Fiche de TD no 4

Exercice 1 (Prolongement des morphismes). Soit $\phi: K \to \Omega$ un morphisme de corps, où Ω est algébriquement clos. Soit $K \subset L$ une extension finie. On va montrer que ϕ se prolonge sur L.

1. Soit L = K[a]. Soit P(X) le polynôme minimal de a; Soit b une racine de P^{ϕ} dans Ω .

Montrer qu'il existe l'unique morphisme $\widetilde{\phi}: K[a] \to \Omega$, qui prolonge ϕ et tel que $\widetilde{\phi}(a) = b$.

Combien y-a-t-il de morphismes $\widetilde{\phi}: K[a] \to \Omega$ qui prolongent ϕ ?

2. Conclure par récurrence.

Exercice 2 (Elément primitif). Soit $K \subset L$ une extension finie. On cherche un élément $\alpha \in L$ tel que $L = K[\alpha]$.

 ${\bf A.}$ Soit K de caractéristique 0.

Soit L = K[a, b]. On cherche $\alpha = a - tb$ avec $t \in K$, $t \neq 0$.

1. Soient P et Q les polynômes minimaux de a et b respectivement.

Soit $a_1 = a, a_2, \ldots, a_m$ et $b_1 = b, b_2, \ldots, b_n$ les racines de P et Q dans la clôture algébrique Ω de L.

Soit $S(X) = P(tX + \alpha)$, $S(X) \in K[\alpha][X]$. Quelles sont les racines communes de S et Q dans Ω ?

2. Montrer qu'on peut choisir t de façon à ce que b soit la seule racine commune de S et Q.

Quel sera alors le pgcd de S et Q?

En déduire que $b \in K[\alpha]$. Conclure.

- 3. Conclure pour le cas général.
- 4. Combien y-a-t-il de morphismes $\phi: L \to \Omega$ qui sont l'identité sur K?
- 5. Montrer que $\alpha \in L$ est primitif si et seulement si pour tous morphismes distincts $\phi : L \to \Omega$ et $\rho : L \to \Omega$ qui sont l'identité sur K on a $\phi(\alpha) \neq \rho(\alpha)$.
- **B.** Soit K un corps fini. Montrer que K possède un élément primitif sur \mathbb{F}_p .

Exercice 3. Soient a_1, \ldots, a_n des entiers, $K = \mathbb{Q}[\sqrt{a_1}, \ldots, \sqrt{a_n}]$.

Partie A.

- 1. Montrer que le degré $[K:\mathbb{Q}]$ est une puissance de 2 .
- 2. Soit $\sigma: K \to \mathbb{C}$ un morphisme de corps. Montrer que σ est déterminé par les valeurs $\sigma(\sqrt{a_1}), \ldots, \sigma(\sqrt{a_n})$. Quelles sont les valeurs possibles de $\sigma(\sqrt{a_1}), \ldots, \sigma(\sqrt{a_n})$?
- 3. En déduire que $\sigma(K) = K$, donc σ est un automorphisme de K.

Partie B. Pour
$$I \subset \{1, \ldots, n\}$$
 soit $a_I = \prod_{i \in I} \sqrt{a_i}$, et $a_{\emptyset} = 1$.

1. Montrer que $(a_I)_{I\subset\{1,\ldots,n\}}$ est une famille génératrice de K comme espace vectoriel sur Q.

- 2. Montrer que les assertions suivantes sont équivalentes :
 - (i) $[K : \mathbb{Q}] = 2^n$.
 - (ii) $(a_I)_{I\subset\{1,\ldots,n\}}$ est une \mathbb{Q} -base (linéaire) de K.
 - (iii) Toute fonction $\phi: \{1, ..., n\} \to \{1, -1\}$ induit un automorphisme $\bar{\phi}$ de K avec $\bar{\phi}(\sqrt{a_i}) = \phi(i)\sqrt{a_i}$.
 - (iv) $\sqrt{a_{i+1}}$ n'appartient pas à $\mathbb{Q}[\sqrt{a_1},\ldots,\sqrt{a_i}]$, $(i=0,1,\ldots,n-1)$, $(a_0=1)$.

Partie C. Soient p_1, \ldots, p_n des nombres premiers distincts, $K = \mathbb{Q}[\sqrt{p_1}, \ldots, \sqrt{p_n}]$. On propose de montrer que $[K : \mathbb{Q}] = 2^n$.

Soit
$$K_i = \mathbb{Q}[\sqrt{p_1}, \dots, \sqrt{p_i}], i = 1, \dots, n \text{ et } a_I = \prod_{i \in I} p_i$$

On va montrer par récurrence que $\sqrt{p_{j+1}}$ n'appartient pas à K_i . Supposons le résultat vrai pour $i \leq j$. Supposons (par absurde) que $\sqrt{p_{j+1}} \in K_j$. Vérifier que $\sqrt{p_{j+1}}$ est une combinaison linéaire, notée c, des $(a_I), I \subset \{1, \ldots, j\}$, à coefficients dans \mathbb{Q} .

En considérant les images $\sigma(c)$ pour σ parcourant tous les automorphismes de K_j , montrer que $c = qa_I$ pour certains $q \in \mathbb{Q}$ et $I \subset \{1, \ldots, j\}$ et conclure que c'est impossible.

Partie D.

1. Soient k_1, \ldots, k_n des entiers non-nuls.

Montrer que $u = k_1 \sqrt{p_1} + \dots + k_n \sqrt{p_n}$ est un élément primitif de K.

[Indication: vérifier que les images $\sigma(u)$ pour $\sigma \in Gal(K/\mathbb{Q})$ sont toutes distinctes.]

2. Supposons maintenant que les entiers a_1, \ldots, a_n sont positifs et que au moins un parmi eux n'est pas un carré dans \mathbb{Z} . Soient k_1, \ldots, k_n des entiers positifs.

Montrer que $k_1\sqrt{a_1} + \cdots + k_n\sqrt{a_n}$ est irrationnel (avec $\sqrt{a_i} > 0$).

Exemple: $\sqrt{2} + \cdots + \sqrt{n}$ est irrationnel.

3. Est-ce que $\sqrt{15} \in \mathbb{Q}[\sqrt{10}, \sqrt{42}]$?