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Abstract
We extend a result of Guan by showing that the second Betti number of a 4-dimensional
primitively symplectic orbifold is at most 23 and there are at most 91 singular points. The
maximal possibility 23 can only occur in the smooth case. In addition to the known smooth
examples with second Betti numbers 7 and 23, we provide examples of such orbifolds with
second Betti numbers 3, 5, 6, 8, 9, 10, 11, 14 and 16. In an appendix, we extend Salamon’s
relation among Betti/Hodge numbers of symplectic manifolds to symplectic orbifolds.
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Riemann–Roch theorem
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1 Introduction

A compact Kähler manifold is called holomorphic symplectic if it admits a holomorphic
2-form that is nowhere degenerate. In particular, it is even-dimensional and has trivial canon-
ical bundle. Such a manifold is called irreducible if moreover it is simply connected and
the holomorphic symplectic form is unique up to scalar. Irreducible holomorphic symplectic
(IHS) manifolds (also known as compact hyper-Kähler manifolds) admit a Ricci-flat Rie-
mannian metric [59], and are characterized by the condition that the holonomy group is the
compact symplectic group. The importance of IHSmanifolds is manifested in the Beauville–
Bogomolov decomposition theorem [2,8]: any compact Kähler manifold with vanishing first
Chern class has a finite étale cover which can be written as a product of a complex torus,
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Calabi–Yau varieties and IHS manifolds. We refer to [2,27] and [20, Part III] for the basic
theory on such manifolds.

Irreducible holomorphic symplectic surfaces are nothing butK3 surfaces. The construction
problem for IHSmanifolds in higher dimensions seems quite hard: up to deformation, in each
even dimension (≥ 4), we so far only have two examples constructed byBeauville [2] (Hilbert
schemes of points on K3 surfaces and generalized Kummer varieties) together with two
sporadic examples constructed by O’Grady [43,44] in dimensions 6 and 10. The limitedness
of available examples suggests the possibility to bound or even classify IHS manifolds (see
[28] for diffeomorphic types). As the second cohomology of an IHS manifold, together with
the Beauville–Bogomolov quadratic form [2] and the weight-2 Hodge structure, controls
most of its geometry [4,5,29,36,38,57,58], it is natural to ask the following question.

Question 1.1 In a given dimension, what values can the second Betti number of an irreducible
holomorphic symplectic manifold take?

In dimension 4, Guan [21] proved the following result in the direction of Question 1.1.

Theorem 1.2 (Guan) The second Betti number of a 4-dimensional irreducible holomorphic
symplectic manifold is no more than 8, or equal to 23. Moreover, if b2 = 23, the Hodge
diamond must be the same as that of the Hilbert square of a K3 surface.

The fact that b2 ≤ 23 was attributed to Beauville. See [21,22] for extra constraints on each
cases; see [35,51] for related results in dimension 6 and the more recent work [33] for a
conjectural bound in arbitrary dimension based on [19]. When b2 = 23, let us mention the
work [31,45], which aims at determining the deformation type of IHS fourfolds upon fixing
some extra topological data.

In the point of view of birational geometry, or more precisely the minimal model program
(cf. [34]), it is important to treat varieties with mild singularities. With recent intensive
efforts [12,13,16,18,26], the Beauville–Bogomolov decomposition theorem is now extended
to projective varieties with klt singularities and numerically trivial canonical class. Naturally,
boundedness results for possibly singular irreducible holomorphic symplectic varieties [18,
Definition 8.16] are desired. In particular, Question 1.1 can be posed in this broader setting.

This article is our first experimental attempt towards the boundedness problem, where we
will focus on the classical approach of enlarging the category of IHSmanifolds to the so-called
primitively symplectic orbifolds, pioneered by Fujiki [15]. Roughly speaking, a primitively
symplectic orbifold is a compact Kähler space with quotient singularities in codimension
≥ 4, such that the smooth locus carries a holomorphic symplectic form which is unique up
to scalar. See Definition 3.1. Our first main result extends Guan’s Theorem 1.2.

Theorem 1.3 Let X be a primitively symplectic orbifold of dimension 4. Then

b2(X) ≤ 23.

Moreover, the equality occurs only in the smooth case.

Our second main result bounds the size of the singularities.

Theorem 1.4 Let X be a primitively symplectic orbifold of dimension 4. Then

(i) X has at most 91 singular points.
(ii) For each singular point of X, the order of the local fundamental group is at most 1424.
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Betti numbers of 4-dimensional symplectic orbifolds 205

The proof of Theorems 1.3 and 1.4 is given in the end of Sect. 3.
The bound for b2 in Theorem 1.3 being the same as in the smooth case (note however that

no numbers between 9 and 22 are excluded as in [21], despite of our effort in Sect. 4 where
we generalize the Hitchin–Sawon formula), the construction methods in the orbifold setting
are much richer. Indeed, staying in the smooth category of IHS fourfolds, the only available
values for b2 are 23 and 7, achieved by Hilbert squares of K3 surfaces and generalized
Kummer fourfolds respectively; while we are able to construct much more examples within
the enlarged category of symplectic orbifolds, filling many “gaps” in the possibilities of the
Betti number. More precisely, we have the following result.

Theorem 1.5 There are 4-dimensional primitively symplectic orbifolds with second Betti
number 3, 5, 6, 7, 8, 9, 10, 11, 14, 16 and 23.

We refer to Sect. 5 for details of these examples.

2 Riemann–Roch theorem for orbifolds

2.1 Orbifolds andV-bundles

We first fix the notion of orbifolds (“V-manifolds” in [49,50]).

Definition 2.1 (Orbifolds) An n-dimensional complex orbifold is a connected paracompact
Hausdorff complex analytic space X such that for any point x ∈ X , there exists an open
neighborhoodU of x and a triple (V , G, π)with V an open subset ofC

n , G a finite subgroup
of the biholomorphic automorphism group of V , and π : V → U the composition of the
quotient map V → V /G and an isomorphism V /G � U .

Remark 2.2 Note that an orbifold is always normal (see for instance [11, Théorème 4]). In
particular, the singular locus is of codimension at least 2.

Definition-Proposition 2.3 [47, Proposition 6] Let X be an n-dimensional complex orbifold.
Let x ∈ Sing X. Then there exist a finite subgroup Gx ofGLn(C) and an open neighbourhood
Vx ⊂ C

n of the origin 0 ∈ C
n, stable under the action of Gx , with Vx/Gx isomorphic to an

open neighbourhood Ux of x, and such that

Codim Fix(g) ≥ 2 for all g ∈ Gx\{id}.
Such a group Gx is unique up to conjugation. Let πx : Vx → Vx/Gx � Ux , we call
(Ux , Vx , Gx , πx ) a local uniformizing system of x, and Gx the local fundamental group of
X at x.

Remark 2.4 In modern literature (see for example [1]), orbifold is a synonym for (analytic)
Deligne–Mumford stack. In particular, the collection of charts (V , G, π) is part of the data
of an orbifold and the group G is sometimes allowed to act non-effectively on V . If we use
the terminology orbifold in this generalized sense, then what is defined in Definition 2.1 cor-
responds to effective orbifolds [1, Definition 1.2] with all nontrivial elements of all stabilizer
groups acting with a non-empty fixed locus of codimension at least 2. By the above result of
Prill, these are equivalent notions, as such an orbifold/stacky structure is determined by the
underlying complex analytic space.

The notion of vector bundles naturally generalizes to orbifolds.
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Definition 2.5 (V-bundles) Let X be an orbifold.

• A V-bundle (or orbibundle) on X is a vector bundle F on Xreg := X�Sing X such that
for any local uniformizing system (U , V , G, π), there exists a vector bundle F̂V on V
endowed with an equivariant action of G such that:

F̂V |V �Fix G � π∗(F|Ureg),

where Fix G := ⋃
g∈G,g 	=id Fix(g).

• LetF be a coherent sheaf on X . The sheafF is said to be locally V-free if for any x ∈ X ,
there exist a local uniformizing system (U , V , G, π), a free coherent sheaf F̂V on V ,

and a G-action on F̂V such that F|U � π∗
(
F̂G

V

)
. By [7, 4.2], the local V-freeness of

a coherent sheaf F is equivalent to the condition that F is reflexive and the reflexive
pull-back π [∗](F|U ) := π∗(F|U )∨∨ is locally free for any local uniformizing system.

As in the smooth case, there is an equivalence of categories between the category of locally
V-free sheaves and that of V-bundles.

