TD 4-Sheaves on Spec(A)

Let RS be the category of **ringed spaces**, i.e. pairs $X = (X, O_X)$ with X a topological space and O_X a sheaf of rings on X, morphisms $f : X \to Y$ in RS being pairs (f, f^{\sharp}) with $f : X \to Y$ a continuous map and $f^{\sharp} : O_Y \to f_*O_X$ a map of sheaves of rings. Mod(X) is the category of sheaves of O_X -modules on X and we set $f^*(F) = O_X \otimes_{f^{-1}O_Y} f^{-1}F$ (sheafification of the obvious presheaf) for $F \in Mod(X)$.

0.1 Local-global

Let A be a ring and let $f_1, ..., f_n \in A$ be such that $\operatorname{Spec}(A) = \bigcup_{i=1}^n D(f_i)$, in other words $\sum_{i=1}^n Af_i = A$. 1. a) Prove that for any A-module M the natural map $M \to \prod_{i=1}^n M[1/f_i]$ is injective.

b) Prove that a complex $0 \to M \to N \to P \to 0$ of A-modules is exact if and only if each of the complexes $0 \to M[1/f_i] \to N[1/f_i] \to P[1/f_i] \to 0$ is exact.

c) Let B be an A-algebra, M a B-module and $g_1, ..., g_n \in B$ such that $\text{Spec}(B) = \bigcup_i D(g_i)$. If $M[1/g_i]$ is flat as A-module for all i, then M is flat over A.

- 2. a) Prove that if M is an A-module such that M[1/f_i] is finitely generated (resp. finitely presented) over A[1/f_i] for all i, then M is finitely generated (resp...) over A.
 b) Let B be an A-algebra. If B[1/f_i] is finitely generated (resp. finitely presented) over A for all i, prove that B is finitely generated (resp...) over A.
- 3. Prove that if $A[1/f_i]$ is noetherian (or reduced, or Jacobson) for all *i*, then A is noetherian (or...).
- 4. Let A be an integral domain and let X = Spec(A). Prove that if U is a nonempty subset of X, then we have a canonical isomorphism (whose meaning you will have to explain...) $O_X(U) = \bigcap_{x \in U} O_{X,x}$.

0.2 The category LRS of locally ringed spaces

We say $X \in \text{RS}$ is a **locally ringed space** if $O_{X,x}$ is a local ring for all $x \in X$, in which case we let m_x be the unique maximal ideal of $O_{X,x}$ and $k(x) := O_{X,x}/m_x$. A morphism of locally ringed spaces $f : X \to Y$ is a morphism (f, f^{\sharp}) of ringed spaces **such that** the map on stalks $O_{Y,f(x)} \to O_{X,x}$ is a local map of local rings, i.e. it sends $m_{f(x)}$ into m_x for all $x \in X$. Let LRS be the category of locally ringed spaces.

- 1. Recall quickly why there is a natural functor Rings \rightarrow LRS, $A \rightarrow$ (Spec(A), $O_{\text{Spec}(A)}$).
- 2. Let X be a topological space and define $O_X(U)$ as the ring of continuous real-valued functions on U. Prove that (X, O_X) is an object of LRS, describe m_x and k(x) for $x \in X$, and show that any continuous map $f: X \to Y$ induces naturally a morphism in LRS from (X, O_X) to (Y, O_Y) .
- 3. a) Let $X \in LRS$, $x \in X$, A a ring and finally let $f = (f, f^{\sharp}) : X \to \text{Spec}(A)$ be a morphism in LRS. Prove that f(x) is the inverse image of m_x under the map $A = O_{\text{Spec}(A)}(\text{Spec}(A)) \to O_X(X) \to O_{X,x}$. b) Let $X \in LRS$, $f \in O_X(X)$ and let $X_f = \{x \in X | f_x \notin m_x\}$. Prove that X_f is open in X and that $f|_{X_f} \in O_X(X_f)$ is invertible in $O_X(X_f)$.

c) Prove that $X \in LRS$ is connected if and only if $O_X(X)$ has no nontrivial idempotents, if and only if $Spec(O_X(X))$ is connected.

0.3 A fundamental result

1. Prove that for any ring A and any $X \in LRS$ there is a canonical bijection

 $\operatorname{Hom}_{\operatorname{LRS}}(X, \operatorname{Spec}(A)) = \operatorname{Hom}_{\operatorname{rings}}(A, O_X(X)).$

In particular, there is a canonical map $X \to \operatorname{Spec}(O_X(X))$ for any $X \in \operatorname{LRS}$, and the functor Rings \to LRS, $A \to \operatorname{Spec}(A)$, is fully faithful. **Hint** : use the previous exercise.

