2023-2024

Topologie, feuille 5: Espaces compacts

(Rappel : Une suite $(x_n)_{n\in\mathbb{N}}$ d'un espace métrique (X,d) admet une valeur d'adhérence a s'il existe une sous-suite de $(x_n)_{n\in\mathbb{N}}$ qui converge vers a.)

Exercice 1. Soit X un ensemble infini muni de la métrique discrète d définie par d(x,y) = 1 si $x \neq y$.

- 1. Montrer que toute partie de X est bornée et fermée.
- 2. Montrer qu'un sous-ensemble de X est compact si et seulement s'il est fini.

Exercice 2.

- 1. Le sous-espace métrique \mathbb{N} de $(\mathbb{R}, |\cdot|)$ est-il compact?
- 2. Un espace métrique muni de la distance discrète est-il compact?

Exercice 3. Soit $(E, \|\cdot\|)$ un espace vectoriel normé et soient K et L deux parties compactes de E. Montrer que l'espace somme K + L est une partie compacte de $(E, \|\cdot\|)$.

Exercice 4. Soient deux espaces topologiques compacts X et Y. Montrer que $X \times Y$ est un espace topologique compact.

Exercice 5. Soit X un espace topologique et soient K_1, \dots, K_n des parties compactes de X. Montrer que la réunion $K = \bigcup_{i=1}^n K_i$ est un compact de X et que si X est de plus séparé, l'intersection $K' = \bigcap_{i=1}^n K_i$ est un compact de X.

Exercice 6. Soit A un sous-ensemble de $(\mathbb{R}, |\cdot|)$. On appelle point d'accumulation de A tout point a de \mathbb{R} tel que

$$\forall \varepsilon > 0$$
 $(]a - \varepsilon, a[\cup]a, a + \varepsilon[) \cap A \neq \emptyset.$

- 1. Montrer que x_0 est un point d'accumulation de A si et seulement s'il existe une suite non stationnaire de A qui converge vers x_0 .
- 2. Montrer que toute partie infinie bornée de $(\mathbb{R}, |\cdot|)$ admet au moins un point d'accumulation.

Exercice 7. Soient (X, d) un espace métrique compact et $f: X \to X$ une application telle que pour tous x et y de X,

si
$$x \neq y$$
, alors $d(f(x), f(y)) < d(x, y)$.

Montrer que f admet un unique point fixe.

Donner des exemples qui montrent que le résultat n'est pas vrai si :

- 1. on ne suppose plus X compact;
- 2. on suppose seulement $d(f(x), f(y)) \leq d(x, y)$.

Exercice 8. Soit X un espace topologique séparé et localement compact (c'est-à-dire que chaque point de X admet un voisinage compact). Posons $X_w := X \cup w$ où $w \notin X$. Notons \mathcal{T}_w l'ensemble des parties de X_w qui sont soit des ouverts de X, soit de la forme $\{w\} \cup (X \setminus K)$ avec K compact.

- 1. Montrer que \mathcal{T}_w est une topologie de X_w .
- 2. Montrer que X_w muni de cette topologie est un compact.
- 3. Montrer que l'inclusion $X \subset X_w$ définit une injection continue de X dans X_w .
- 4. Montrer que \mathbb{R}^2_w est homéomorphe à S^2 , la sphère de dimension 2.

Cette construction s'appelle la compactification d'Alexandrov de X.

Exercice 9. Pour $n \geq 1$, soit $M_n(\mathbb{R})$ l'ensemble des matrices réelles de taille $n \times n$. Montrer que $O(n) = \{A \in M_n(\mathbb{R}) \mid A^t A = I\}$ est compact. (Indication : Montrer que $(A, B) \mapsto \operatorname{Tr}(A^t B)$ est un produit scalaire sur $M_n(\mathbb{R})$.)

Exercice 10. Soit $(X = \mathcal{C}([0,1],\mathbb{R}), d_{\infty})$ l'espace des fonctions continues muni de la distance

$$d_{\infty}(f,g) = \max_{x \in [0,1]} |f(x) - g(x)|.$$

On veut montrer que la boule unité fermée $B \subset X$ n'est pas compacte.

- 1. Expliquer par un dessin l'allure des fonctions contenues dans la boule B.
- 2. Dessiner, pour tout $n \in \mathbb{N}$, une fonction continue $f_n : [0,1] \to [0,1]$, qui s'annule en dehors de l'intervalle $\left[\frac{1}{2^{n+1}}, \frac{1}{2^n}\right]$ et qui prend la valeur 1 au milieu de l'intervalle.
- 3. Pour tous n, m entiers, que vaut $d_{\infty}(f_n, f_m)$?
- 4. Conclure.

Exercice 11. Soit (X, d) un espace métrique compact et soit $(x_n)_{n \in \mathbb{N}}$ une suite d'élélements de X admettant une unique valeur d'adhérence. Montrer que $(x_n)_{n \in \mathbb{N}}$ est convergente.

Exercice 12. Soit (X, d) un espace métrique non-vide compact. On note diam $(X) = \sup_{x,y \in X} d(x,y) \in [0, +\infty]$.

- 1. Montrer que diam(X) est fini et qu'il existe $x, y \in X$ tels que diam(X) = d(x, y).
- 2. Montrer que, si $(F_n)_{n\in\mathbb{N}}$ est une suite décroissante de fermés non-vides de X, alors $F:=\bigcap_{n\in\mathbb{N}}F_n$ est un compact non-vide de X et $\operatorname{diam}(F)=\lim_{n\to\infty}\operatorname{diam}(F_n)$.
- 3. Si on ne suppose plus (X,d) compact, cette intersection est-elle nécessairement non-vide?

Exercice 13. Soit (X, \mathcal{T}) un espace topologique. On dit qu'une famille $(A_i)_{i \in \mathcal{I}}$ de parties de \mathcal{T} possède la propriété d'intersection finie si pour tout sous-ensemble fini $\mathcal{J} \subset \mathcal{I}$, l'intersection $\bigcap_{j \in \mathcal{J}} A_j$ est non-vide.

Montrer que X est compact si et seulement si pour tout famille $(F_i)_{i\in\mathcal{I}}$ de fermés possédant la propriété d'intersection finie, l'intersection $\bigcap_{i\in\mathcal{I}} F_i$ est non-vide.

Exercice 14. Soient (X, \mathcal{T}_X) et (Y, \mathcal{T}_Y) deux espaces topologiques. On suppose que (X, \mathcal{T}_X) est compact et (Y, \mathcal{T}_Y) est séparé. Soit $f: X \to Y$ continue; montrer que f est fermée (l'image par f de tout fermé est fermé).

Exercice 15. Soient (X, \mathcal{T}_X) et (Y, \mathcal{T}_Y) deux espaces topologiques. On suppose que (Y, \mathcal{T}_Y) est compact. Montrer que la projection $\pi_1 : X \times Y \to X$ est fermée.