Example 2.6 (Reflexive differentials) Given an orbifold X of dimension n, the sheaf of reflex-
ive differential forms ( [17, 2.D], [46, Section 2.5])

�
[i]
X := (�i

X )∨∨ ∼= ι∗(�i
Xreg

)

is a locally V-free sheaf for any i ∈ N, where ι : Xreg → X is the natural inclusion of the
smooth part. The sheaf of reflexive forms of top degree is identified with the dualizing sheaf:
ωX ∼= �

[n]
X .

Remark 2.7 (Hodge decomposition) Let X be a compact Kähler orbifold. For any integer
k ≥ 0, the rational singular cohomology group Hk(X , Q) carries a pure Hodge structure of
weight k and in the Hodge decomposition

Hk(X , C) =
⊕

p+q=k

H p,q(X),

we have H p,q(X) ∼= Hq(X ,�
[p]
X ), see [46, Section 2.5]. We denote h p,q(X) :=

dim H p,q(X). We have h p,q = hq,p.

Notation 2.8 Let X be an orbifold, x ∈ X and F a locally V-free sheaf. Let (U , V , G, π)

be a local uniformizing system of x and let F̂V be a locally free sheaf on V endowed with
an action of G as in Definition 2.5. Hence, the fiber of F̂V at 0 is endowed with an action
of G, which provides a representation of G. We denote by ρx,F the representation of G
associated with x and F .

2.2 Characteristic classes on orbifolds

We recall the definition of Chern classes of V-bundles on orbifolds, by adapting the Chern–
Weil approach.

Definition 2.9 [7, Definition 2.9] Let F be a V-bundle of rank r on an orbifold X . A metric
on F is a Hermitian metric h on F as bundle on Xreg such that for all local uniformizing
systems (U , V , G, π), the Hermitian metric π∗(h|Ureg) extends to a Hermitian metric on F̂V .
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Betti numbers of 4-dimensional symplectic orbifolds 207

Definition 2.10 [7, Definition 1.5] Let X be an orbifold. A smooth differential k-form ϕ on X
is aC∞ differential k-form on Xreg such that for all local uniformazing system (U , V , G, π),
π∗(ϕ|Ureg) extends to a C∞-differential k-form on V . (We always mean C-valued forms.)

Notation 2.11 We denote by Ak the sheaf of differential k-forms.

As explained in [7, Definition 2.10], we can define the Chern classes of a V-bundle as
follows. Let F be a V-bundle of rank r on an orbifold X . We can first construct the Chern
forms on Xreg as in the smooth case. To a Hermitian metric h on F , we associate the Chern
connection D on F , and to D, we associate the curvature D2. Let � be the corresponding
r × r matrix of curvature 2-forms, then we set ck(h) = Pk(

i
2π �) ∈ 	(Xreg,A2k), where Pk

is the k-th elementary invariant polynomial function C
r×r → C.

The same process can be also done on all local uniformizing systems (U , V , G, π).
The metric π∗(h|Ureg) extends to a Hermitian metric ĥ on F̂V which gives rise to the

Chern connection D̂ on F̂V and hence the curvature D̂2. As previously, we can construct
ck(ĥ) ∈ 	(V ,A2k

V ). By construction π∗(ck(h)|Ureg) extends to ck(ĥ) on V . Hence, we obtain
ck(h) ∈ 	(X ,A2k). As in the smooth case, we show that ck(h) is a closed form, and that the
cohomology class ck(F) := [ck(h)] ∈ H2k(X , C), called the k-th Chern class of F , does
not depend on the choice of the metric h.

Other characteristic classes, like Todd classes and Chern characters, are defined in terms
of Chern classes by the usual formulas. A characteristic class of an orbifold is that of its
tangent V-bundle.

2.3 Riemann–Roch and Gauss–Bonnet theorems for orbifolds

One key ingredient in the proof of Theorem 1.3 is the following orbifold version of the
Hirzebruch–Riemann–Roch theorem due to Blache [7, Theorems 3.5 and 3.17].

Theorem 2.12 (Blache [7]) Let X be a compact complex orbifold with only isolated singu-
larities and let F be a locally V-free sheaf. Then we have

χ(X ,F ) =
∫

X
ch(F ) · td(X) +

∑

x∈Sing X

⎡

⎢
⎢
⎣

1

|Gx |
∑

g∈Gx
g 	=id

tr(ρx,F (g))

det(id−ρx,TX (g))

⎤

⎥
⎥
⎦ ,

where g is viewed as an endomorphism on T0V with (U , V , Gx , π) a local uniformizing
system of x.

Blache also established the following orbifold version of Gauss–Bonnet theorem.

Theorem 2.13 [7, Theorem 2.14] Let X be an n-dimensional compact complex orbifold with
only isolated singularities. Then we have the following formula for its topological Euler
characteristic:

χtop(X) =
∫

X
cn(X) +

∑

x∈Sing X

(

1 − 1

|Gx |
)

,

where Gx is the local fundamental group of X at x.
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3 Bounding Betti numbers and singularities

The aim of this section is to show Theorems 1.3 and 1.4. Let us first make precise the class
of (possibly singular) symplectic varieties that we consider.

3.1 Symplectic orbifolds

Definition 3.1 (Fujiki [15]) A compact Kähler orbifold X is called primitively symplectic if

(i) the smooth locus Xreg := X�Sing X is endowed with a non-degenerated holomorphic
2-form which is unique up to scalar; and

(ii) the singular locus Sing X has codimension at least 4.

If moreover Xreg is simply connected, X is called an irreducible symplectic orbifold.

Remark 3.2 As in the smooth case, a primitively symplectic orbifold X has even (complex)
dimension and trivial dualizing sheaf ωX � OX . Moreover, the symplectic form extends to
a symplectic form on any local uniformizing system. In particular, the contraction with the
symplectic form induces an isomorphism TX � �

[1]
X . By definition, if X has dimension 4,

then X has isolated quotient singularities.

Remark 3.3 As quotient singularities are rational singularities, the singularities appearing
in Definition 3.1 are symplectic singularities in the sense of Beauville [3]. Moreover, an
irreducible symplectic orbifold defined above is an irreducible symplectic variety in the
sense of [18] and [26, Definition 1.4].

Remark 3.4 (Hodge diamond) Let X be a 4-dimensional primitively symplectic orbifold.
Fujiki [15, Proposition 6.7] showed that X has vanishing irregularity, hence b1(X) = 0.
Serre–Grothendieck duality gives that

H3(X ,�
[1]
X ) ∼= H1(X , ωX ⊗ TX )∨ ∼= H1(X ,�

[1]
X )∨.

In particular, h3,1 = h1,1. Similarly, h3,0 = h1,0 = 0. In conclusion, the Hodge diamond of
X takes the following form.

1
0 0

1 h1,1 1
0 h2,1 h2,1 0

1 h1,1 h2,2 h1,1 1.
0 h2,1 h2,1 0

1 h1,1 1
0 0

1

3.2 Quotient symplectic singularities in dimension 4

For later use, we classify in this section all symplectic quotient singularities in dimension
4. As the germ of a quotient singularity is determined by the local fundamental group, one
needs to classify all finite subgroups of the Lie group Sp(4, C). Since any finite subgroup
must be contained in some compact maximal subgroup, we are to classify finite subgroups
of the compact symplectic group Sp(2) := Sp(4, C) ∩ SU(4).

123



Betti numbers of 4-dimensional symplectic orbifolds 209

Proposition 3.5 Let n > 0 be an integer, we denote ξn := e
2iπ

n the primitive n-th root of
unity. For integers 1 ≤ k ≤ n, we denote

Tn,k :=

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 1
ξ k

n 0 0 0
0 ξ−k

n 0 0

⎞

⎟
⎟
⎠ .

Let G be a finite subgroup of the compact symplectic group Sp(2). Then, up to conjugation,

(i) there exists finite subgroups H1, H2 of SU(2), integers n > 0 and k ∈ {1, ..., n}, and
a normal subgroup G ′ of G of index at most 2, such that any element M ′ of G ′ has the
form

M ′ =
(

A 0
0 B

)

,

with A ∈ H1, B ∈ H2, and G/G ′ = 〈
Tn,k

〉
if G ′ 	= G.

(ii) If moreover C
4/G has only the image of 0 as singularity, then there exists a finite subgroup

H of SU(2) and θ an automorphism of H such that any element M ∈ G ′ has the form

M =
(

A 0
0 θ(A)

)

,

for some A ∈ H.

Proof Hanany and He classified in [23] the finite subgroups of SU(4). Hence it is enough
to identify those groups in the list that preserve a symplectic form. In the sequel, we follow
their notation.

