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Inspired by their results on the Chow rings of projective K3 surfaces, Beauville and

Voisin made the following conjecture: given a projective hyperkähler manifold, for any

algebraic cycle that is a polynomial with rational coefficients of Chern classes of the

tangent bundle and line bundles, it is rationally equivalent to zero if and only if it is

numerically equivalent to zero. In this paper, we prove the Beauville–Voisin conjecture

for generalized Kummer varieties.

1 Introduction

In [7], Beauville and Voisin observe the following property of the Chow rings of projective

K3 surfaces.

Theorem 1.1 (Beauville–Voisin). Let S be a projective K3 surface. Then,

(i) There is a well-defined 0-cycle o∈ CH0(S), which is represented by any point

on any rational curve on S. It is called the canonical cycle.

(ii) For any two divisors D, D′, the intersection product D · D′ is proportional to

the canonical cycle o in CH0(S).

(iii) c2(TS)= 24o∈ CH0(S).
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2 L. Fu

In particular, for any algebraic cycle that is a polynomial on Chern classes of the tangent

bundle TS and of line bundles on S, it is rationally equivalent to zero if and only if it is

numerically equivalent to zero. �

As is pointed out in their paper, the above result is surprising because CH0(S) is

very huge (“infinite-dimensional” in the sense of Mumford [21], cf. [24, Chapter 10]). In a

subsequent paper [5], Beauville proposed a conjectural explanation for Theorem 1.1 to

put it into a larger picture. To explain his idea, let us firstly recall the following notion

generalizing K3 surfaces to higher dimensions. See for example [3, 16], or [15] for a more

detailed treatment.

Definition 1.2 (cf. [3]). A smooth projective complex variety X is called hyperkähler

or irreducible holomorphic symplectic, if it is simply connected and H2,0(X) is one-

dimensional and generated by a holomorphic 2-form that is nondegenerate at each point

of X. In particular, a hyperkähler variety has trivial canonical bundle. �

Examples 1.3. Let us give some basic examples of projective hyperkähler manifolds:

(1) (Beauville [3]) Let S be a projective K3 surface and n∈ N, then S[n], which is the

Hilbert scheme of subschemes of dimension 0 and length n, is hyperkähler

of dimension 2n.

(2) (Beauville [3]) Let A be an abelian surface and n∈ N. Let s : A[n+1] → A be

the natural morphism defined by the composition of the Hilbert–Chow mor-

phism A[n+1] → A(n+1) and the summation A(n+1) → A using the group law of

A. It is clear that s is an isotrivial fibration. Then, a fiber Kn := s−1(OA) is

hyperkähler of dimension 2n, called generalized Kummer variety. The name

is justified by the fact that K1 is exactly the Kummer K3 surface associated

to A.

(3) (Beauville and Donagi [6]) Let X ⊂ P5 be a smooth cubic fourfold, then

its Fano variety of lines F (X) := {l ∈ Gr(P1,P5) | l ⊂ X} is hyperkähler of

dimension 4. �

As an attempt to understand Theorem 1.1 in a broader framework, Beauville

gives the point of view in [5] that we can regard this result as a “splitting property” of

the conjectural Bloch–Beilinson–Murre filtration on Chow groups (see [1, 17]) for certain

varieties with trivial canonical bundle. He suggests verification of the following down-

to-earth consequence of this conjectural splitting of the conjectural filtration on Chow
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Beauville–Voisin Conjecture for Generalized Kummer Varieties 3

groups of hyperkähler varieties. As a first evidence, the special cases when X = S[2] or

S[3] for a projective K3 surface S are verified in his paper loc.cit.

Conjecture 1.4 (Beauville). Let X be a projective hyperkähler manifold, and z∈ CH(X)Q

be a polynomial with Q-coefficients of the first Chern classes of line bundles on X. Then,

z is homologically trivial if and only if z is (rationally equivalent to) zero. �

Voisin pursues the work of Beauville and makes in [25] the following stronger

version of Conjecture 1.4, by involving also the Chern classes of the tangent bundle:

Conjecture 1.5 (Beauville–Voisin). Let X be a projective hyperkähler manifold, and z∈
CH(X)Q be a polynomial with Q-coefficients of the first Chern classes of line bundles on

X and the Chern classes of the tangent bundle of X. Then, z is numerically trivial if and

only if z is (rationally equivalent to) zero. �

Here, we replaced ‘homologically trivial’ in the original statement in Voisin’s

paper [25] by ‘numerically trivial’. But according to the standard conjecture [18], the

homological equivalence and the numerical equivalence are expected to coincide. We

prefer to state the Beauville–Voisin conjecture in the above slightly stronger form, since

our proof for generalized Kummer varieties also works in this generality.

