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TD 3-Sheaves on topological spaces, ringed spaces

We write Sh(X), Ab(X) for the categories of sheaves of sets, resp. abelian sheaves on a topological space
X. I will simply write equality instead of "canonical isomorphism". If F ∈ Sh(X) and x ∈ X, Fx is the stalk
of F at x, and for s ∈ F (U) with x ∈ U , sx is the image of s in Fx.

A ringed space X = (X,OX) is a topological space X together with a sheaf of rings OX on it, and a
morphism of ringed spaces f = (f, f ]) : X → Y consists of a map of topological spaces f : X → Y and a map
of sheaves of rings f ] : OY → f∗OX . We write Mod(X) for the category of OX -modules (i.e. abelian sheaves
F such that F (U) is an OX(U)-module in a way compatible with restrictions) on a ringed space (X,OX). If
f : X → Y is a morphism of ringed spaces and F ∈ Mod(Y ), we define f∗(F ) ∈ Mod(X) by

f∗F = OX ⊗f−1(OY ) f
−1(F ),

the map f−1(OY )→ OX being induced (by adjunction) by f ] and the tensor product sheaf being the sheafi-
fication of the obvious presheaf.

X is always a topological space below, sometimes-always mentioned-a ringed space.

0.1 A few concrete examples

1. Show that the rule that sends each open U ⊂ R to the set of to the set of continuous bounded maps
f : U → R, with the restrictions being the usual restriction of functions, is a pre-sheaf, but not a sheaf.
What is the sheatification ?

2. a) Let F be the sheaf of holomorphic functions on C, and let f : F → F be the map induced by d
dz . Is

the presheaf U → coker(f(U) : F (U)→ F (U)) a sheaf ? What is its sheafification ?
b) Let X = C∗ and consider the exponential as a map between the sheaf F of continuous C-valued
functions on X and the sheaf G of invertible continuous maps on X. Is the presheaf U → Im(exp(U) :
F (U)→ G(U)) a sheaf ? What is its sheafification ?

3. Let X = C∗ and consider the map f : X → X sending z to z2. Is the direct image f∗C of the constant
sheaf C a constant sheaf ?

0.2 Morphisms of sheaves

Let F and G be two sheaves on a topological spaces X and φ : F → G be a morphism of sheaves.

1. Show that the rule that sends each open U ⊂ X to ker(φ : F(U)→ G(U)) is a sheaf.

2. Show that the rule that sends each open U ⊂ X to coker(φ : F(U) → G(U)) is a a pre-sheaf but not
necessarily a sheaf.

Application : let X be a complex manifold, for all open subset U of X, we define F(U) to be the set of
all holomorphic functions that admit a holomorphic square root. The restriction is the usual restriction of
functions. Is F a pre-sheaf ? or sheaf ?

0.3 Espace étalé

Let F be a sheaf on X. Let F̃ =
∐

x∈X Fx and π : F̃ → X the natural map. If s ∈ F (U), define a map
gs : U → F̃ , gs(x) = sx ∈ Fx, and consider the topology on F̃ having as open sets the gs(U).

1. Prove that the topology induced on Fx is the discrete topology, and that gs is a homeomorphism from
U onto its image.

2. Prove that F (U) is identified with the set of continuous functions s : U → F̃ such that π ◦ s = idU .
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0.4 Everything is seen by stalks
Let f, g : F → G be maps of presheaves on a topological space X.

1. Prove that if F is a sheaf, then for any open U ⊂ X the natural map F (U)→
∏

x∈U Fx is injective.
2. If G is a sheaf and fx = gx : Fx → Gx for all x ∈ X, then f = g.
3. If F is a sheaf, prove that f(U) : F (U) → G(U) is injective for all open subsets U if and only if
fx : Fx → Gx is injective for all x ∈ X (in which case we say that f is injective). The same happens
with injective replaced by bijective, if we assume moreover that G is a sheaf.