The first category of groups are the so-called primitive simple groups described in [23,
Section 3.1.1] and they are numbered from I to VI. However, none of them are symplectic.
Indeed, the following matrices are considered:

F1 :=

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 w 0
0 0 0 w2

⎞

⎟
⎟
⎠ , F2 := 1√

3

⎛

⎜
⎜
⎝

1 0 0
√
2

0 −1
√
2 0

0
√
2 1 0√

2 0 0 −1

⎞

⎟
⎟
⎠ and F ′

2 := 1

3

⎛

⎜
⎜
⎝

3 0 0 0
0 −1 2 2
0 2 −1 2
0 2 2 −1

⎞

⎟
⎟
⎠ ,

where w := e
2iπ
3 . The matrices F1 and F2 do not preserve any common symplectic form,

hence the groups I and III, which are partially generated by these two matrices, cannot be
symplectic. Similarly, the group II cannot be symplectic because it is partially generated by
the two matrices F1 and F ′

2 which do not fix the same symplectic form.

Let β := e
2iπ
7 . The matrices S := diag(1, β, β4, β2) and D := diag(w,w,w, 1) are not

symplectic, hence the groups IV, V and VI, which are partially generated by one of these two
matrices, are not symplectic.

In [23, Section 3.1.2], Hanany and He consider the groups VII, VIII and IX which cannot
be symplectic since they are partially generated by the groups I, II and III.

In [23, Section 3.1.3], they consider group obtained from Kronecker products of matrices
of SU(2). Let

SSU(2) := 1

2

(−1 + i −1 + i
1 + i −1 − i

)

and USU(2) := 1√
2

(
1 + i 0
0 1 − i

)

.
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The following couples of matrices (SSU(2) ⊗ SSU(2), USU(2) ⊗ USU(2)) and (SSU(2) ⊗
SSU(2), U 2

SU(2) ⊗U 2
SU(2)) both do not fix the same symplectic form. Hence the groups from X

to XVI cannot be symplectic since they are all partially generated by one of theses couples of
matrices. Also the groups from XVII to XXI cannot be symplectic because they are partially
generated by the groups XI, X, XVI and XIV.

The matrices A1 := diag(1, 1,−1,−1) and A2 := diag(1,−1,−1, 1) do not fix the same
symplectic form. Hence all the groups from XXII to XXX are not symplectic since they are
all partially generated by these two matrices.

Finally, we consider the group:

� :=
{
diag(w j , wk, wl , w− j−k−l)

∣
∣
∣ w = e

2iπ
n , j, k, l ∈ {1, ..., n}

}
,

which is not symplectic, hence all the groups from XXXI to XXXIII which are partially
generated by � are not symplectic.

It only remains to consider the group XXXIV and the intransitive groups. We will study
the group XXXIV in the end. The intransitive groups are the groups coming from diagonal
embedding of subgroups of SU(2) or SU(3) (see [23, Definition 2.1] for the precise defini-
tion). We will see that all the symplectic groups constructed from a diagonal embedding of
a subgroup of SU(3) are actually constructed from a diagonal embedding of subgroups of
SU(2). Let G be such a group and M an element in G. Let (e1, e2, e3, e4) be the canonical
basis of C

4. We have:

M =
(

ξ 0
0 A

)

,

where ξ is a root of the unity and A ∈ U (3). We can find a basis (v1, v2, v3) of C
3 in which

A is diagonalized: A = diag(ξ−1, ζ, ζ−1). In the basis (e1, v1, v2, v3), the symplectic form
has to be

J :=

⎛

⎜
⎜
⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟
⎟
⎠ .

We consider now another matrix of G expressed in the basis (e1, v1, v2, v3):

N :=

⎛

⎜
⎜
⎝

a 0 0 0
0 b c d
0 e f g
0 h j k

⎞

⎟
⎟
⎠ ,

where a, b, c, d, e, f , g, h, j, k are in C. Since N is symplectic. It follows:

ab = 1

ac = 0

ad = 0

−h f + ej = 0

−hg + ek = 0

− jg + f k = 1.

Hence c = d = 0. If h 	= 0, then f = ej
h and g = ek

h . This is impossible because, it
contradicts − jg + f k = 1. So h = 0. For the same reason e = 0 and G is actually a group
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Betti numbers of 4-dimensional symplectic orbifolds 211

composed by matrices of the forms:

N :=

⎛

⎜
⎜
⎝

a 0 0 0
0 b 0 0
0 0 f g
0 0 j k

⎞

⎟
⎟
⎠ .

It only remains to study the case of the group XXXIV. In this case, G = 〈
G0, Tn,k

〉
, with G0

composed of matrices of type
(

A 0
0 B

)

, with A, B ∈ SU(2).

We consider

G ′ :=
{

M =
(

A 0
0 B

)

,∈ G | A, B ∈ SU(2)

}

.

The group G ′ is a normal subgroup of G and the class Tn,k ∈ G/G ′ has order 2.
Now, we prove (i i). Let G be a finite subgroup of Sp(2) such that C

4/G admits only 0 as
singularities. Then necessarily, the unique element of G with the eigenvalue 1 is the identity.
In particular, this is true for G ′. Therefore, the following projections are isomorphisms:

P1 : G ′ −→ H1,

(
A 0
0 B

)

�→ A, and P2 : G ′ −→ H2,

(
A 0
0 B

)

�→ B.

So, setting θ := P2 ◦ P−1
1 finishes the proof. ��

3.3 Orbifold Salamon relation

Salamon [48, (0.1)] discovered a remarkable linear relation among the Betti/Hodge numbers
of a compact hyper-Kähler manifold. By applying Blache’s orbifold Hirzebruch–Riemann–
Roch Theorem 2.12, we will establish (Proposition 3.6 below) a Salamon-type relation
between the Hodge numbers and information from the singularities of a 4-dimensional prim-
itively symplectic orbifold. A more general result can be obtained by adapting Salamon’s
method. However, we decide to give an elementary proof here and leave the general result in
Appendix A.

Inwhat follows, X is a primitively symplectic orbifold of dimension 4. For any (necessarily
isolated) singular point x ∈ X , Gx is the local fundamental group of X at x and ρx,• is the
representation of Gx defined in Notation 2.8.

• Define for any integer p ≥ 0,

Sp :=
∑

x∈Sing X

1

|Gx |
∑

g 	=id

tr(ρ
x,�

[p]
X

(g))

det(id−ρx,TX (g))
. (1)

• Applying Theorem 2.12 to F = OX , we obtain:
∫

X
td4(X) = 3 − S0, (2)

• Applying Theorem 2.12 to F = �
[1]
X , we obtain, using Remark 3.4:

h2,1(X) − 2h1,1(X) = 4
∫

X
td4(X) − 1

6

∫

X
c4(X) + S1, (3)
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212 L. Fu, G. Menet

• Applying Theorem 2.12 to F = �
[2]
X , we obtain, using Remark 3.4:

2 − 2h2,1(X) + h2,2(X) = 6
∫

X
td4(X) + 2

3

∫

X
c4(X) + S2, (4)

• Applying Theorem 2.13, we obtain:

8 + 4h1,1 − 4h2,1 + h2,2 =
∫

X
c4(X) + η, (5)

where

η =
∑

x∈Sing X

(

1 − 1

|Gx |
)

. (6)

Combining (2), (3), and (5), we can eliminate
∫

X c4(X) and
∫

X td4(X) to obtain:

2h2,1 + h2,2 − 8h1,1 = 64 + 6(S1 − 4S0) + η. (7)

Similarly, by combining (2), (4), and (5), it yields that

2h2,1 + h2,2 − 8h1,1 = 64 + 3(S2 − 6S0) − 2η. (8)

Then, (7) and (8) provide the following orbifold version (in dimension 4) of Salamon’s
famous relation [48] for hyper-Kähler varieties. See Appendix A for a generalization.

Proposition 3.6 (Orbifold Salamon relation) Let X be a primitively symplectic orbifold of
dimension 4. We have:

2h2,1 + h2,2 − 8h1,1 = 64 + s, (9)

or equivalently,
b4 + b3 − 10b2 = 46 + s,

where
s := 6(S1 − 4S0) + η = 3(S2 − 6S0) − 2η = 4S1 + S2 − 22S0 (10)

is a correction term determined by the singularities. In particular:

η = S2 − 2S1 + 2S0 =
4∑

i=0

(−1)i Si .

Remark 3.7 Proposition 3.6 shows that the knowledge of h1,1, h2,1 and the singularities
is enough to compute the topological Euler characteristic and all the Betti numbers of a
4-dimensional primitively symplectic orbifold.