In [25], Voisin proves Conjecture 1.5 for the Fano varieties of lines of cubic

fourfolds, and for S[n] if S is a projective K3 surface and n≤ 2b2,tr + 4, where b2,tr is the

second Betti number of S minus its Picard number. We remark that here we indeed can

replace the homological equivalence by the numerical equivalence, since the standard

conjecture in these two cases has been verified by Charles and Markman [8].

The main result of this paper is to prove the Beauville–Voisin Conjecture 1.5 for

generalized Kummer varieties.

Theorem 1.6. Let A be an abelian surface, and n≥ 1 be a natural number. Denote by

Kn the generalized Kummer variety associated to A (cf. Examples 1.3). Consider any

algebraic cycle z∈ CH(Kn)Q which is a polynomial with rational coefficients of the first

Chern classes of line bundles on Kn and the Chern classes of the tangent bundle of Kn,

then z is numerically trivial if and only if z is (rationally equivalent to) zero. �

There are two key ingredients in the proof of the above theorem: on the one

hand, as in [25], the result of De Cataldo and Migliorini [10] recalled in Section 2 relates

the Chow groups of A[n] to the Chow groups of various products of A. On the other

hand, a recent result on algebraic cycles on abelian varieties due to Moonen [20] and
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4 L. Fu

O’Sullivan [23], which is explained in Section 3, allows us to upgrade a relation modulo

numerical equivalence to a relation modulo rational equivalence.

Convention: Throughout this paper, we work over the field of complex numbers.

All Chow groups are with rational coefficients CH := CH ⊗ Q. If A is an abelian vari-

ety, we denote by OA its origin and Pics
(A) its group of symmetric line bundles. For

any smooth projective surface S, we denote by S[n] the Hilbert scheme of subschemes

of length n, which is a 2n-dimensional smooth projective variety by [13]. Finally, for

an algebraic variety X, the big diagonal Δi j in a self-product Xn is the subvariety

{(x1, . . . , xn) ∈ Xn | xi = xj}.

2 De Cataldo–Migliorini’s Result

As mentioned above, a crucial ingredient for the proof of Theorem 1.6 will be the follow-

ing result due to De Cataldo and Migliorini. We state their result in the form adapted to

our purpose.

Let S be a projective surface, and n∈ N+ and P(n) be the set of partitions of n.

For any such partition μ= (μ1, . . . , μl), we denote by lμ := l its length. Define Sμ := Slμ =
S × · · · × S︸ ︷︷ ︸

lμ

, and also a natural morphism from it to the symmetric product:

Sμ → S(n),

(x1, . . . , xl) 
→μ1x1 + · · · + μl xl .

Now define Eμ := (S[n] ×S(n) Sμ)red to be the reduced incidence variety inside S[n] × Sμ.

Then, Eμ can be viewed as a correspondence from S[n] to Sμ, and we will write tEμ for

the transpose correspondence, namely the correspondence from Sμ to S[n] defined by the

same subvariety Eμ in the product. Let μ= (μ1, . . . , μl)= 1a12a2 · · · nan be a partition of n,

we define mμ := (−1)n−l ∏l
j=1 μ j and cμ := 1

mμ

1
a1!···an! .

Theorem 2.1 (De Cataldo and Migliorini [10]). Let S be a projective surface, n∈ N+. For

each μ ∈ P(n), let Eμ and tEμ be the correspondences defined above. Then, the sum of

the compositions

∑
μ∈P(n)

cμ
tEμ ◦ Eμ =ΔS[n]
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Beauville–Voisin Conjecture for Generalized Kummer Varieties 5

is the identity correspondence of S[n], modulo rational equivalence. In particular,

∑
μ∈P(n)

cμ E∗
μ ◦ Eμ∗ = idCH(S[n]) : CH(S[n])→ CH(S[n]). �

Return to the case where S = A is an abelian surface. We view A[n+1] as a

variety over A by the natural summation morphism s : A[n+1] → A. Similarly, for each

μ ∈ P(n+ 1) of length l, Aμ also admits a natural morphism to A, namely, the weighted

sum:

sμ : Aμ → A,

(x1, . . . , xl) 
→μ1x1 + · · · + μl xl .