4. Let X be an open subset of C and consider the sheaf OX of holomorphic functions on (open subsets
of) X. Prove that the map D : OX → OX , D(f) = f ′ is a surjective map of sheaves (i.e. it induces
surjective maps on all stalks), and give an example where the induced map on sections over X is not
surjective.

5. Consider an exact sequence of sheaves 0 → E → F → G → 0 in Ab(X) (i.e. the map F → G is
surjective as a map of sheaves, and its kernel-computed in the naive way-is E). Prove that for all open
subsets U of X we have an exact sequence 0 → E(U) → F (U) → G(U). Give examples where this
sequence is not exact on the right.

0.5 Flasque sheaves
An abelian sheaf F on a topological space X is called flasque if the restriction map F (X) → F (U) is

surjective for all open subsets U of X.

1. Check that F is flasque iff F (V )→ F (U) is surjective for all open subsets U ⊂ V of X.
2. Prove that being flasque is stable under restriction to an open subset and under direct image by a

continuous map.
3. Prove that a constant sheaf on an irreducible space is flasque.
4. a) Prove that if 0 → E → F → G → 0 is an exact sequence in Ab(X), with E flasque, then 0 →
E(U) → F (U) → G(U) → 0 is exact for all open subsets U of X. Moreover, if E and F are flasque,
then so is G.
b) Consider a long exact sequence of flasque sheaves 0 → E → F 0 → F 1 → F 2 → ... in Ab(X). Prove
that for all open subsets U of X we have a long exact sequence 0→ E(U)→ F 0(U)→ F 1(U)→ ....

0.6 Restriction to open and closed subspaces
Let j : U → X, resp. i : Z → X be the inclusion of an open, resp. closed subset of a topological space X.

1. Describe concretely j−1F (often written F |U ) and prove that j−1j∗(F ) = F for F ∈ Ab(U).
2. Let j! : Ab(U)→ Ab(X) be the extension by zero functor, so j!(F ) is the sheafification of the presheaf

sending V to {0} when V is not contained in U , and to F (V ) otherwise.
a) Prove that

HomAb(X)(j!(F ), G) = HomAb(U)(F, j
−1(G)).

b) Prove that (j!F )x is 0 when x /∈ U and Fx otherwise. Deduce that j! is an exact functor, identifying
Ab(U) with the category of abelian sheaves on X whose stalks vanish outside U (start by checking that
j−1j!(F ) = F for F ∈ Ab(U)).

3. Prove that (i∗F )x is 0 when x /∈ Z and Fx otherwise. Deduce that i∗ is an exact functor, identifying
Ab(Z) with the category of abelian sheaves on X whose stalks vanish outside Z (start by checking that
that i−1i∗(F ) = F for F ∈ Ab(Z)).

4. Suppose that Z = X \ U . Prove that for any F ∈ Ab(X) one has a canonical exact sequence

0→ j!j
−1(F )→ F → i∗i

−1(F )→ 0.

5. a) Prove that any F ∈ Ab(X) has a largest abelian subsheaf HZ(F ) whose support is contained in Z.
Hint : the sections of HZ(F ) are those s ∈ F (U) whose support is contained in Z ∩ U .
b) Define i! : Ab(X)→ Ab(Z) by i!(F ) = i−1HZ(F ). Prove that i! is right adjoint to i∗, i.e.

HomAb(X)(i∗G,F ) = HomAb(Z)(G, i
!F ).
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0.7 New sheaves out of old ones
Let X be a topological space.

1. (products/direct sums) Let (Fi)i∈I be a family of abelian sheaves on X.
a) Prove that U →

∏
i∈I Fi(U) is an abelian sheaf on X and has the expected universal property.

b) Prove that U → ⊕i∈IFi(U) is not always a sheaf on X, but its sheafification, denoted ⊕i∈IFi, has
the expected universal property. Describe the stalks of ⊕i∈IFi. Also, prove that if U is a quasi-compact
open subset of X, the natural map ⊕iFi(U)→ (⊕iFi)(U) is bijective.