3.4 Estimate of the contribution of singularities

We turn to a more careful study of the quantity s in the orbifold Salamon relation (9), which is
the local contribution of singularities. Using (1), (6) and (10), we can write s = ∑

x∈Sing X sx

with:

sx = 1

|Gx |

⎡

⎢
⎢
⎣6

⎛

⎜
⎜
⎝

∑

g∈Gx
g 	=id

tr(ρx,�
[1]
X

(g)) − 4

det(ρx,TX (g) − id)

⎞

⎟
⎟
⎠ + |Gx | − 1

⎤

⎥
⎥
⎦ , (11)
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with (U , V , Gx , π) a local uniformizing system around x . In particular, the action of g ∈ Gx

on TV ,0 is symplectic. We can therefore write that g = diag(ξ1, ξ2, ξ
−1
1 , ξ−1

2 ), with ξ j =
e
2iπk j

n j , k j , n j ∈ N for all j ∈ {1, 2}. Hence:
tr(ρx,�1

X
(g)) − 4

det(g − id)
=

2
(
cos

(
2πk1

n1

)
+ cos

(
2πk2

n2

))
− 4

4
(
1 − cos

(
2πk1

n1

)) (
1 − cos

(
2πk2

n2

))

= − 1

2
(
1 − cos

(
2πk1

n1

)) − 1

2
(
1 − cos

(
2πk2

n2

)) .

So:
tr(ρx,�1

X
(g)) − 4

det(g − id)
≤ −1

2
(12)

Hence for any x ∈ Sing X , we have

sx ≤ −2

( |Gx | − 1

|Gx |
)

. (13)

In particular, sx ≤ −1 and the quantity s, which is an integer by (9), is at most −|Sing X |.
Using Proposition 3.5, we can be more precise. The local fundamental group Gx is a finite

subgroup of Sp(2). Hence, there exists a normal subgroup G ′ of Gx of index at most 2, H a
finite subgroup of SU(2) and an automorphism θ of H such that any element M ∈ G ′ has
the form

M =
(

A 0
0 θ(A)

)

,

with A ∈ H .
As we have noticed previously, if A is a matrix of SU(2) of finite order, we have

det(A − id) = − tr(A) + 2.

Therefore

∑

g∈G ′
g 	=id

tr(ρx,�
[1]
X

(g)) − 4

det(ρx,TX (g) − id)
= −

∑

g∈G ′
g 	=id

(
1

2 − tr(A)
+ 1

2 − tr(θ(A))

)

,

where on the right-hand side, we write a non-trivial element g of G ′ as
(

A 0
0 θ(A)

)

for

A ∈ H . Reordering the sum of the second term, we obtain the following equation:

∑

g∈G ′
g 	=id

tr(ρx,�
[1]
X

(g)) − 4

det(ρx,TX (g) − id)
= −2

∑

A∈H
A 	=id

1

2 − tr(A)
. (14)

Example 3.8 We compute explicitly sx in the following cases.

• Gx = Cn is a cyclic group of order n.

In this case, Gx = G ′ and H = 〈gn〉, with gn = diag(e
2iπ

n , e− 2iπ
n ). By (14), we have:

∑

g∈Cn
g 	=id

tr(ρx,�
[1]
X

(g)) − 4

det(ρx,TX (g) − id)
= −

n−1∑

k=1

1

1 − cos( 2kπ
n )

= −n2 − 1

6
, (15)
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where we used the identity

n−1∑

k=1

1

sin2( kπ
n )

= n2 − 1

3
.

As a result,
sx (Cn) = −(n − 1). (16)

• Gx = D̃n is a binary dihedral group of order 4n.
In this case, Gx = G ′ and H = D̃n . The binary dihedral group D̃n is generated by

B :=
(

ξ 0
0 ξ−1

)

and P =
(

0 1
−1 0

)

, with ξ a 2n-root of the unity. The group D̃n can

be partitioned into the disjoint union of the following two sets:
{

B, B2, ..., B2n} and
{

B P, B2P, ..., B2n P
}
.

Hence by (14) and the fact that tr(Bk P) = 0 for all k ∈ {1, ..., 2n}, we have that

∑

g∈D̃n
g 	=id

tr(ρx,�
[1]
X

(g)) − 4

det(ρx,TX (g) − id)
=

⎛

⎜
⎜
⎝

∑

g∈C2n
g 	=id

tr(ρx,�
[1]
X

(g)) − 4

det(ρx,TX (g) − id)

⎞

⎟
⎟
⎠ − 2n.

Using (15), we obtain

∑

g∈D̃n
g 	=id

tr(ρx,�
[1]
X

(g)) − 4

det(ρx,TX (g) − id)
= −4n2 + 12n − 1

6
. (17)

Therefore
sx (D̃n) = −(n + 2). (18)

3.5 Orbifold Guan inequality

In the smooth case, Guan [21, Section 2] has proved Theorem 1.3 using two ingredients:
the Hirzebruch–Riemann–Roch formula and the Verbitsky theorem [56, Theorem 1.5]. The
orbifold extension of the former being explained in Sect. 2.3, we give the generalization of
the latter here.

Proposition 3.9 [5, Proposition 5.16] Let X be a primitively symplectic orbifold of dimension
2n. Then the following map induced by the cup-product is injective for any k ≤ n:

Symk H2(X , C) → H2k(X , C).

Remark 3.10 When n = 2, we can also prove the previous proposition with an elementary
method using the Fujiki relation and the fact that the Beauville–Bogomolov form is non-
degenerate (see [38, Section 3.4]).

Corollary 3.11 Let X be a primitively symplectic orbifold of dimension 4. Then:

4h2,1 ≤ −(h1,1)2 + 15h1,1 + 126 + 2s,

where s is (the non-positive integer) defined in (11). In particular:

0 ≥ s ≥ −91 (19)
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Proof Proposition 3.9 provides the following inequality:

b4 ≥ (b2 + 1)b2
2

,

which can be rewritten as

4 + 4h1,1 + 2h2,2 ≥ (3 + h1,1)(2 + h1,1).

Combining this inequality with Proposition 3.6, we obtain our result. ��

3.6 Proof of themain results

Proof of Theorem 1.3 Thanks to Corollary 3.11, we have:

0 ≤ −(h1,1)2 + 15h1,1 + 126 + 2s.

Or equivalently,

−2s ≤ (21 − h1,1)(h1,1 + 6).

Because of (13), s ≤ 0 and when X is singular s < 0. Then Theorem 1.3 follows. ��
Proof of Theorem 1.4 Statement (i) follows from (13) and (19). Let us prove (ii).

By Proposition 3.5, there exist a normal subgroup G ′ of Gx of index at most 2, H a finite
subgroup of SU(2) and an automorphism θ of H such that any element M ∈ G ′ has the form

M =
(

A 0
0 θ(A)

)

,

for some A ∈ H . We only need the well-known classification of the finite subgroups of
SU(2) to have a full description of all possible Gx . The finite subgroups of SU(2) are the
so-called Kleinian groups corresponding to the A-D-E Dynkin diagrams: the cyclic groups
Cn , the binary dihedral groups D̃n and the three sporadic groups E6, E7 and E8. The biggest
sporadic group E8 has order 120. Let us check the maximal size of the groups of A-D types.

When Gx = G ′, we already have computed in Example 3.8 that sx (Cn) = −(n − 1) and
sx (D̃n) = −(n + 2).

Now, we assume that Gx/G ′ has order 2. By (12), we have:

sx (Gx )= 1

|Gx |

⎡

⎢
⎢
⎣6

⎛

⎜
⎜
⎝

∑

g∈G ′
g 	=id

tr(ρx,�
[1]
X

(g)) − 4

det(ρx,TX (g) − id)
+

∑

g∈G ′

tr(ρx,�
[1]
X

(Tn,k g)) − 4

det(ρx,TX (Tn,k g) − id)

⎞

⎟
⎟
⎠+|Gx | − 1

⎤

⎥
⎥
⎦

≤ 1

|Gx |

⎡

⎢
⎢
⎣6

⎛

⎜
⎜
⎝

∑

g∈G ′
g 	=id

tr(ρx,�
[1]
X

(g)) − 4

det(ρx,TX (g) − id)
− |G ′|

2

⎞

⎟
⎟
⎠ + |Gx | − 1

⎤

⎥
⎥
⎦ .

Denote by C [2]
n (resp. D̃[2]

n ) a finite subgroup of Sp(2) such that Cn (resp. D̃n) is a normal
subgroup of index 2. We have then by (15) and (17):

sx (C
[2]
n ) ≤ −n + 1

2
and sx

(
D̃[2]

n

)
≤ −n + 4

2
. (20)
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However by (19), we know that sx (G) ≥ −91. Hence, the biggest possible groups are the
groups which have a binary dihedral group D̃178 as normal subgroup of index 2. These groups
have order 8 × 178 = 1424. ��
Remark 3.12 Using (19), we can be more precise about the maximal cardinality of each kind
of groups.

