Introduction de la topologie algébrique CCI - Février 2016

Partie 1

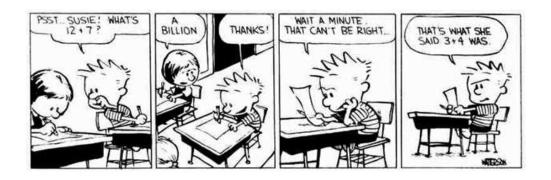
Justifiez votre réponse brièvement.

Exercice 1 Est-ce que c'est possible d'avoir une homotopie entre :

- 1. l'application identité : $D^n \to D^n$ où $D^n = \{\mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}|| \leq 1\}$ et l'application constante : $D^n \to D^n$ à valeur zero.
- 2. l'application identité : $S^1 \to S^1$ et une application constante : $S^1 \to S^1$.
- 3. l'inclusion : $D^2 \to \mathbb{R}^2$ et une application constante : $D^2 \to \mathbb{R}^2$.
- 4. l'inclusion : $S^1 \to \mathbb{R}^2 \setminus \{0\}$ et une application constante : $S^1 \to \mathbb{R}^2 \setminus \{0\}$.

Exercice 2 1. Trouver deux applications non-homotopes de S^1 dans T^2 .

- 2. Trouver deux applications non-homotopes relative à deux extrémités de [0,1] à $\mathbb{R}^2 \setminus \{0\}$.
- 3. Trouver une application injective de $S^1 \to \mathbb{R}^2 \setminus \{0\}$ qui est homotope à une application constante $S^1 \to \mathbb{R}^2 \setminus \{0\}$.



Bon courage et amusez vous bien.

Partie 2

Justifiez votre réponse et prenez soin de l'écriture s.v.p.

Exercice 3 1. Soient X, Y deux espaces topologiques et $x_0 \in X, y_0 \in Y$. On considère $X \vee Y = X \sqcup Y/_{x_0 \sim y_0}$. Trouver $\pi_1(X \vee Y, [x_0])$.

2. Trouver $\pi_1(T^2 \vee (MB \times S^2))$ où MB est une bande de Möbius.

Exercice 4 Soit X un espace obtenu de $T^3 = S^1 \times S^1 \times S^1$ en collant un disque D^2 le long de ∂D^2 sur le cercle $(S^1, 0, 0) \subset T^3$. Trouver $\pi_1(X)$.

Exercice 5 Le cone CX d'un espace topologique X est l'espace quotient obtenu en écrasant le sous espace $X \times 0$ de $X \times [0,1]$. Soit $q: X \times [0,1] \to CX$ l'application quotient. On note ι_X l'application

$$\iota_X: X \to CX$$
 $x \mapsto q(x,1)$

Soit $f: X \to Y$ une application continue.

- Montrer que f est homotope à une application constante si et seulement s'il existe une application $F: CX \to Y$ telle que $F \circ \iota_X = f$.
 - Montrer que pour tout espace X, le cone CX est contractile.

Exercice 6 Soit [X,Y] l'ensemble des classes d'homotopies des applications continues $X \to Y$.

- 1. Montrer que pour chaque espace topologique X, l'ensemble [X,I] a un seul élément.
- 2. Montrer que le nombre des éléments dans [I, X] est égale au nombre des composantes connexes par de X.