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TD 6-The functor of points, fibre products

Let S be a scheme. An S-scheme (or R-scheme if S = Spec(R)) is a scheme X together with a morphism
X → S. Amorphism of S-schemes or S-morphism between T and X is a morphism of schemes f : T → X
compatible with the morphisms T → S,X → S (i.e. the obvious diagram commutes). We write HomS(T,X)
or XS(T ) for the set of S-morphisms between T and X, and call its elements T -points of X (relative to
S). The functor of points of the S-scheme X is the functor T → XS(T ) (from S-schemes to sets). If
S = Spec(Z), any scheme X is an S-scheme in a unique way and we write simply X(T ) = XS(T ). We abuse
notation and write XSpec(R)(T ) = XR(T ), XR(Spec(A)) = XR(A), etc. Whenever it is not mentioned,
X,Y are S-schemes, with S any scheme. Finally, if R is a ring, an R-scheme X is locally of finite type
if X is covered by spectra of finitely generated R-algebras, and of finite type if moreover X is quasi-compact
(i.e. the underlying topological space |X| of X is quasi-compact).

0.1 Basic properties of the functor of points

1. a) Let R be a ring and X = Spec(R[T1, ..., Tn]/(f1, ..., fr)). Describe XR(T ) for any R-scheme T . Do
the same with X = Spec(R[T, 1/T ]).
b) Construct an R-scheme X for which we have a functorial bijection between XR(A) and the set of
(a1, ..., an) ∈ An such that (a1, ..., an) = A, respectively between XR(A) and GLn(A).

2. (Yoneda’s lemma in a special case) a) Prove that giving an S-morphism from X to Y (X,Y being
S-schemes) is equivalent to giving functorial (in T ) maps of sets XS(T )→ YS(T ) for all S-schemes T ,
and that it suffices to construct such maps for S-schemes T that are affine.
b) Let f, g ∈ HomS(X,Y ) and write f(T ), g(T ) : XS(T ) → YS(T ) for the induced maps. Prove that
f = g if and only if f(Ui) = g(Ui) for all i, where X = ∪iUi is a fixed open covering of X.

3. a) Let U be an open subscheme of an S-scheme X (thus U is naturally an S-scheme). Prove that for
all S-schemes T the natural map US(T ) → XS(T ) is injective and identifies US(T ) with the set of
S-morphisms f : T → X whose image is (set-theoretically) contained in U .
b) Let X = ∪iUi be an open covering of a scheme X. Prove that for any local ring R we have
X(R) = ∪iUi(R). Give a counter-example when R is not local.

4. (testing surjectivity on points) Prove that a morphism of schemes f : X → Y is surjective if and
only if for any field K and any y ∈ Y (K) there is a field extension L/K and x ∈ X(L) whose image by
X(L)→ Y (L) is the image of y under Y (K)→ Y (L). In particular, f is surjective if X(K)→ Y (K) is
surjective for all fields K. Give an example of a surjective morphism of schemes f : X → Y for which
there is a field K such that X(K)→ Y (K) is not surjective.

5. (a fundamental result) Let k be a field and let X be a k-scheme locally of finite type. Let X0 be the
set of closed points of X. Prove that X0 is the set of x ∈ X for which the extension k(x)/k is finite,
while Xk(k) is naturally identified with the set of x ∈ X for which k → k(x) is an isomorphism (so X0

is identified with Xk(k) when k is algebraically closed). Moreover, there is a natural bijection between
the set of Gal(k̄/k)-orbits in Xk(k̄) (k̄ is an algebraic closure of k) and X0.

0.2 Fibre products

If A,B,C are sets and f : A → C, g : B → C are maps, we let A ×C B = {(a, b) ∈ A × B|f(a) = g(b)}
be the fibre product of A and B over C. If X,Y are S-schemes, a scheme Z is called a fibre product of
X,Y over S if there are bijections of sets Z(T )→ X(T )×S(T ) Y (T ), functorial in the scheme T .

1. a) Prove that such Z is unique up to unique isomorphism, if it exists 1. We will denote it Z = X ×S Y .

1. We will see below that it always exists !
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b) Prove that there are natural morphisms (called canonical projections) p : X ×S Y → X and q :
X ×S Y → Y such that the map f → (p ◦ f, q ◦ f) is a bijection (X ×S Y )(T )→ X(T )×S(T ) Y (T ).
c) Prove that if X ×S Y exists, then U ×S Y exists for any open subscheme U of X, and is an open
subscheme of X ×S Y (check that p−1(U) is a candidate for U ×S Y ).
d) Let U ⊂ S be an open subset, and write V,W for the inverse images of U in X,Y (via the morphisms
X → S, Y → S). If X ×S Y exists, prove that V ×U W exists and is an open subscheme of X ×S Y .

2. We want to prove that X ×S Y always exists.
a) If X = Spec(A), Y = Spec(B) and S = Spec(C), prove that we can take X ×S Y = Spec(A⊗C B).
b) (key input) Let X = ∪iUi be an open covering of X. Prove that if Ui×S Y exist for all i, then X×S Y
exists. Hint : glue the Ui ×S Y ’s along suitable open subschemes, obtained using (Ui ∩ Uj)×S Y .
c) Let S = ∪iSi be an open covering of S and Xi, Yi the inverse images of Si in Xi, Yi. If Xi ×Si

Yi
exist for all i, prove that X ×S Y exists and has an open covering by the Xi ×Si

Yi. Conclude !
3. Show that the category of schemes has products, i.e. for any schemes X,Y there is a scheme X × Y

such that (X × Y )(T ) = X(T ) × Y (T ) functorially in T . Letting An = Spec(Z[T1, ..., Tn]), check that
An× Am = An+m, but that Pn×Pm is not isomorphic to Pn+m for n,m ≥ 1 (here Pn is the projective
space over Z). Hint : for the last part count the number of Fq-points !