• If Gx = Cn is a cyclic group of order n, then by (16), n ≤ 92.
• If Gx = D̃n is a binary dihedral group of order 4n, then by (18), n ≤ 89.
• If Gx = C [2]

n is a group with a cyclic group of order n as normal subgroup of index 2,
then by (20), n ≤ 181.

• If Gx = D̃[2]
n is a group with a binary dihedral group of order 4n as normal subgroup of

index 2, then by (20), n ≤ 178.

Remark 3.13 Using Corollary 3.11, we can get sharper constraints on singularities for each
fixed second Betti number. For example, if b2 = 22 (resp. 21, 20, etc.), then there are at most
13 (resp. 25, 36, etc.) singular points.

4 Hitchin–Sawon formula

We can try to improve Theorem 1.3 using the same method as in [21, Section 3]. The method
of Guan is based on an equation of Hitchin–Sawon [25]. This section is just an attempt and is
not needed in the rest of the paper. First, we recall the following generalized Fujiki formula.

Lemma 4.1 [38, Lemma 4.6] Let X be a primitively symplectic orbifold of dimension 2n.
If β ∈ H4p(X , C) is of type (2p, 2p) on all small deformations of X, then there exists a
constant N (β) depending on β such that for all α ∈ H2(X , C), one has

∫
X β · α2(n−p) =

N (β)
(∫

X α2n
) n−p

n .

Proposition 4.2 Let X be a primitively symplectic orbifold of dimension 2n. Then:

((2n)!)n−1N (c2)n

(24n(2n − 2)!)n
=

∫

X

√
Â,

where Â is the Â-genus defined by
∏2n

i=1

( √
ai /2

sinh
√

ai /2

)
, where ai ’s are the Chern roots of the

tangent bundle of X.

Proof We adapt Hitchin–Sawon’s proof [25]. We will note that quotient singularities do not
have any effect on Hitchin–Sawon formula.

We can consider N (c2) as defined in Lemma 4.1. In the smooth case, the equation of
Hitchin–Sawon provides an expression of N (c2) in terms of Pontryagin classes. The main
tool used by Hitchin and Sawon are Rozansky–Witten invariants (see [25, Section 2]). These
invariants are constructed from the curvature of the manifold and a trivalent graph with 2n
vertices.

The tangent sheaf TX on X can be defined as the unique reflexive sheaf such that TX |Xreg

is the usual holomorphic tangent sheaf on Xreg. It is a locally V-free sheaf. We consider g
a Kähler metric on TX . As explained in Definition 2.9, this provides a metric g on TXreg

such that for all local uniformizing system (U , V , G, π), π∗(g|Ureg) extends to a metric gV

on TV . Then the Riemannian curvature K of (X , g) is obtained on Xreg by the Riemannian
curvature of (Xreg, g) and on all local uniformizing systems by the Riemann curvature of
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(V , gV ). For the same reason as in the smooth case, we can associated to the curvature a class
[�] ∈ H1(X ,Sym3 �1

X ) (see [25, Section 2] or [54]). From this class [�], the definition
of the Rozansky–Witten invariants being purely algebraic, it can be generalized, word by
word, to the case of primitively symplectic orbifold. We denote these invariants b	(X) for 	

a trivalent graph with 2n vertices.
In the smooth case, it is well known that:

2c2 − c21 =
[
tr K 2

(2π)2

]

, (21)

where K is the curvature of X . Because of our definition of Chern classes in Sect. 2, (21) is
also true in the orbifold case. In the symplectic case (21) gives:

2c2 =
[
tr K 2

(2π)2

]

.

Then, using this expression for c2 exactly as Hitchin and Sawon did in [25, Section 3], we
can provide an expression of N (c2) ([25, equations (7) and (8)]):

c�

∫

X
ωn · ωn = 16π2n

∫

X
c2 · ωn−1 · ωn−1, (22)

where ω generated H2,0(X) and c� can be express by:

b�n (X) = n!
(2π2)n

cn
� vol(X), (23)

with vol(X) =
∫

X (ω+ω)2n

22n(2n)! and � the trivalent graph with two vertices. Equation (22) can be
rewritten:

c�

∫
X (ω + ω)2n

(2n
n

) = 16π2n
∫

X c2 · (ω + ω)n−1

(2(n−1)
n−1

) .

That is:

c� = 32π2(2n − 1)N (c2)
[∫

X (ω + ω)2n
]1/n .

Then, with (23), we obtain:

b�n (X) = n!4n(2n − 1)n N (c2)n

(2n)! . (24)

In general, we can write:

s2m =
[
tr(K 2m)

(2π i)2m

]

,

where

ch(TX ) =
∑

m

s2m

(2m)! .

Using these expressions and important results on graphs (see [25, Section 5]), Hitchin and
Sawon provide an expression of b�n in terms of the Pontryagin classes. The results on graph
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are not affected by having singularities on X , hence, the same expression can be obtained in
the symplectic orbifold case:

b�n (X) = 48nn!
∫

X

√
Â.

Combined with (24) this equation provides our proposition. ��
Lemma 4.3 Let X be a primitively symplectic orbifold of dimension 4, then:

3b2N (c2)
2 ≤ (b2 + 2)c22.

Proof The proof of [21, Lemma 3] can be adapted in the case of primitively symplectic
orbifolds. Indeed, it is a consequence of Lemma 4.1 and theHodge–Riemann bilinear relation
which have been generalized in [38, Proposition 2.14]. ��
Corollary 4.4 Let X be a primitively symplectic orbifold of dimension 4, then:

(b2 + 1)b3 ≤ 4b22 + 2(S1 + 20S0 − 62)b2 + 736 + 2(S1 − 124S0),

where S0 and S1 are defined in (1), introduced in Sect. 3.3.

Proof In our case, Proposition 4.2 provides:

4!N (c2)2

(24 × 2 × 2)2
= 1

2
td4 − c22

8 × 122
.

That is:

N (c2)
2 = 192 td4 −c22

3
.

So, using Lemma 4.3:

576b2 td4 ≤ 2(b2 + 1)c22.

In Sect. 3.3, we found expressions for c4 and td4, so it is more convenient to replace c22 by
720 td4 +c4

3 :

576b2 td4 ≤ 2(b2 + 1)
720 td4 +c4

3
.

Then (3) provides:

576b2 td4 ≤ 2(b2 + 1)(248 td4 +4b2 − b3 − 8 + 2S1).

This is:

(b2 + 1)b3 ≤ 4b22 + (2S1 − 40 td4 −4)b2 + 248 td4 −8 + 2S1.

Using (2) to replace td4 by 3 − S0, we obtain our result. ��
Example 4.5 We can apply Corollary 4.4 to orbifolds with singularitiesC

4/± id. It provides:

(b2 + 1)b3 ≤ 4b22 + (N − 124)b2 + 736 − 8N ,

where N is the number of singular points.

• If N = 28:

(b2 + 1)b3 ≤ 4(16 − b2)(8 − b2).
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• If N = 36:

(b2 + 1)b3 ≤ 4(14 − b2)(8 − b2).

This corresponds exactly to the second Betti numbers of examples in [15, Section 13] (see
also Sect. 5.13).

Remark 4.6 Unfortunately, Corollary 4.4 is not restrictive enough to exclude more second
Betti numbers. For instance, a primitively symplectic orbifold with second Betti number 22

and 3 isolated singularities of analytic type (C4/g3, 0) with g3 = diag(e
2iπ
3 , e

2iπ
3 , e− 2iπ

3 ,

e− 2iπ
3 ) is not in contradiction with Corollary 4.4 and Proposition 3.11. To improve Theo-

rem 1.3, we need some techniques to exclude some configurations of singularities.

5 Examples of primitively symplectic orbifolds of dimension 4

For each Betti number between 3 and 23, we provide an example of primitively symplectic
orbifold when we know one. See [15, Section 13] for more examples; many additional exam-
ples could also be obtained by considering partial resolution in codimension 2 of quotients
of K3[2]-type and Kum2-type manifolds. We summarize all the numerical results in a table
in Sect. 5.13.

In this section, an isolated cyclic quotient singularity of order n refers to the germ
(Ck/Cn, 0), where Cn is an order-n cyclic subgroup of Sp(k, C) such that the origin is
the only fixed point.