2. Let k be a field and let $X = \operatorname{Spec}(k[T_1, T_2])$ and $U = X \setminus V((T_1, T_2))$. What is $O_X(U)$? Deduce that $(U, O_X|_U)$ is not isomorphic in LRS to $\operatorname{Spec}(B)$ for any ring B.

0.4 Glueing

- 1. Let $(X_i)_{i\in I}$ be locally ringed spaces and let $U_{ij} \subset X_i$ be open subspaces¹ together with isomorphisms $\varphi_{ij}: U_{ij} \to U_{ji}$ in LRS such that $U_{ii} = X_i, \varphi_{ii} = \operatorname{Id}_{X_i}$ and for all i, j, k we have $\varphi_{ij}^{-1}(U_{ji} \cap U_{jk}) = U_{ij} \cap U_{ik}$ and $\varphi_{jk} \circ \varphi_{ij} = \varphi_{ik}$ on $U_{ij} \cap U_{ik}$. Prove that there exists $X \in \operatorname{LRS}$ and open subspaces $U_i \subset X$, as well as isomorphisms $\varphi_i: X_i \to U_i$ in LRS such that $\varphi_i(U_{ij}) = U_i \cap U_j$ and $\varphi_{ij} = \varphi_j^{-1}|_{U_i \cap U_j} \circ \varphi_i|_{U_{ij}}$. Moreover, prove that for any $Y \in \operatorname{LRS}$ there is a canonical bijection between $\operatorname{Hom}_{\operatorname{LRS}}(X, Y)$ and the families $(f_i)_{i\in I}$ where $f_i: X_i \to Y$ satisfy $f_j \circ \varphi_{ij} = f_i|_{U_{ij}}$.
- 2. Let A be a ring, $\operatorname{Spec}(A) = \bigcup_{i \in I} D(f_i)$ an open covering and M_i an $A[1/f_i]$ -module. Suppose that $\psi_{ij} : M_i[1/f_j] \to M_j[1/f_i]$ are isomorphisms of $A[1/(f_if_j)]$ -modules such that $\psi_{jk} \circ \psi_{ij} = \psi_{ik}$ as maps $M_i[1/(f_jf_k)] \to M_k[1/(f_if_j)]$. Prove that there is an *R*-module *M* and identifications $M_i = M[1/f_i]$ compatible with the isomorphisms ψ_{ij} .

Hint : try to guess the right candidates for the glued objects, and, if you have nothing better to do, check that they work...

0.5 Quasi-coherent sheaves on Spec(A)

Let A be a ring and let X = Spec(A).

- 1. Prove that there is an exact functor $A \text{modules} \to \text{Mod}(X), M \to \tilde{M}$ such that $\tilde{M}(D(f)) = M[1/f]$ for $f \in A$ (the restriction maps being the obvious ones). What is the stalk of \tilde{M} at $x \in X$?
- 2. Prove that for any $F \in Mod(X)$ there is a canonical bijection

$$\operatorname{Hom}_{\operatorname{Mod}(X)}(M, F) = \operatorname{Hom}_{A-\operatorname{modules}}(M, F(X)).$$

Deduce that $M \to \tilde{M}$ is fully faithful and that \tilde{M} is the sheafification of the presheaf $U \to M \otimes_A O_X(U)$.

- 3. Let $\operatorname{Qcoh}(X)$ be the subcategory of $\operatorname{Mod}(X)$ consisting in **quasi-coherent** O_X -modules, i.e. those F isomorphic to \tilde{M} for some A-module M. Prove that for $F \in \operatorname{Mod}(X)$ we have $F \in \operatorname{Qcoh}(X)$ if and only if F satisfies one of the following equivalent properties :
 - There is a covering $X = \bigcup_{i \in I} D(f_i)$ and $A[1/f_i]$ -modules M_i such that $F|_{D(f_i)} \simeq \tilde{M}_i$.
 - The natural map $F(X) \otimes_A A[1/f] \to F(D(f))$ is an isomorphism for all $f \in A$.
- 4. a) Prove that kernels and cokernels of maps in Qcoh(X) are quasi-coherent, and also that arbitrary direct sums (or inductive limits) of quasi-coherent sheaves on X are quasi-coherent.
 - b) Let $f: X := \operatorname{Spec}(B) \to Y := \operatorname{Spec}(A)$ be a morphism in LRS and let M (resp. N) be a B-module (resp. A-module). Prove that $f_*\tilde{M}$ and $f^*(\tilde{N})$ are quasi-coherent and describe the A-module (resp. B-module) to which they correspond.