4. (fibres of a morphism) Let f : X → S be a morphism of schemes. If s ∈ S recall that there is a
canonical morphism Spec(k(s)) → S, so we can define Xs = X ×S Spec(k(s)). Prove that there is a
natural homeomorphism |Xs| → f−1(s) (so f−1(s) is endowed with a natural structure of k(s)-scheme).

5. (more difficult) Let f : X → S, g : Y → S be S-schemes and let p : X ×S Y → X and q : X ×S Y → Y
be the two projections. Prove that p, q induce a natural surjective continuous map

π : |X ×S Y | → |X| ×|S| |Y | := {(x, y) ∈ |X| × |Y ||f(x) = g(y)}

and π−1(x, y) is homeomorphic to Spec(k(x)⊗k(s) k(y)), where s = f(x) = g(y) ∈ S.

0.3 Base change I
If X is an S-scheme and S′ → S is a morphism, the base change of X by S′ → S is the S′-scheme

X(S′) := X ×S S
′. We often write XS′ for X(S′) and X ⊗R R

′ for X(S′) when S = Spec(R), S′ = Spec(R′).
1. a) Prove that for any S′-scheme T we have a natural bijection XS(T ) = (X(S′))S′(T ) (we see T as
S-scheme via T → S′ → S).
b) If X → Z, Y → Z are S-morphisms of S-schemes, prove that (X ×Z Y )(S′) = X(S′) ×Z(S′) Y(S′).
c) Prove that if f : X → Y is an S-morphism, then f induces a canonical S′-morphism f(S′) : X(S′) →
Y(S′), called the base change of f by S′ → S. Prove that if f is surjective, then so is f(S′), but this
is false if surjective is replaced by injective or bijective.

2. Let X = Spec(Q[U, V ]/(U2 +V 2− 1)) and Y = Spec(Q[U, V ]/(U2 +V 2 + 1)). Prove that X and Y are
not isomorphic, but that X ⊗Q Q(i) and Y ⊗Q Q(i) are isomorphic !

3. Give an example of a scheme X over a field k such that X is connected (resp. irreducible, resp. integral)
but there is a finite extension k′/k such that X ⊗k k

′ is no longer connected (resp....).
4. (hard) Let f : X → S be a morphism of schemes. Prove that the following statements are equivalent,

in which case we say that f is radiciel :
a) f(S′) : X(S′) → S′ is injective for all morphisms S′ → S.
b) f is injective and k(f(x))→ k(x) is purely inseparable for all x ∈ X.
c) X(K)→ S(K) is injective for all fields K.

0.4 Dimension theory II-globalization
We globalize here the results proved for affine schemes in the previous exercise sheet. We fix a field k.
1. Suppose that X is irreducible and of finite type over k, let η be its generic point.

a) Prove that dimX is the transcendence degree of k(η) over k. Deduce that dimX = dimU for any
nonempty subset U of X.
b) Prove that all maximal chains of closed irreducible subsets of X have the same length.
c) Prove that dim(OX,x) = dimX for any closed point x ∈ X.
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2. a) Prove that if X,Y are nonempty k-schemes locally of finite type, then dimX×k Y = dimX+dimY .
b) Prove that if X is a k-scheme locally of finite type, then for all field extensions K we have dim(X⊗k

K) = dimX (recall that X ⊗k K = X ×Spec(k) Spec(K)).

0.5 Change of the base field
This exercise is fairly challenging. You may want to take for granted that all results below hold when all

schemes involved are spectra of fields (then they reduce to-often nontrivial-questions in the theory of fields).
You will also need the results in the exercise concerning Chevalley’s theorem. We fix a field k. If X is a k-scheme
and K/k is an extension of k, we write XK = X⊗kK = X×Spec(k) Spec(K). By convention, all schemes below
are k-schemes. A field extension L/k is called separable if L⊗k M is reduced for all extensions M/k.

1. a) Prove that if X,Y are k-schemes, then the natural projection p : X×k Y → X is surjective and open.
b) Deduce that if C is an irreducible component of X ×k Y , then the closure of p(C) is an irreducible
component of X, and all irreducible components of X arise this way. Moreover, for any connected
component C of X ×k Y , p(C) is contained in a unique connected component of X, and any connected
component of X is obtained in this way.

2. Let P be one of : irreducible, connected, reduced, integral. We say that X is geometrically P if XK

has P for all K.
a) Prove that if X×k Y has P , then X has P (thus if XK has P then X has P ). Prove that the converse
fails, by giving an explicit example in each case.
b) Suppose that X is geometrically P . Prove that X ×k Y has P for all k-schemes Y which have P .
c) Prove that if X and Y are geometrically P , then so is X ×k Y .

3. Let X = Spec(Q[T, S]/(T 2 − 2S2)). Prove that X is integral, geometrically reduced and geometrically
connected, but not geometrically integral !

4. Let X,Y be k-schemes locally of finite type and f, g : X → Y two k-morphisms. Suppose that X
is geometrically reduced and there is K/k algebraically closed such that f, g induce the same maps
Xk(K)→ Yk(K). Prove that f = g.

5. a) Prove that if k is perfect, any reduced k-scheme is geometrically reduced.
b) Prove that if X is a reduced k-scheme, then XK is reduced for any separable extension K/k. If X is
irreducible (resp. connected) and k is separably closed in K, then XK is irreducible (resp. connected).
If X is integral and K/k is separable and k is algebraically closed in K, then XK is integral.
c) Suppose thatX is a connected k-scheme such thatX(k) 6= ∅. Prove thatX is geometrically connected.
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