5.1 A construction of Fujiki

Most of the know examples of primitively symplectic orbifolds of dimension 4 was con-
structed by Fujiki in [15, Section 13].

We recall his construction. Let H be a finite group of symplectic automorphisms on a K3
or an abelian surface S. First, we assume that H is abelian. Let θ be an involution on H . The
action of H on S×S is given by h ·(s, t) = (hs, θ(h)t) for all (h, s, t) ∈ H ×S×S.Moreover,
we define G to be the group of automorphisms of S × S generated by H and the involution
(s, t) �→ (t, s). The quotient (S × S)/G has isolated singularities as well as singularities in
codimension 2. The singularities in codimension 2 can be resolved crepantly (see [6]) and
we denote by YK3(H) (resp. YT (H)) the primitively symplectic orbifold obtained when S is
a K3 surface (resp. when S is a complex torus of dimension 2). As explained in [15, Section
13], the deformation class of YK3(H) (resp. YT (H)) only depends on H .

When the group H is non abelian, the situation is more complicated (the deformation
class does not only depends on H ) and Fujiki only provides 5 additional examples.

5.2 b2 = 3

Mongardi [41, Example 4.5.1 and Example 4.5.2] constructed two manifolds (X1, σ1) and
(X2, σ2) of K3[2]-type endowed with symplectic automorphisms of order 11 such that

H2(X1, Z)σ1 �
⎛

⎝
6 2 2
2 8 −3
2 −3 8

⎞

⎠ and H2(X2, Z)σ2 �
⎛

⎝
2 1 0
1 6 0
0 0 22

⎞

⎠ .
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We denote the quotients Mi
11 = Xi/σi with i ∈ {1, 2}. The primitively symplectic orbifolds

M1
11 and M2

11 both have second Betti number equal to 3 and have 5 isolated cyclic quotient
singularities of order 11. Moreover their Beauville–Bogomolov forms were computed in [40,
Theorem 1.2]. The pair (X1, σ1) was independently discovered in [14].

In general, the fourth Betti number of the quotient of a manifold of K3[2]-type by an
automorphism of prime order p 	= 2, 5 can be computed using the Boissière–Nieper-
Wisskirchen–Sarti invariants and the fact that:

H4(Xi , Z)

Sym2 H2(Xi , Z)
= (Z /2Z)23 ⊕ (Z /5Z).

See [9, Section 2, Proposition 5.1, Proposition 6.6 and Lemma 6.14] for more details. We
obtain b4(Mi

11) = 26 for all i ∈ {1, 2}.

5.3 b2 = 5

Let X be a manifold of K3[2]-type endowed with a symplectic automorphism σ of order 7.
As explained in [41, Section 7.3], we always have rk H2(X , Z)σ = 5 and (X , σ ) is standard
(i.e. deformation equivalent to a natural pair (S[2], σ [2]), where S is a K3 surface and σ [2]
induced by an automorphism σ on S). We denote M7 := X/σ , which is a primitively sym-
plectic orbifold with second Betti number 5, and has 9 isolated cyclic quotient singularities
of order 7. Moreover, its Beauville–Bogomolov form have been computed in [39, Theorem
1.3].

In general, the Betti numbers of the quotient of a Hilbert scheme S[m] of m points on a K3
surface S by a natural automorphism of prime order can be computed using the Boissière–
Nieper-Wisskirchen–Sarti invariants and the Qin–Wang integral basis of H∗(S[m], Z) ( [53,
Theorem 1.1 and Remark 5.6]). See [39, Proof of Corollary 5.2] for more details. We can
compute b4(M7) = 42.

5.4 b2 = 6

We consider the complex torus T = C
2/�, where � = 〈(1, 0), (i, 0), (0, 1), (0, i)〉. The

torus is given by the product of elliptic curves T = E × E , with E := C/ 〈1, i〉. Let σ4 be the
symplectic automorphism of order 4 on T defined by the action on C

2 given by the matrix:

σ4 =
(
0 −1
1 0

)

.

We remark that
H2(T , Z)ν = U ⊕ 〈−2〉⊕2. (25)

Since σ4 is a linear automorphism on T , it extends to an automorphism σ
[2]
4 on K2(T ). We

want to consider a crepent resolution in codimension 2 of K2(T )/σ
[2]
4 . It can be obtain as

follows. We have σ 2
4 = − id. As explained in [55, Section 1.2.1], the induced automorphism

(− id)[2] on K2(T ) has 36 isolated fixed points and a fixed surface

� = {ξ ∈ K2(T )| Supp ξ = {0, x,−x} , x ∈ T � {0}}.
We can consider r : K̃2(T ) → K2(T ) the blow-up of K2(T ) in �. Then σ

[2]
4 extends to an

automorphism σ̃
[2]
4 on K̃2(T ) and K ′

4 := K̃2(T )/σ̃
[2]
4 is a primitively symplectic orbifold,

which is a crepent resolution in codimension 2 of K2(T )/σ
[2]
4 . From (25), we deduce that:
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b2(K ′
4) = 4 + 1 + 1 = 6. (26)

Moreover, we can also describe K ′
4 as a quotient of K ′ (constructed in Sect. 5.6). The orbifold

K ′ is given by K̃2(T )/(− id)[2]. Then σ̃
[2]
4 induced an involution on K ′ that we denote by

σ
[2]
4 and K ′

4 = K ′/σ [2]
4 . By [30, Proposition 8.23] b3(K ′) = 0, it follows that:

b3(K ′
4) = 0. (27)

Now, we are going to determine the singularities of K ′
4, which are all isolated cyclic quotient

singularities of order 2 or 4. Let us denote the number of such singular points by a2 and
a4 respectively. It turns out to be quite technical to determine a2 directly. However, order-4
cyclic quotient singular points correspond to the singularities of K ′ which are fixed by σ

[2]
4 ,

hence they correspond to the fixed points of σ
[2]
4 outside of �. After determining a4, we will

deduce a2 with a numerical method. We have:

Fix σ4 = { (a, a)| a ∈ E[2]} .

That is, we have 4 isolated fixed points (0, 0), ( 12 ,
1
2 ), ( i

2 ,
i
2 ) and ( 1+i

2 , 1+i
2 ). Hence σ

[2]
4

fixes only one point outside of the diagonal of K2(T ) which is the scheme supported on{
( 12 ,

1
2 ), (

i
2 ,

i
2 ), (

1+i
2 , 1+i

2 )
}
. This point is also outside of �. Furthermore, σ [2]

4 acts on

Z0 := {ξ ∈ K2(T )| Supp ξ = {(0, 0)}} .

As explained in [55, Section 1.2.1], the fixed locus of (σ
[2]
4 )2 = (− id)[2] on Z0 is given by

the vertex x and a line � which is contained in �; the vertex x is out of �. Necessarily, the
vertex x will also be fixed by σ

[2]
4 . We conclude that σ

[2]
4 only fixes 2 points outside of �

and so:
a4 = 2. (28)

Now, we are going to deduce the number a2 by considering the double cover:

π : K ′ → K ′/σ [2]
4 = K ′

4.

Since π has only isolated ramification points, the Hurwitz formula can be used in this frame-
work and provides:

χ(K ′) = 2χ(K ′
4) − R, (29)

where R is the number of ramification points. An order-2 cyclic quotient singular point in
K ′
4 can arise in two different ways. First, it can be the image by π of a non-ramified singular

point of K ′, or second, it can be the image by π of a ramified smooth point of K ′. Since the
π-ramified singular points of K ′ provide cyclic quotient singularities of order 4 in K ′

4, we
obtain the following formula:

a2 = # Sing(K ′) − a4
2

+ R − a4.

We have seen that K ′ has 36 isolated singularities, hence by (28):

a2 = 15 + R. (30)

By [30, Proposition 8.23], χ(K ′) = 108. Hence (29), (27) and Proposition 3.6 provide:

108 = 2(48 + 12b2(K ′
4) + s) − R.

Applying (30), (26) and (16), we obtain:

108 = 2(48 + 12 × 6 − 3 × 2 − a2) − a2 + 15.
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One deduces that a2 = 45.

5.5 b2 = 7

The generalized Kummer fourfold [2].
For the sake of completeness,we also provide a singular examplewith b2 = 7.We consider

the same complex torus as previously T = C
2/�, where � = 〈(1, 0), (i, 0), (0, 1), (0, i)〉.

The torus is given by the product of elliptic curves T = E × E , with E := C/ 〈1, i〉. Let ν

be the symplectic automorphism of order 3 on T defined by the action on C
2 given by the

matrix:

ν =
(
0 −1
1 −1

)

.

