gamma_1} F(z)dz$.
 - (b) L'application H est maintenant une application continue quelconque. Montrez qu'on peut trouver des chemins \mathcal{C}^1 , $\mu_0 = \gamma_0, \, \mu_1, \dots, \, \mu_n = \gamma_1$, tels que les fonctions suivantes sont des homotopies dans $\mathbb{C} \setminus \{a\}$:

$$h_k(s,t) = s\mu_k(t) + (1-s)\mu_{k+1}(t)$$
.

- (c) Conclure que $\int_{\gamma_0} F(z)dz = \int_{\gamma_1} F(z)dz$.
- 2. Indice et degré. Si $\gamma:[0,1]\to\mathbb{C}$ est un lacet \mathcal{C}^1 (i.e. $\gamma(0)=\gamma(1)$) et si $a\in\mathbb{C}\setminus\gamma([0,1])$, on définit l'indice de γ par rapport à 0 par la formule :

$$\operatorname{Ind}_{\gamma}(0) = \int_{\gamma} \frac{1}{z} dz .$$

- (a) Montrez que tout lacet continu de S^1 est homotope par une homotopie pointée à un lacet \mathcal{C}^{∞} de $\mathbb{C}\setminus\{0\}$.
- (b) Montrez que l'indice d'un lacet γ par rapport à 0 est égal au degré du lacet $\gamma/|\gamma|$. (Remarque : en particulier, cela prouve que l'indice est toujours un nombre entier).

2 Groupe fondamental et théorème de Van Kampen.

Exercice 8. Groupe fondamental d'une suspension.

Soit X un espace topologique et ΣX sa suspension (quotient de $X \times [0,1]$ en écrasant $X \times \{0\}$ d'une part et $X \times \{1\}$ d'autre part). Si X est connexe par arcs, montrez que ΣX est simplement connexe. Donnez un contre-exemple si X n'est pas connexe par arcs.

Exercice 9. Groupe fondamental de la bouteille de Klein

La bouteille de Klein est la surface topologique obtenue comme quotient de $[0,1] \times [0,1]$ par l'identification (x,0) = (1-x,1) et (0,y) = (1,y) (faites un dessin).

- 1. Montrez que la bouteille de Klein est homéomorphe à la réunion de deux rubans de Moebius collés le long de leur bord (c'est à dire au quotient de $M_1 \sqcup M_2$ par l'identification $x = \phi(x)$, où ϕ est l'application identité de ∂M_1 dans ∂M_2 .
- 2. Montrez que le groupe fondamental de M est le quotient d'un groupe libre à deux générateurs a et b, quotienté par la relation aa = bb.
- 3. Calculez l'abélianisé de ce groupe. Montrez que la Bouteille de Klein n'a pas le même type d'homotopie que le tore.

Exercice 10. Groupe fondamental d'une variété épointée.

Soit V une variété topologique de dimension $n \geq 3$. Soit $X = \{x_1, \dots, x_n\}$ un ensemble de points distincts de V. Montrez que l'inclusion $V \setminus X \hookrightarrow V$ induit un isomorphisme au niveau des groupes fondamentaux.

Exercice 11. Groupe fondamental des surfaces.

Soit S_g la surface de Riemann orientable de genre g. Soient $X = \{x_1, \ldots, x_n\}$ et $Y = \{y_1, \ldots, y_m\}$ deux ensembles de points distincts de S_g .

- 1. Rappelez le calcul du groupe fondamental de S_g .
- 2. Calculez le groupe fondamental de $S_q \setminus X$.
- 3. Calculez le groupe fondamental du quotient S_q/Y .
- 4. Calculez le groupe fondamental de $(S_g \setminus X)/Y$.

Exercice 12. Groupe fondamental des variétés projectives complexes.

- 1. Pour $n \geq 2$, montrez que $\mathbb{C}P^n$ peut s'obtenir à partir de $\mathbb{C}P^{n-1}$ en rattachant une cellule de dimension 2n.
- 2. Calculez le groupe fondamental de $\mathbb{C}P^n$, pour $n \geq 1$.

Exercice 13. Groupe fondamental des groupes linéaires de taille 2

- 1. Montrez que l'application $SU_2(\mathbb{C}) \to \mathbb{C}^2$ qui à une matrice associe la première colonne de la matrice induit un homéomorphisme entre $SU_2(\mathbb{C})$ et S^3 .
- 2. Déduisez-en le groupe fondamental des groupes topologiques $SU_2(\mathbb{C})$, $U_2(\mathbb{C})$ et $GL_2(\mathbb{C})$.
- 3. Calculez le groupe fondamental de $SO_2(\mathbb{R})$, de $GL_2(\mathbb{R})_+$ (composante connexe de $GL_2(\mathbb{R})$ formé des matrices de déterminant positif) et de $GL_2(\mathbb{R})_-$ (composante connexe de $GL_2(\mathbb{R})$ formé des matrices de déterminant négatif).

Exercice 14. Homotopies de lacets à extrémités fixées ou non.

- 1. Soit γ un lacet de X. Montrez que γ est homotope à un lacet constant par une homotopie à extrémités fixées si et seulement si γ est homotope à un lacet constant par une homotopie quelconque.
- 2. Considérons le lacet $ab \in S^1 \vee S^1$ (a désigne le générateur du π_1 associé à la première copie de S^1 et b celui associé à la deuxième copie de S^1). Montrez que ab est homotope à ba via une homotopie non pointée, mais que ces deux lacets ne sont pas homotopes via une homotopie à extrémités fixées.

Exercice 15. Groupe fondamental d'un graphe fini.

Un graphe fini est un complexe cellulaire fini de dimension 1. Les cellules de dimension 0 s'appellent les sommets du graphe, les cellules de dimension 1 s'appellent les arêtes du graphe.

1. Ecrasement d'une arête. Soit A une arête dont les extrémités sont distinctes. Le but de cette question est de montrer que l'application quotient $q:\Gamma \to \Gamma/A$ est une equivalence d'homotopie.

- (a) Soit $h: A \times [0,1] \to A$ une homotopie entre Id_A et une application constante. Montrez qu'on peut étendre h en une application $H: \Gamma \times [0,1] \to \Gamma$ telle que $H(x,0) = \mathrm{Id}_{\Gamma}$. (Indication : on pourra utiliser que toute application continue à valeurs dans un espace topologique X définie sur trois bords du carré $[0,1] \times [0,1]$, peut s'étendre à tout le carré).
- (b) Montrez que l'application $x \mapsto H(x,1)$ se factorise d'une unique manière comme la composée $p \circ q$, avec $p : \Gamma/A \to \Gamma$.
- (c) Montrez que q et p sont des equivalences d'homotopie inverses l'une de l'autre.
- 2. Groupe fondamental. Si Γ est un graphe, on note $c(\Gamma)$ la somme $1 \#\{Arêtes\} + \#\{Sommets\}$. Montrez que le groupe fondamental d'un graphe fini Γ est un groupe libre à $c(\Gamma)$ générateurs.

Exercice 16. Espaces topologiques à groupe fondamental donné

Construisez un espace topologique explicite dont le groupe fondamental est $\mathbb{Z}/n\mathbb{Z}$.

3 Exercices additionnels

- 1. Calculez le groupe fondamental du cercle à deux origines, et (plus dur) de la droite à deux origines.
- 2. Calculez le groupe fondamental de $\mathbb{R}P^n$ pour $n \geq 1$.