2. (tensor product) Let (X,OX) be a ringed space. Define, for F,G ∈ Mod(X), F ⊗OX
G ∈ Mod(X) as

the sheafification of U → F (U)⊗OX(U) G(U).
a) Prove that (F ⊗OX

G)x = Fx ⊗OX,x
Gx for all x ∈ X.

b) Let f : X → Y be a morphism of ringed spaces. See the introduction for the functor f∗.
i) Prove that for F,G ∈ Mod(Y ) we have f∗(F ⊗OY

G) = f∗F ⊗OX
f∗G.

ii) Let F ∈ Mod(X) and let G ∈ Mod(Y ), with G locally free of finite rank (i.e. each y ∈ Y has an
open neighborhood U on which G|U is isomorphic to OnU

U for some integer nU ). Prove the projection
formula

f∗(F ⊗OX
f∗(G)) = f∗(F )⊗OY

G.

3. (Hom sheaf) a) Let F,G ∈ Ab(X). Prove that U → HomAb(U)(F |U , G|U ) is again an abelian sheaf,
called Hom(F ,G). What happens if we try to consider instead U → HomAb(F (U), G(U)) ?
b) Suppose now that X = (X,OX) is a ringed space. We have an obvious variant of a), that we still
call Hom(F,G), sending U to HomOU

(F |U , G|U ).
i) Prove that if F ∈ Mod(X) is finitely presented (i.e. any point x ∈ X has an open neighborhood U in
X for which there is an exact sequence of OU -modules Om

U → On
U → 0 for some integers m,n depending

on U), then for all G ∈ Mod(X) and x ∈ X we have Hom(F ,G)x = HomOX ,x (Fx ,Gx ).
ii) Prove that for any flat morphism of ringed spaces f : X → Y (flatness means that the map of rings
OY,f(x) → OX,x is flat for all x ∈ X) and any F,G ∈ Mod(X), with F finitely presented

f∗Hom(F ,G) = HomOX (f
∗F , f ∗G).

0.8 Godement resolution, flasque sheaves, cohomology
Let X be a topological space. If F ∈ Ab(X), set G(F )(U) =

∏
x∈U Fx for U ⊂ X open.

1. Prove that G(F ) is a flasque sheaf, and that the natural map F → G(F ) is injective.
2. Define a sequence of sheaves Qn(F ), Gn(F ) for n ≥ 0, with natural injective maps Qn(F )→ Gn(F ) as

follows : G0(F ) = G(F ), Q0(F ) = F , and for n ≥ 1 set

Qn(F ) = coker(Qn−1(F )→ Gn−1(F )), Gn(F ) = G(Qn(F )),

the map Qn(F )→ Gn(F ) being the natural one.
a) Prove that F → Gn(F ) are exact functors for n ≥ 0, and that Gn(F ) is a flasque sheaf for all n.
b) Prove that there is a long exact sequence of sheaves, called the Godement resolution of F

0→ F → G0(F )→ G1(F )→ G2(F )→ ...

3. If U is an open subset of X and F ∈ Ab(X), we define the cohomology groups of F over U Hn(U,F ) as
the cohomology groups of the induced complex 0→ G0(F )→ G1(F )→ ... i.e. (Gn(F ) = 0 for n < 0)

Hn(U,F ) =
ker(Gn(F )→ Gn+1(F ))

Im(Gn−1(F )→ Gn(F ))
.

a) Check that H0(U,F ) = F (U) and that if F if flasque, then Hn(U,F ) = 0 for n ≥ 1.
b) Prove that if 0 → E → F → G → 0 is an exact sequence in Ab(X), then for any open subset U of
X we obtain a long exact sequence

0→ E(U)→ F (U)→ G(U)→ H1(U,E)→ H1(U,F )→ H1(U,G)→ H2(U,E)→ H2(U,F )→ ...
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