2025-2026

Topologie, feuille 4

Exercice 1. Soient (X, \mathcal{T}_X) et (Y, \mathcal{T}_Y) deux espaces topologiques, et soit $f: X \to Y$ une application continue et surjective.

- 1. Montrer que si (X, \mathcal{T}_X) est séparable, alors (Y, \mathcal{T}_Y) l'est aussi.
- 2. On suppose de plus que f est une application ouverte, montrer que si (X, \mathcal{T}_X) est à base dénombrable (C2), alors (Y, \mathcal{T}_Y) l'est aussi.

Exercice 2. Soit (X, \mathcal{T}) un espace topologique et soit \mathcal{B} une base pour \mathcal{T} . Soit A une partie de X et soit $x \in X$. Montrer que $x \in \overline{A}$ si et seulement si pour tout $B \in \mathcal{B}$ contenant $x, A \cap B \neq \emptyset$.

Exercice 3. Soit $\mathcal{B} = \{]a,b] \mid a,b \in \mathbb{R}, a < b\}$. On rappelle (voir feuille 2) que \mathcal{B} est la base d'une topologie sur \mathbb{R} , et on note \mathcal{T} la topologie engendrée par \mathcal{B} .

- 1. \mathcal{T} est-elle séparable?
- 2. \mathcal{T} est-elle à base dénombrable (C2)?

Exercice 4. On dit qu'un espace topologique (X, \mathcal{T}) vérife la condition de chaîne dénombrable si toute famille d'ouverts deux à deux disjoints est finie ou dénombrable.

- 1. On suppose que (X, \mathcal{T}) est séparable. Montrer qu'il vérifie la condition de chaîne dénombrable.
- 2. Soit X un ensemble non-dénombrable et soit

$$\mathcal{T} = \{A \subset X \mid A = \emptyset \text{ ou } X \setminus A \text{ est fini ou dénombrable}\}.$$

- (a) Montrer que \mathcal{T} est une topologie.
- (b) Montrer que (X, \mathcal{T}) vérifie la condition de chaîne dénombrable mais n'est pas séparable.

Exercice 5. Soient (X, \mathcal{T}_X) et (Y, \mathcal{T}_Y) deux espaces topologiques, et soit $f, g: X \to Y$ deux applications continues. Montrer que si (Y, \mathcal{T}_Y) est séparé, alors $F = \{x \in X \mid f(x) = g(x)\}$ est un fermé de X.

Exercice 6. Soit (X, d) un espace métrique. Montrer que X, muni de la topologie associée à la métrique d, est T4 (normal).

Exercice 7. Soit (X, d) un espace métrique. On munit X de la topologie associée à la métrique d. Montrer que si X est séparable, alors X est à base dénombrable (C2).

Exercice 8. Soient X et Y deux espaces topologiques. On munit $X \times Y$ de la topologie produit.

- 1. Montrer que $X \times Y$ est régulier (T3) si et seulement si X et Y le sont.
- 2. Montrer que si $X \times Y$ est normal (T4), alors X et Y le sont. (La réciproque n'est pas vraie en général.)

Exercice 9. On munit l'ensemble $X = \{a, b, c, d, e\}$ de la topologie

$$\mathcal{T} = \{\emptyset, \{a\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}, X\}.$$

Décrire les topologies induites sur $Y = \{a, c, e\}$ et $Z = \{b, c, d, e\}$.

Exercice 10. Soit G un sous-groupe de $(\mathbb{R}, +)$. Montrer que soit G est dense dans \mathbb{R} , soit il existe $\alpha \in \mathbb{R}^+$ tel que $G = \alpha \mathbb{Z}$.

Exercice 11. Soient (X, d_X) et (Y, d_Y) deux espaces métriques, et soit $f: X \to Y$ une isométrie, c'est-à-dire

$$\forall x_1, x_2 \in X$$
 $d_Y(f(x_1), f(x_2)) = d_X(x_1, x_2).$

On suppose que f est surjective; montrer que f est un homéomorphisme.

Connexité

Exercice 12. Les lettres X et Y sont-elles homéomorphes?

Exercice 13. Soient X et Y deux espaces topologiques.

- 1. Montrer que si $f: X \to Y$ est une application continue et que si $A \subset X$ est connexe, alors f(A) est connexe dans Y.
- 2. Montrer que $X \times Y$ est connexe si et seulement si X et Y le sont.

Exercice 14. Soient X un espace topologique et A une partie de X. Montrer que A est une partie connexe de X si et seulement si pour tout couple (U_1, U_2) d'ouverts de X tel que $A \subset U_1 \cup U_2$ et $A \cap U_1 \cap U_2 = \emptyset$, alors $A \subset U_1$ ou $A \subset U_2$.

Exercice 15. Soit $f:[0,1] \to [0,1]$ une fonction continue.

- 1. En appliquant le théorème des valeurs intermédiaires, montrer qu'il existe $x_0 \in [0,1]$ tel que $f(x_0) = x_0$.
- 2. En utilisant la connexité de [0,1], montrer qu'il existe $x_0 \in [0,1]$ tel que $f(x_0) = x_0$.

Exercice 16. 1. Les espaces métriques $\mathbb{R}\setminus\{0\}$ et $\mathbb{R}^2\setminus\{(0,0)\}$ sont-ils connexes? En déduire que \mathbb{R} et \mathbb{R}^2 ne sont pas homéomorphes.

2. Montrer que \mathbb{S}^1 (le cercle unité dans \mathbb{R}^2) n'est homéomorphe à aucune partie de \mathbb{R} .

Exercice 17 (Groupes Topologiques). Soit G un groupe commutatif dont la loi est notée · muni d'une topologie \mathcal{T} telle que les applications ¹

$$\bullet: G \times G \to G
(g_1, g_2) \mapsto g_1 \cdot g_2$$

et

$$\varphi: G \to G$$

$$g \mapsto \varphi(g) = g^{-1}$$

soient continues.

