2023-2024

Topologie, feuille 3

Exercice 1. Soient (X, \mathcal{T}_X) et (Y, \mathcal{T}_Y) deux espaces topologiques et soit \mathcal{B} une base pour \mathcal{T}_Y . Montrer que $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ est continue si et seulement si pour tout $U \in \mathcal{B}$, $f^{-1}(U) \in \mathcal{T}_X$.

Exercice 2. Soient (X, \mathcal{T}_X) et (Y, \mathcal{T}_Y) deux espaces topologiques et soit $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ une application continue et injective. Montrer que si (Y, \mathcal{T}_Y) est séparé, alors (X, \mathcal{T}_X) est séparé.

Exercice 3. Soient (X, \mathcal{T}_X) et (Y, \mathcal{T}_Y) deux espaces topologiques. Montrer que $\underline{f}: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ est continue si et seulement si pour tout sous-ensemble A de X, $f(\overline{A}) \subset \overline{f(A)}$.

Exercice 4. Soit (X, \mathcal{T}) un espace topologique. On suppose que toutes les applications de X dans \mathbb{R} (muni de la topologie euclidienne) sont continues. Montrer que \mathcal{T} est la topologie discrète.

Exercice 5. Soient \mathcal{T}_1 et \mathcal{T}_2 deux topologies sur un ensemble X, et soit Y un sous-ensemble de X. On suppose que \mathcal{T}_2 est plus fine que \mathcal{T}_1 . Que dire des topologies induites par \mathcal{T}_1 et \mathcal{T}_2 sur Y?

Exercice 6. Soit (E, d) un espace métrique et soit A une partie non vide de E. Pour tout x dans E on appelle distance de x à A, notée d(x, A), le nombre $\inf_{y \in A} d(x, y)$.

- 1. Montrer que l'application de E dans \mathbb{R} qui à x associe d(x,A) est bien définie et s'annule sur A.
- 2. On note B l'ensemble des points $x \in E$ tels que d(x, A) = 0. Montrer que B est égal à l'adhérence de A.

Exercice 7. Soit A le sous-ensemble de \mathbb{R} défini par A = [0, 5[. On munit A de la topologie induite par la topologie euclidienne sur \mathbb{R} .

- 1. Pour chacune des trois parties suivantes de A, justifier si elles sont ouvertes et si elles sont fermées.
 - (a)]1,2].
 - (b) [3, 5[.
 - (c) [0,3[.
- 2. Donner les intérieurs et les adhérences de ces parties dans A.
- 3. Déterminer la boule ouverte de centre 1 et de rayon 2 dans A.

Exercice 8. Donner des exemples d'espaces topologiques pour lesquels il existe des parties :

- 1. à la fois ouvertes et fermées,
- 2. ni ouvertes ni fermées.

Exercice 9. Dans \mathbb{R}^2 muni de la métrique euclidienne usuelle on considère le sous-ensemble

$$\Theta = \{(x,0) \in \mathbb{R}^2 \mid x \in [-1,1]\} \cup \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, x \neq 0\}.$$

Dessiner cette partie Θ de \mathbb{R}^2 . Est-elle ouverte, fermée dans \mathbb{R}^2 ? Déterminer son intérieur et son adhérence.

Exercice 10. Soit A une partie d'un espace topologique X.

- 1. Montrer que $X \setminus (\overline{X \setminus A}) = \mathring{A}$.
- 2. Montrer que $X \setminus (X \mathring{A}) = \overline{A}$.

Exercice 11. On munit \mathbb{R} de la topologie euclidienne. Déterminer l'adhérence et l'intérieur de chacun des sous-ensembles ci-dessous.

- [0,1[
- 2. [0,1],
- [0,1],
- 4. $]1, +\infty[,$
- 5. $]-\infty,1],$
- $6. \mathbb{R},$
- 7. ∅,
- 8. {0},
- 9. \mathbb{Z} ,
- 10. Q.

Exercice 12. Soit X un espace topologique et soit A une partie de X. On appelle $fronti\`ere$ de A l'ensemble $\partial A = \overline{A} \setminus \mathring{A}$.

- 1. Montrer que $\partial \overline{A} \subset \partial A$ et $\partial \mathring{A} \subset \partial A$. Donner des exemples sur \mathbb{R} où les inclusions sont strictes.
- 2. Montrer que $\partial(X \setminus A) = \partial A$.
- 3. Montrer que les parties $(X \mathring{\setminus} A)$, ∂A et \mathring{A} sont disjointes, et que $X = (X \mathring{\setminus} A) \cup \partial A \cup \mathring{A}$.

Exercice 13. Soit X un espace topologique et soient A et B des parties de X.

- 1. On suppose que $A \cup B = X$. Montrer que $\overline{A} \cup \mathring{B} = X$.
- 2. On suppose que $A \cap B = \emptyset$. Montrer que $\overline{A} \cap \mathring{B} = \emptyset$.

Exercice 14. Soit (E, d) un espace métrique et soient A et B deux sous-ensembles de E. On suppose que $A \cap B = \emptyset$ et que A et B sont denses dans E. Montrer que l'on a $\mathring{A} = \mathring{B} = \emptyset$.

Exercice 15. Soit E un espace vectoriel normé et soit F un sous-espace vectoriel de E. Montrer que si $\stackrel{\circ}{F} \neq \emptyset$, alors F = E.

2