2025-2026

Topologie, feuille 3

Exercice 1. Soient (X, \mathcal{T}_X) et (Y, \mathcal{T}_Y) deux espaces topologiques et soit \mathcal{B} une base pour \mathcal{T}_Y . Montrer que $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ est continue si et seulement si pour tout $U \in \mathcal{B}$, $f^{-1}(U) \in \mathcal{T}_X$.

Exercice 2. Soient (X, \mathcal{T}_X) et (Y, \mathcal{T}_Y) deux espaces topologiques. Montrer que $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ est continue si et seulement si pour tout sous-ensemble A de X, $f(\overline{A}) \subset \overline{f(A)}$.

Exercice 3. Soit $f:(X,d)\to (X',d')$. Montrer que f est continue si et seulement si, pour toute suite x_n qui converge vers un point $a\in X, f(x_n)\longrightarrow f(a)$. Noter que la métrisabilité de l'espace d'arrivée n'est pas nécessaire.

Exercice 4. Soient (X, \mathcal{T}_X) et (Y, \mathcal{T}_Y) deux espaces topologiques et soit $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ une application continue et injective. Montrer que si (Y, \mathcal{T}_Y) est séparé, alors (X, \mathcal{T}_X) est séparé.

Exercice 5. Soit (X, \mathcal{T}) un espace topologique. On suppose que toutes les applications de X dans \mathbb{R} (muni de la topologie euclidienne) sont continues. Montrer que \mathcal{T} est la topologie discrète.

Exercice 6. Soient \mathcal{T}_1 et \mathcal{T}_2 deux topologies sur un ensemble X, et soit Y un sous-ensemble de X. On suppose que \mathcal{T}_2 est plus fine que \mathcal{T}_1 . Que dire des topologies induites par \mathcal{T}_1 et \mathcal{T}_2 sur Y?

Exercice 7. Soit (E, d) un espace métrique et soit A une partie non vide de E. Pour tout x dans E on appelle distance de x à A, notée d(x, A), le nombre $\inf_{y \in A} d(x, y)$.

- 1. Montrer que l'application de E dans \mathbb{R} qui à x associe d(x,A) est bien définie et s'annule sur A.
- 2. On note B l'ensemble des points $x \in E$ tels que d(x,A) = 0. Montrer que B est égal à l'adhérence de A.
- 3. Montrer que la fonction $d(\cdot, A)$ est 1-Lipschitzienne, puis qu'elle est continue.

Exercice 8. Soit $A = [0, 5] \subset \mathbb{R}$ muni de la topologie induite par la topologie euclidienne sur \mathbb{R} .

- 1. Les parties]1,2], [3,5[, [0,3[de A sont elles sont ouvertes, fermées ou ni l'un ni l'autre?
- 2. Donner les intérieurs et les adhérences de ces parties dans A.
- 3. Déterminer la boule ouverte de centre 1 et de rayon 2 dans A.

Exercice 9. Donner des exemples d'espaces topologiques pour lesquels il existe des parties non triviales

- 1. à la fois ouvertes et fermées,
- 2. ni ouvertes ni fermées.

Exercice 10. Dans \mathbb{R}^2 muni de la métrique euclidienne usuelle on considère le sous-ensemble

$$\Theta = \{(x,0) \in \mathbb{R}^2 \mid x \in [-1,1]\} \cup \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, x \neq 0\}.$$

Dessiner cette partie Θ de \mathbb{R}^2 . Est-elle ouverte, fermée dans \mathbb{R}^2 ? Déterminer son intérieur et son adhérence.

Exercice 11. Soit A une partie d'un espace topologique X.

- 1. Montrer que $X \setminus (\overline{X \setminus A}) = \mathring{A}$.
- 2. Montrer que $X \setminus (X \mathring{A}) = \overline{A}$.

Exercice 12. On munit \mathbb{R} de la topologie euclidienne. Déterminer l'adhérence et l'intérieur de chacun des sous-ensembles ci-après : $]0,1[,[0,1],[0,1],[1,+\infty[,]-\infty,1],\mathbb{R},\emptyset,\{0\},\mathbb{Z},\mathbb{Q}.$

Exercice 13. Soit X un espace topologique et soit A une partie de X. On appelle frontière de A l'ensemble $\partial A = \overline{A} \setminus \mathring{A}$.

