2023-2024

Topologie, feuille 2: bases, topologie euclidienne, topologie produit

Exercice 1. Soit \mathcal{B} une base d'une topologie \mathcal{T} sur un ensemble non vide X, et soit \mathcal{B}_1 un ensemble de parties de X tel que $\mathcal{B} \subset \mathcal{B}_1 \subset \mathcal{T}$.

- 1. Montrer que \mathcal{B}_1 est une base pour \mathcal{T} .
- 2. En déduire qu'il existe une infinité non dénombrable de bases distinctes pour la topologie euclidienne sur \mathbb{R} .

Exercice 2. Soit $\mathcal{B} = \{|a,b| \mid a,b \in \mathbb{R}, a < b\}$.

- 1. Montrer que \mathcal{B} est la base d'une topologie \mathcal{T} sur \mathbb{R} .
- 2. Est-ce que \mathcal{T} est la topologie euclidienne?
- 3. Soient $a, b \in \mathbb{R}$ avec a < b. Montrer que [a, b] est un ouvert de \mathcal{T} .

Exercice 3. Soient X et Y deux ensembles, \mathcal{B}_1 une base d'une topologie sur X et \mathcal{B}_2 une base d'une topologie sur Y. Montrer que

$$\mathcal{B} = \{B_1 \times B_2 \mid B_1 \in \mathcal{B}_1, B_2 \in \mathcal{B}_2\}.$$

est la base d'une topologie sur $X \times Y$. Cette topologie est la topologie produit sur $X \times Y$.

Exercice 4. Montrer que la réunion d'un nombre infini de fermés de \mathbb{R} n'est pas nécessairement un fermé de \mathbb{R} .

Exercice 5. Montrer les assertions suivantes.

- 1. \mathbb{Z} n'est pas ouvert dans \mathbb{R} .
- 2. L'ensemble \mathbb{Q} des nombres irrationnels n'est ni ouvert ni fermé dans \mathbb{R} .

Exercice 6. Montrer que l'ensemble $S = \{0\} \cup \left\{\frac{1}{n+1} \mid n \in \mathbb{N}\right\}$ est un fermé de \mathbb{R} . Qu'en est-il de l'ensemble $S \setminus \{0\}$?

Exercice 7. On va montrer que le disque défini par $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ est un ouvert de \mathbb{R}^2 muni de la topologie produit. (En oubliant qu'il s'agit d'une boule ouverte pour la distance euclidienne.)

- 1. Soit (a,b) un point de D. On pose $r=\sqrt{a^2+b^2}$. Soit $R_{(a,b)}$ le rectangle ouvert dont les sommets sont $(a-\frac{1-r}{8},b-\frac{1-r}{8}), (a+\frac{1-r}{8},b-\frac{1-r}{8}), (a-\frac{1-r}{8},b+\frac{1-r}{8})$ et $(a+\frac{1-r}{8},b+\frac{1-r}{8})$. Vérifier qu'il est contenu dans D.
- 2. En utilisant la question précédente, montrer que

$$D = \bigcup_{(a,b) \in \mathbb{R}} R_{(a,b)}.$$

- 3. Déduire de la question précédente que D est ouvert dans \mathbb{R}^2 .
- 4. Montrer à présent que tout disque $\{(x,y) \in \mathbb{R}^2 \mid (x-a)^2 + (y-b)^2 < c^2, a, b, c \in \mathbb{R}\}$ est ouvert dans \mathbb{R}^2 .

Exercice 8. Dire si chacun des ensembles suivants est une base pour la topologie euclidienne de \mathbb{R}^2 .

- 1. L'ensemble des carrés ouverts dont les cotés sont parallèles aux axes.
- 2. L'ensemble des disques ouverts.
- 3. L'ensemble de tous les carrés ouverts.
- 4. L'ensemble de tous les rectangles ouverts.
- 5. L'ensemble de tous les triangles ouverts.

Comparer les topologies engendrées par ces bases (dire si certaines sont plus fines que d'autres).

Exercice 9. Soit X un ensemble. On rappelle que la topologie discrète sur X est la topologie $\mathcal{D} = \{O \mid O \subset X\}$.

- 1. Montrer que \mathcal{D} est bien une topologie.
- 2. Soit \mathcal{T} une topologie sur X telle que pour tout $x \in X$, le singleton X est ouvert. Montrer que $\mathcal{T} = \mathcal{D}$.
- 3. Montrer que \mathcal{D} est la topologie la plus fine possible sur X, c'est-à-dire que pour toute topologie \mathcal{T} sur X, si $A \in \mathcal{T}$ alors $A \in \mathcal{D}$.
- 4. Soient $(X_1, \mathcal{D}_1), \dots, (X_n, \mathcal{D}_n)$ des espaces topologiques discrets. Montrer que le produit $(X_1, \mathcal{D}_1) \times \dots \times (X_n, \mathcal{D}_n)$ est aussi un espace topologique discret.

On peut également adopter un point de vue métrique. On définit une fonction $\delta: X \times X \to \mathbb{R}$ par $\delta(x,y)=1$ si $x\neq y$ et $\delta(x,y)=0$ si x=y.

- 5. Montrer que δ définit une distance sur X.
- 6. Soit $x \in X$. Décrire la boule ouverte de centre x et de rayon 1, puis la boule ouverte de centre x et de rayon $\frac{1}{2}$ pour δ .
- 7. Même question en substituant ouverte par fermée.
- 8. Montrer que la topologie associée à δ est la topologie discrète.

Exercice 10. Montrer que le produit d'un nombre fini d'espaces séparés l'est aussi.

Exercice 11. Montrer qu'un espace topologique (X, \mathcal{T}) est séparé si et seulement si la diagonale $\Delta = \{(x, x) \mid x \in X\}$ est un fermé pour la topologie produit sur $X \times X$.