Soit H un sous-groupe de G; on parle de sous-groupe topologique en le munissant de la topologie induite par celle de G. On note e l'élément neutre de G. On munit le quotient G/H de la topologie quotient.

- 1. Montrer que pour h fixé dans G l'application $\tau_h: G \to G$ qui à tout élément g de G associe $\tau_h(g) = g \cdot h$ est un homéomorphisme.
- 2. Montrer que H est un ouvert de G si et seulement si $e \in \mathring{H}$.
- 3. Montrer que si H est ouvert alors il est aussi fermé.
- 4. Montrer que $C_{\{e\}}$, la composante connexe de e dans G, est un sous-groupe topologique de G.
- 5. Montrer que si G est connexe, alors il ne possède pas de sous-groupe strict d'intérieur non vide et non réduit à e.
- 6. Montrer que si H et G/H sont connexes alors G est connexe.

Exercice 18. Soit le peigne dans $(\mathbb{R}^2, d_{\infty})$ donné par

$$P = (\mathbb{Q} \times [0,1]) \cup (\mathbb{R} \times \{0\}) \subset \mathbb{R}^2.$$

Montrer que P est connexe (et même connexe par arcs), mais pas localement connexe.

Exercice 19. Soit $A = \{(x,y) \in \mathbb{R}^2 \mid x > 0, y = \sin \frac{1}{x}\} \subset (\mathbb{R}^2, d_{\infty}).$

- 1. Montrer que A est connexe, connexe par arcs, localement connexe.
- 2. Déterminer \bar{A} et montrer que \bar{A} est connexe mais qu'il n'est ni connexe par arcs, ni localement connexe.

Exercice 20 (Connexité des sous-groupes de matrices réelles).

- 1. Montrer que $\mathrm{GL}_n(\mathbb{R})$ et $O_n(\mathbb{R})$ ne sont pas connexes.
- 2. Rappeler le théorème de réductions des matrices orthogonales (diagonalisation par blocs). En déduire que $SO_n(\mathbb{R})$ est connexe par arc (ce sous-groupe désigne les matrices orthogonales de déterminant 1).
- 3. On rappelle le théorème de décomposition SO: toute matrice inversible A s'écrit A = SO où S est une matrice symétrique définie positive et O est une matrice orthogonale. Lorsque $\det A > 0$, montrer que $O \in SO_n(\mathbb{R})$.
- 4. Montrer que si $\det A > 0$, il existe un chemin continu de matrices inversibles entre A et Id.
- 5. En déduire que $\operatorname{GL}_n^+(\mathbb{R}) := \{ M \in M_n(\mathbb{R}) \mid \det M > 0 \}$ est connexe par arc.
- 6. En déduire que $\mathrm{GL}_n(\mathbb{R})$ a deux composantes connexes, qui sont connexes par arc.

^{1.} $G \times G$ est muni de la topologie produit.

- 7. On rappelle (ou pas) le résultat suivant : toute matrice de $SL_n(\mathbb{R}) := \{\det A = 1\}$ est un produit de matrices de transvections (qui sont des matrices qui sont l'identité sur la diagonale et ayant exactement un élément non-diagonal non-nul). Montrer que $SL_n(\mathbb{R})$ est connexe par arc.
- 8. Déduire de la question précédente une autre preuve de la connexité de $\mathrm{GL}_n^+(\mathbb{R})$.

Exercice 21 (Une autre démonstration de la connexité de $GL_n^+(\mathbb{R})$). On admettra dans un premier temps la version réelle du théorème de densité des matrices à valeurs propres distinctes dans $M_n(\mathbb{C})$ établie dans le dernier TD :

Les matrices réelles à valeurs propres complexes distinctes sont denses dans $M_n(\mathbb{R})$.

- 1. Montrer que toute matrice $A \in \mathrm{GL}_n^+(\mathbb{R})$ est reliable dans $\mathrm{GL}_n^+(\mathbb{R})$ à une matrice A' ayant ses valeurs propres complexes distinctes.
- 2. Montrer que A' est diagonale par blocs avec des blocs de dimension 2 qui sont des matrices de similitudes directes et des blocs scalaires.
- 3. Dans $GL_n(\mathbb{R})$, relier A' à une matrice A'' diagonale par blocs avec des blocs de dimension 1 qui sont des 1 ou des -1 et des blocs de dimension 2 qui sont des matrices de rotations.
- 4. Dans $GL_n(\mathbb{R})$, relier A'' à une matrice A''' diagonale avec des +1 ou des -1 sur la diagonale.
- 5. Montrer que la matrice A''' est dans $\mathrm{GL}_n^+(\mathbb{R})$ et en déduire que A''' a un nombre pair de -1
- 6. Montrer que la matrice $\operatorname{Diag}(-1,-1)$ est reliable dans $\operatorname{GL}_n^+(\mathbb{R})$ à l'identité.
- 7. En déduire que $\mathrm{GL}_n^+(\mathbb{R})$ est connexe.

Exercice 22 (Connexité de $GL_n(\mathbb{C})$.). 1. Montrer que le complémentaire d'un nombre fini de points dans \mathbb{C} est connexe.

- 2. Soit $A, B \in GL_n(\mathbb{C})$. Montrer qu'il existe au plus n valeurs de $t \in \mathbb{C}$ pour lesquels A + tB n'est pas inversible.
- 3. En déduire que $\mathrm{GL}_n(\mathbb{C})$ est connexe.