- 1. Montrer que $\partial \overline{A} \subset \partial A$ et $\partial \mathring{A} \subset \partial A$. Donner des exemples sur \mathbb{R} où les inclusions sont strictes.
- 2. Montrer que $\partial(X \setminus A) = \partial A$.
- 3. Montrer que les parties $(X \mathring{\setminus} A)$, ∂A et \mathring{A} sont disjointes, et que $X = (X \mathring{\setminus} A) \cup \partial A \cup \mathring{A}$.

Exercice 14. Soit X un espace topologique et soient A et B des parties de X.

- 1. On suppose que $A \cup B = X$. Montrer que $\overline{A} \cup \mathring{B} = X$.
- 2. On suppose que $A \cap B = \emptyset$. Montrer que $\overline{A} \cap \mathring{B} = \emptyset$.

Exercice 15. Soit X un espace topologique et soient A et B deux sous-ensembles de X. On suppose que $A \cap B = \emptyset$ et que A et B sont denses dans E. Montrer que l'on a $\mathring{A} = \mathring{B} = \emptyset$.

Exercice 16. Soit E un espace vectoriel normé et soit F un sous-espace vectoriel de E. Montrer que si $\mathring{F} \neq \emptyset$, alors F = E.

Exercice 17. On rappelle que les valeurs d'adhérences d'une suite $u=(u_n)$ dans un espace topologique sont l'ensemble des limites de ses sous-suites. On note l'ensemble de ces valeurs d'adhérences $\Gamma(u)$

1. Montrer que

$$\Gamma(u) = \bigcap_{N \in \mathbb{N}} \overline{\{u_n, \ n \ge N\}}.$$

- 2. On suppose que u_n est à valeur dans un espace vectoriel (ou affine). Soit C(u) la suite des sommes de Césaro de u. Montrer que $\Gamma(C(u)) \subset \text{Conv}(\Gamma(u))$.
- 3. Soit $K \subset \mathbb{R}^d$ un polyèdre convexe. Montrer qu'il existe une suite (u_n) à valeurs dans \mathbb{R}^d telle que C(u) = K.
- 4. Soit $u = (u_n)$ une suite réelle. On suppose que $u_{n+1} u_n \longrightarrow 0$. Montrer que $\Gamma(u)$ est un intervalle.
- 5. Soit u une suite dans \mathbb{R}^d . On suppose que $u_{n+1} u_n \longrightarrow 0$. Montrer que $\Gamma(u)$ est connexe.

- **Exercice 18.** 1. Montrer que $GL_n(\mathbb{R})$ et $GL_n(\mathbb{C})$ forment des ouverts denses de $M_n(R)$ et $M_n(\mathbb{C})$, respectivement. Indication : On pourra raisonner par contradiction, en utilisant le fait que det est polynômial : si $GL_n(R)$ pas dense, on démontre que det s'annule sur $M_n(\mathbb{R})$.
 - 2. En déduire que $\chi_{AB} = \chi_{BA} \ \forall A, B \in \mathrm{GL}_n(K), K = \mathbb{R}$ ou \mathbb{C} .
 - 3. En déduire aussi que $\chi_{t_A} = \chi_A$ pour $A \in GL_n(K)$, $K = \mathbb{R}$ ou \mathbb{C} .
- **Exercice 19.** 1. En utilisant le fait que toute matrice complexe est trigonalisable, montrer que les matrices diagonalisables à valeurs propres distinctes forment un ouvert dense dans $M_n(\mathbb{C})$. Est-ce encore le cas dans \mathbb{R} ?
 - 2. En déduire que pour $A \in M_n(\mathbb{C})$, $\det(e^A) = e^{\operatorname{Tr} A}$.
 - 3. Pour $A \in M_n(\mathbb{C})$, démontrer le théorème de Cayley-Hamilton.

Commentaire : la plupart des résultats des deux derniers exercices pour les matrices réelles ou complexes restent valables dans un corps K quelconque, sans qu'une topologie soit disponible. Il faut alors trouver des preuves purement algébriques de ces résultats, qui sont en général plus compliquées. La densité est un raccourci précieux!

Exercice 20. Soit n < m deux entiers. Montrer que l'ensemble des applications linéaires injectives est un ouvert dense de $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, et que l'ensemble des applications linéaires surjectives est un ouvert dense dans $\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$.