We remark that:
H2(T , Z)ν = U ⊕ A2. (31)

Since ν is a linear automorphismon T , it extends to an automorphismon K2(T ). Furthermore,
ν verifies the following relation:

id+ν + ν2 = 0. (32)

We denote ν[2] the automorphism induced by ν on K2(T ). The relation (32) shows that ν[2]
admits onefixed surface�which induces a surface of singularities in the quotient K2(T )/ν[2].
This surface is isomorphic to the K3 surface obtained after resolving the singularities of T /ν.
Because of (32), the fixed points of ν are in T [3], there are 9 points of the form (a, 2a), where
a ∈ E[3]. Let x1, ..., x9 be these 9 fixed points. It induces 9×8×1

6 = 12 fixed points of ν[2]
of the form

{
xi , x j ,−xi − x j

}
, with xi 	= x j . Let

Zτ := {ξ ∈ K2(T )| Supp ξ = {τ }} ,

for all τ = (a, 2a), with a ∈ E[3]. As explained in [24, Section 4]:

Zτ � P(1, 1, 3).

Hence, the action of ν[2] on Zτ fixes 2 lines which intersect in the vertex of Zτ . These two
lines are necessarily included in the surface �. Hence there is no additional isolated fixed
point in Zτ ; that is ν[2] has 12 isolated fixed points.

Let � be the image of � in K2(T )/ν[2]. Let x ∈ �. The singularity (K2(T )/ν[2], x)

is analytically equivalent to (C2 × (C2/g3), 0), with g3 = diag(ξ3, ξ
−1
3 ) and ξ3 = e

2iπ
3 .

The singularity (C2/g3, 0) is of type A2 and can be resolved crepently by a blow-up and
this resolution has two exceptional lines which intersect in one point. This shows that the
singular surface � can be resolved crepently and the exceptional locus is the union of two
irreducible divisors. Let K ′

3 → K2(T )/ν[2] be such a resolution. The orbifold K ′
3 is primi-

tively symplectic with 12 isolated cyclic quotient singularities of order 3. Moreover by (31),
we have:

b2(K ′
3) = 4 + 1 + 2 = 7.

Furthermore, because of the action of ν on � and [30, Corollary 6.3], the third Betti
number of K2(T )/ν[2] is trivial. Since � is a simply connected surface, b3(K ′

3) = 0.
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5.6 b2 = 8

This example has already been introduced in Sect. 5.4 as an intermediate consequence of
computation. In full generality, it can be constructed as follows. We consider a symplectic
involution ι on X a manifold of Kum2-type. As it is explained in [30, Theorem 7.5], X/ι has a
surface of singularities and 36 isolated fixed points. By resolving the surface of singularities,
we obtain a primitively symplectic orbifold that we denote K ′ and which has b2 = 8.
Moreover, its Beauville–Bogomolov form has been computed in [30, Theorem 1.1] and its
Betti numbers in [30, Proposition 8.23]. It has been proved that K ′ is irreducible symplectic
in [38, Proposition 3.8].

5.7 b2 = 9

We describe Fujiki’s example with second Betti number 9. Let T be a complex torus which
admits a symplectic binary dihedral linear automorphism group D̃3 of order 12. For instance,

we consider T = Eξ6 × Eξ6 , where Eξ6 = C/ 〈1, ξ6〉 and ξ6 = e
iπ
3 . Then D̃3 is generated

by the linear automorphisms:

(
ξ6 0
0 ξ−1

6

)

and

(
0 1

−1 0

)

.

Let N be the center of D̃3 which is generated by − id. We consider the K3 surface S
obtained as a resolution of T /N . The group H = D̃3/N is isomorphic to the dihedral group
of order 6, denoted by D3. There is a natural lifting of a symplectic action of H on S. Then,
as in the abelian case, we form the automorphisms group G on S × S generated by H acting
diagonally and the involution (s, t) �→ (t, s) with θ = id. Fujiki resolves the singularities
in codimension 2 of (S × S)/G and shows in [15, Section 13] that we obtain a primitively
symplectic orbifold YK3(D3) with second Betti number 9.

Since θ = id, the resolution in codimension 2 considered by Fujiki in [15, Section 7]
corresponds to S[2]/H → (S × S)/G, where S[2] is the Hilbert scheme of 2 points on S and
H the induced automorphisms group. That is YK3(D3) = S[2]/H .

To determine the singularities of YK3(D3), we start by computing the singularities of
S/H . As there is no fixed point of S by the entire group H , by classification of the finite
subgroups of SL(2, C), we know that the singularities of S/H can only be of type A1 or A2.
We denote by N2 (resp. N1) the number of singularities of S/H of type A2 (resp. A1). Then
the integers N2 and N1 can be computed by Riemann–Roch (a direct computation is also
possible, but is more technical). We apply Theorem 2.12 to S/H and the V-bundles OS/H ,

�
[1]
S/H . We obtain respectively:

2 = c2
12

+ 2N2

9
+ N1

8
, (33)

and

− 6 = −5c2
6

− 2N2

9
− N1

4
. (34)

Finally, Theorem 2.13 provides:

10 = c2 + 2N2

3
+ N1

2
. (35)
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Combining (33), (34) and (35), we obtain N1 = 0 and N2 = 7. Then, we can deduce
the singularities of S[2]/H . There are 7×6

2 = 21 singular points of the form (a, b) with
a 	= b ∈ Sing S/H and 2 × 7 = 14 singular points on the diagonal. So YK3(D3) has 35
isolated cyclic quotient singularities of order 3.

5.8 b2 = 10

We have examples of Fujiki, for instance for H = Z /4Z and S a K3 surface.

5.9 b2 = 11

Let X be amanifold of K3[2]-type endowedwith a symplectic automorphism σ of order 3. As
explained in [41, Section 7.3], there are two possibilities: σ has 27 isolated fixed points or σ

has an abelian fixed surface.When Fix σ = {27 points}, we always have rk H2(X , Z)σ = 11.
We denote M3 := X/σ which is a primitively symplectic orbifold with second Betti number
11 and 27 isolated cyclic quotient singularities of order 3.Moreover its Beauville–Bogomolov
form has been computed in [40, Theorem 1.3].

5.10 b2 = 14

We have examples of Fujiki, for instance for H = (Z /2Z)2 and S a K3 surface.

5.11 b2 = 16

We consider a symplectic involution ι on X a manifold of K3[2]-type. As it is explained in
[42], X/ι has a surface of singularities and 28 isolated fixed points. If we resolve the surface
of singularities we obtain a primitively symplectic orbifold that we denote M ′ and which has
b2 = 16. Moreover, its Beauville–Bogomolov form has been computed in [37, Theorem 2.5]
and its fourth Betti number in [37, Proposition 2.40]. It has been proved that M ′ is symplectic
irreducible in [38, Proposition 3.8].

5.12 b2 = 23

The Hilbert square of K3 surface [2].
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5.13 Summary

b2 X b3 b4 Singularities B–B form Irreducible

3 M1
11; M2

11 0 26 a11 = 5

⎛

⎝
2 −1 3

−1 8 −1
3 −1 6

⎞

⎠;

⎛

⎝
2 1 0
1 6 0
0 0 2

⎞

⎠ No

4 ? ? ? ? ? ?

5 M7 0 42 a7 = 9 U ⊕
(

4 −3
−3 4

)

⊕ (−14) No

6 K ′
4 0 55 a2 = 45, a4 = 2 ? No

7 K2(A) 8 108 Smooth U 3 ⊕ (−6) Yes
7 K ′

3 0 92 a3 = 12 ? ?

8 K ′ 0 90 a2 = 36 U (3)3 ⊕
(−5 −4

−4 −5

)

Yes

9 YK3(D3) 0 66 a3 = 35 ? No
10 YK3(Z /4Z) 0 118 a2 = 10, a4 = 6 ? ?
11 M3 0 102 a3 = 27 U (3) ⊕ U2 ⊕ A2

2 ⊕ (−6) No
12-13 ? ? ? ? ? ?
14 YK3

(
(Z /2Z)2

)
0 150 a2 = 36 ? ?

15 ? ? ? ? ? ?
16 M ′ 0 178 a2 = 28 U (2)3 ⊕ E8(−1) ⊕ (−2)2 Yes

17-22 ? ? ? ? ? ?
23 K3[2] 0 276 Smooth U 3 ⊕ E8(−1)2 ⊕ (−2) Yes

Here, we denote by ak the number of isolated cyclic quotient singularities of order k.
The singularities of the Fujiki examples are described in [15, Section 13, table 1]. We can

then compute their fourth Betti numbers using Proposition 3.6 and Example 3.8. Same thing
for all the orbifolds with known singularities and b3.
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Appendix A: Salamon’s relation for orbifolds

In this Appendix, we extend some of Salamon’s results [48] to the setting of complex
orbifolds. Let us first recall some notation. Given a complex orbifold X , we denote by
�

[p]
X := (�

p
X )∨∨ ∼= ι∗(�p

Xreg
) the sheaf of reflexive p-forms, where ι : Xreg → X is the
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inclusion of the smooth part. The main result of “Appendix” is the following generalization
of [48, Corollary 3.4].

