École Normale Supérieure de Lyon

MASTER 1 Algebraic Geometry

Final Exam 30 April 2018

Duration: 3h00

Convention : All rings are assumed to be commutative, associative and have a unit. Questions -

- 1. Recall the definition of irreducibility of a scheme.
- 2. Let A be a ring. Show that the scheme X = Spec(A) is irreducible if and only if A has a unique minimal prime ideal (which is therefore the nil-radical of A).
- 3. Give an example of a morphism of schemes which is of finite type but not finite.
- 4. Give an example of non-affine morphism.

Exercise 1 — Prove that if k is a field, then any affine open subset of the affine n-space \mathbb{A}_k^n is principal.

Exercise 2 — Let $f : X \to Y$ be a morphism of integral schemes, and let η_X, η_Y be the generic points of X, Y (so that the closure of $\{\eta_X\}$ is X, similarly for Y).

- 1. Prove that if f(X) is dense in Y then $f(\eta_X) = \eta_Y$.
- 2. Recall why the natural map $O_Y(U) \to O_{Y,\eta_Y}$ is injective and identifies O_{Y,η_Y} with the fraction field of $O_Y(U)$ for any nonempty affine open subset U of Y.
- 3. Deduce that if $f(\eta_X) = \eta_Y$, then the map $f^{\sharp} : O_Y \to f_*O_X$ is injective.
- 4. Prove that if f^{\sharp} is injective, then f(X) is dense in Y.

Exercise 3 — A scheme is called *quasi-separated* if the intersection of any two quasi-compact open subsets is quasi-compact.

- 1. Show that affine schemes are quasi-separated.
- 2. (Seen in the lecture.) Let X be a quasi-compact and quasi-separated scheme and $f \in \mathcal{O}_X(X)$. Let X_f be the open subscheme where the value of f does not vanish. Show that the natural morphism $\mathcal{O}_X(X)_f \to \mathcal{O}_X(X_f)$ is an isomorphism.

Exercise 4 — Let ϕ be the automorphism of $X = \mathbb{A}^1_{\mathbf{Q}} = \operatorname{Spec}(\mathbf{Q}[T])$ induced by the morphism of \mathbf{Q} -algebras $\mathbf{Q}[T] \to \mathbf{Q}[T]$ sending T to T + 1.

- 1. Prove that if U is a nonempty open subset of X such that $\phi(U) \subset U$, then U = X.
- 2. Let Y be a scheme and let $f : X \to Y$ be a morphism of schemes such that $f = f \circ \phi$. Prove that f factors uniquely through the natural map $X \to \text{Spec}(\mathbf{Q})$.
- 3. Does the result in 2) hold if instead of schemes (and morphisms of schemes) Y we consider arbitrary ringed spaces and morphisms of such spaces?

Exercise 5 — A morphism $f: X \to Y$ of schemes is *integral* if f is affine, and for every affine open subset Spec $B \subset Y$, with $f^{-1}(\operatorname{Spec} B) = \operatorname{Spec} A \subset X$, the induced ring homomorphism $B \to A$ is integral.

1. Show that the composition of two integral morphisms is integral.

- 2. Show that finite morphisms are integral. Does the converse hold?
- 3. Show that integral morphisms are closed, i.e., the images of closed subsets are closed.
- 4. Show that an affine morphism f is integral if there is an open affine cover $\{U_i = \operatorname{Spec} B_i\}_i$ of Y, with $f^{-1}(\operatorname{Spec} B_i) = \operatorname{Spec} A_i \subset X$ such that the induced map $B_i \to A_i$ is an integral ring homomorphism for all i.

Exercise 6 — Let p be a prime number. If X is a \mathbf{F}_p -scheme of finite type, let X_0 be the set of closed points of X. If L is an extension of \mathbf{F}_p , let X(L) be the set of morphisms of schemes $\operatorname{Spec}(L) \to X$.

- 1. Prove that for any $x \in X_0$, the residue field $\kappa(x)$ is a finite extension of \mathbf{F}_p . We denote $\deg(x) = [\kappa(x) : \mathbf{F}_p]$ its degree.
- 2. Let a_n be the number of points $x \in X_0$ such that $\deg(x) = n$. Prove that $|X(\mathbf{F}_{p^m})| = \sum_{d|m} da_d$ for all m, where d runs over all positive divisors of m.
- 3. Define the Zeta function of X to be the following formal series :

$$Z(X,t) = exp\left(\sum_{m\geq 1} |X(\mathbf{F}_{p^m})| \cdot \frac{t^m}{m}\right).$$

Prove that $Z(X,t) = \prod_{x \in X_0} (1 - t^{\deg x})^{-1}$. Deduce that Z(X,t) has integer coefficients.

4. Compute Z(X, t) explicitly for $X = \mathbb{A}^n_{\mathbf{F}_p}$ the affine *n*-space and $X = \mathbb{P}^n_{\mathbf{F}_p}$ the projective *n*-space.