0.6 The sheaf of differentials

Let $R \to A$ be a map of rings. If M is an A-module, let $\text{Der}_R(A, M)$ be the A-module of M-valued derivations of A over R, i.e. R-linear maps $d: A \to M$ such that d(ab) = ad(b) + bd(a) for all $a, b \in A$.

- 1. Prove that there is an A-module $\Omega^1_{A/R}$ and a derivation $d : A \to \Omega^1_{A/R}$ which is universal, i.e. it induces a canonical bijection $\operatorname{Hom}_A(\Omega^1_{A/R}, M) \to \operatorname{Der}_R(A, M), f \to f \circ d$ for all A-modules M. Moreover, if $I = \ker(A \otimes_R A \to A)$ (the map being multiplication in the R-algebra A) then we have a canonical isomorphism of A-modules $I/I^2 \simeq \Omega^1_{A/R}$ compatible with d and with the derivation $d : A \to I/I^2$, $d(a) = 1 \otimes a - a \otimes 1$. **Hint** : there are many things to be checked...
- 2. Suppose that $A = R[X_i|i \in I]$ is a polynomial ring over R. Prove that $\Omega^1_{A/R}$ is a free A-module on the basis $dX_i := d(X_i)$. If $A = R[X_i|i \in I]/(f_j|j \in J)$, prove that $\Omega^1_{A/R} \simeq (\bigoplus_i A dX_i)/(d(f_j))_{j \in J}$.
- 3. a) Prove that $\Omega^1_{A/R}$ commutes with localization : if $S \subset A$ is a multiplicative subset, then we have a canonical isomorphism $\Omega^1_{A/R} \otimes_A S^{-1}A \simeq \Omega^1_{S^{-1}A/R}$.
 - b) Let $X = \operatorname{Spec}(A)$, $S = \operatorname{Spec}(R)$. Deduce that there is a quasi-coherent sheaf $\Omega^1_{X/S}$ on X such that $\Omega^1_{X/S}(D(a)) = \Omega^1_{A[1/a]/R}$ for $a \in A$.

^{1.} I.e. U_{ij} is an open subset of X_i , endowed with $O_{X_i}|_{U_{ij}}$.

4. Prove that if $R \to A \to B$ and $R \to S$ are maps of rings, then we have a canonical isomorphism $\Omega^1_{A\otimes_R S/S} = \Omega^1_{A/R} \otimes_R S$ and a canonical exact sequence

$$\Omega^1_{A/R} \otimes_A B \to \Omega^1_{B/R} \to \Omega^1_{B/A} \to 0$$

and if $A \to B$ is surjective with kernel I, then $\Omega^1_{B/A} = 0$ and we have a canonical exact sequence

$$I/I^2 \to \Omega^1_{A/R} \otimes_A B \to \Omega^1_{B/R} \to 0.$$

0.7 Serre's vanishing theorem

Do this exercise (which is completely bonus) only if you did the last exercise in the previous sheet! We want to prove the following fundamental theorem of Serre : if A is a ring and X = Spec(A), then for any $F \in \text{Qcoh}(X)$ we have $H^i(X, F) = 0$ for all $i \ge 1$.

- 1. Prove the following lemma of Kempf : let X be a topological space and \mathcal{B} a basis for X that is closed under finite intersections. Let $n \geq 1$ be an integer and suppose that F is an abelian sheaf on X such that $H^i(U, F|_U) = 0$ for 0 < i < n and $U \in \mathcal{B}$. Then for any $c \in H^n(X, F)$ there is a covering of X by open sets $V \in \mathcal{B}$ such that the image of c in $H^n(X, i_*(i^{-1}F))$ is 0, where $i : V \to X$ is the inclusion (note that $i^*(i^{-1}F)(U) = F(U \cap V)$). **Hint** : argue by induction on n, distinguishing the cases n = 1and n > 1, and using the exact sequence $0 \to F \to G(F) \to H \to 0$, where G(F) is the Godement sheaf (it is flasque, so has no cohomology in degree > 0).
- 2. Prove Serre's theorem. **Hint** : argue by induction on *i* and take for \mathcal{B} the basis of D(f), with $f \in A$.
- 3. Prove that if $0 \to F \to G \to H \to 0$ is an exact sequence in Mod(X) and two of the sheaves F, G, H are in Qcoh(X), then so is the third.