Theorem A.1 Let X be a compact complex orbifold of dimension n. Then

∫

X
c1cn−1 =

n∑

p=0

(−1)p
(

6p2 − 1

2
n(3n + 1)

)

χorb
p , (36)

where χorb
p := ∫

X ch
(
�

[p]
X

)
· td(X).

Proof Using the fact that �[p]
X

∼= �
[n−p]
X

∨ ⊗ ωX , we easily see from the definition that

χorb
p = (−1)nχorb

n−p. (37)

We define the orbifold χy-genus of X to be the following polynomial in t :

χorb(t) :=
n∑

p=0

χorb
p t p = (−1)n

n∑

p=0

χorb
n−pt p. (38)

Let c(TX ) = ∏n
i=1(1 + xi ) be the formal factorization of the Chern class of X , where

x1, . . . , xn are the Chern roots. Following [48], we define a new polynomial in t with coef-
ficients characteristic classes of X :

K (t) :=
n∏

i=1

(

xi + t · xi

1 − e−xi

)

.

Denote by Kk ∈ H∗(X , Q) the coefficient of tk . Clearly, K0 = cn . More generally, as shown
in [48, Proposition 3.2], Kk has the nice property that Kk − cn−k is in the ideal generated by
cn−k+1, . . . , cn for any k ≥ 1. For example,

K1 = cn−1 + 1

2
ncn; (39)

K2 = cn−2 + 1

2
(n − 1)cn−1 + 1

24
(2c1cn−1 + n(3n − 5)cn). (40)

It is easy to relate K (t) and χorb(t):

∫

X
K (t) =

∫

X
td(X) ·

n∏

i=1

(t + 1 − e−xi )

=
∫

X
td(X) ·

n∑

p=0

(t + 1)p(−1)n−p
∑

1≤ j1<···< jn−p≤n

e−x j1−···−x jn−p

=
∫

X
td(X) ·

n∑

p=0

(t + 1)p(−1)n−p ch
(
�

[n−p]
X

)

= (−1)n
n∑

p=0

(−1 − t)pχorb
n−p

= χorb(−1 − t).
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Therefore for any k ≥ 0,
∫

X
Kk = 1

k!
∫

X
K (k)(0) = (−1)k

k! χ
(k)
orb(−1). (41)

Taking k = 0 in (41), we obtain
∫

X
cn =

n∑

p=0

(−1)pχorb
p . (42)

(This is essentially Blache’s Gauss–Bonnet Theorem 2.13.)
Taking k = 1 in (41), combined with (39), we find

n

2

∫

X
cn =

n∑

p=0

(−1)p pχorb
p . (43)

(This is equivalent to (42) by taking into account the symmetry (37).)
Taking k = 2 in (41), combined with (40), it yields that

1

12

∫

X
c1cn−1 + n(3n − 5)

24

∫

X
cn =

n∑

p=0

(−1)p

2
p(p − 1)χorb

p . (44)

We deduce (36) by combining (42), (43), and (44). ��
Remark A.2 We are mainly interested in the Hodge numbers h p,q := dim Hq(X ,�

[p]
X ) and

their alternating sum

χp := χ(X ,�
[p]
X ) :=

n∑

q=0

(−1)q h p,q ,

rather than χorb
p . Therefore, in practice, Theorem A.1 is often combined with orbifold

Riemann–Roch formula relating these two quantities: when X has only isolated singularities,
Blache’s Riemann–Roch theorem 2.12 implies that for any integer p ≥ 0, χorb

p = χp − Sp

with

Sp :=
∑

x∈Sing X

1

|Gx |
∑

g 	=id

tr(ρ
x,�

[p]
X

(g))

det(id−ρx,TX (g))
(45)

being the correction term determined by the singularities of X , where for any singular point
x ∈ X , Gx is the local fundamental group and for any locally V-free bundle F , ρx,F is the
associated representation of Gx ; see Sect. 2. In the general case where the singularities are
not necessarily isolated, we can use Kawasaki’s Riemann–Roch formula [32], by replacing
in the above definition of Sp by

Sp :=
∑

μ

1

mμ

∫

Xμ

ch

(
tr�[p]

X

tr∧•N∨
μ

)

· td(TXμ), (46)

whereμ runs over all connected components of the inertia orbifold I X except the component
X . We refer to [32,52] for the explanation of the notation as well as more details.

Remark A.3 Given an integer p, from (37) and the fact χp = (−1)nχn−p , we see that

Sp = (−1)n Sn−p.
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In fact, if X has only isolated singularities, it is a simple exercise in linear algebra to see
more precisely that for any x ∈ Sing X ,

Sp,x = (−1)n Sn−p,x ,

where

Sp,x := 1

|Gx |
∑

g 	=id

tr(ρ
x,�

[p]
X

(g))

det(id−ρx,TX (g))
.

When specializing Theorem A.1 to the symplectic case, we get the following orbifold
analogue of [48, Theorem 4.1].

Theorem A.2 Let X be a compact Kähler orbifold of even complex dimension n = 2m such
that the Hodge numbers satisfy the “mirror symmetry” h p,q = hn−p,q for any p, q ≥ 0.
Then
∫

X
c1cn−1 =

2n∑

k=0

(−1)k
(

3k2 − 1

2
n(6n + 1)

)

bk −
n∑

p=0

(−1)p
(

6p2 − 1

2
n(3n + 1)

)

Sp,

(47)
where Sp is defined in (45) when X has only isolated singularities and in (46) in general.

The most important case we have in mind is when X is a primitively symplectic orbifold
(Definition 3.1), hence the left-hand side of (47) vanishes and we get a linear relation among
the Betti numbers and contributions of singularities.

Proof We keep the same notation as above. Since χorb
p = χp − Sp , the equations (36) and

(42) imply that

n∑

p,q=0

(−1)p+q p2h p,q −
∑

p

(−1)p p2Sp =
n∑

p=0

(−1)p p2χorb
p = 1

6

∫

X
c1cn−1 + 1

12
n(3n + 1)

∫

X
cn .

(48)
Using the Hodge symmetry h p,q = hq,p , we have

n∑

p,q=0

(−1)p+qq2h p,q −
∑

p

(−1)p p2Sp = 1

6

∫

X
c1cn−1 + 1

12
n(3n + 1)

∫

X
cn . (49)

The mirror symmetry relation h p,q = h p,n−q implies that (remember that n is even)

n∑

p,q=0

(−1)p+q pqh p,q =
n∑

p,q=0

(−1)p+q p(n − q)h p,q .

Hence

2
n∑

p,q=0

(−1)p+q pqh p,q =
n∑

p,q=0

(−1)p+q nph p,q = n
n∑

p=0

(−1)p pχp.

Writing χp = χorb
p + Sp , together with (43), we obtain

2
n∑

p,q=0

(−1)p+q pqh p,q = n
n∑

p=0

(−1)p pχorb
p + n

n∑

p=0

(−1)p pSp = n2

2

∫

X
cn + n

n∑

p=0

(−1)p pSp .

(50)
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Combining (48), (49), and (50), we find

n∑

p,q=0

(−1)p+q(p + q)2h p,q −
n∑

p=0

(−1)p p(2p + n)Sp = 1

3

∫

X
c1cn−1 +

(

n2 + 1

6
n

)∫

X
cn,

which is nothing else but

2n∑

k=0

(−1)kk2bk −
n∑

p=0

(−1)p p(2p + n)Sp = 1

3

∫

X
c1cn−1 +

(

n2 + 1

6
n

)∫

X
cn, (51)

On the other hand, (42) says that

∫

X
cn =

2n∑

k=0

(−1)kbk −
n∑

p=0

(−1)p Sp. (52)

Putting (51) and (52) together, we obtain the following formula,

∫

X
c1cn−1 =

2n∑

k=0

(−1)k
(

3k2 − 1

2
n(6n + 1)

)

bk −
n∑

p=0

(−1)p
(

6p2 + 3np − 3n2 − 1

2
n

)

Sp . (53)

The desired formula then can be deduced using the fact that Sp = Sn−p , see Remark A.3.
��

We recover Proposition 3.6 as a special case of Theorem A.2.
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