By definition, the correspondences Eμ, tEμ are compatible with morphisms s and

sμ to A, that is, the following diagram commutes:

Eμ

����
��

��
��

��
��

��
��

��

πμ

��

A[n+1]

s ���
��

��
��

��
Aμ

sμ����
��

��
��

A

We point out that the three morphisms to A are all isotrivial fibrations: they

become products after the base change A
·n+1−−→ A given by multiplication by n+ 1. Now

let us take their fibers over the origin of A, or equivalently, apply the base change

i : Spec(C)= OA ↪→ A to the above commutative diagram, and we obtain the following

correspondence, where Kn := s−1(OA) is the generalized Kummer variety, Bμ is the possi-

bly nonconnected abelian variety Bμ := ker(sμ : Aμ → A), and Γμ := π−1
μ (OA).

Γμ

��������������

���
�����������

Kn

�������������
Bμ

�������������

OA = Spec(C)
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6 L. Fu

In the sequel, we sometimes view Eμ simply as an algebraic cycle in CH(A[n+1] ×
Aμ) and also by definition Γμ = i!(Eμ) ∈ CH(Kn × Bμ), where i! is the refined Gysin map

defined in [14, Chapter 6]. We need the following standard fact in intersection theory.

Lemma 2.2. For any γ ∈ CH(A[n+1]), we have

Γμ∗(γ |Kn)= (Eμ∗(γ ))|Bμ in CH(Bμ).

Similarly, for any β ∈ CH(Aμ), we have

Γ ∗
μ (β|Bμ)= (E∗

μ(β))|Kn in CH(Kn). �

Proof. All squares are cartesian in the following commutative diagram:

Kn × Bμ
q′

		

p′

��

� �



�����������������
Bμ

��

� �



																									

Kn
		� �



																						 OA � �

i
						

��																			
A[n+1] × Aμ

p

��

q

		 Aμ

sμ

��

A[n+1]

s

		 A

Now for any γ ∈ CH(A[n+1]), we have

Γμ∗(γ |Kn)= Γμ∗(i!(γ )) (by [14, Theorem 6.2(c)], as s is isotrivial)

= q′
∗(p

′∗(i!(γ )) · i!(Eμ))

= q′
∗(i

!(p∗(γ )) · i!(Eμ)) (by [14, Theorem 6.2(b)])

= q′
∗(i

!(p∗(γ ) · Eμ))

= i!(q∗(p∗(γ ) · Eμ)) (by [14, Theorem 6.2(a)])

= i!(Eμ∗(γ ))

= (Eμ∗(γ ))|Bμ (by [14, Theorem 6.2(c)], as sμ is isotrivial).

The proof of the second equality is completely analogous. �
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Beauville–Voisin Conjecture for Generalized Kummer Varieties 7

Theorem 2.1 together with Lemma 2.2 implies the following corollary.

Corollary 2.3. For each μ ∈ P(n+ 1), let Γμ be the correspondences between Kn and Bμ

defined above. Then, for any γ ∈ CH(A[n+1]), we have

∑
μ∈P(n+1)

cμΓ
∗
μ ◦ Γμ∗(γ |Kn)= γ |Kn in CH(Kn),

where for a partition μ= (μ1, . . . , μl)= 1a12a2 · · · (n+ 1)an+1 ∈ P(n+ 1), the constant cμ is

defined as 1
(−1)n+1−l

∏l
j=1 μ j

· 1
a1!···an+1! . �

For later use, we now describe Bμ. Let d := gcd(μ1, . . . , μl), then Bμ has d4 iso-

morphic connected components. We denote by B0
μ the identity component, which is a

connected abelian variety; and the other components are its torsion translations. More

precisely, define the weighted sum homomorphism

sμ : Z⊕lμ → Z,

(m1, . . . ,ml) 
→μ1m1 + · · · + μlml ,

whose image is clearly dZ. Let U be the kernel of sμ, which is a free abelian group of

rank lμ − 1. Define the reduced weighted sum

s̄μ : Z⊕lμ → Z,

(m1, . . . ,ml) 
→ μ1

d
m1 + · · · + μl

d
ml .

Then, we have a short exact sequence of free abelian groups

0 → U → Z⊕lμ
s̄μ−→ Z → 0. (1)

By tensoring with A, we obtain a short exact sequence of abelian varieties

0 → B0
μ → Aμ

s̄μ−→ A→ 0. (2)

Since the short exact sequence (1) splits, so does the short exact sequence (2):

B0
μ is a direct summand of Aμ; thus, we can choose a projection pμ : Aμ � B0

μ such that

pμ ◦ iμ = idB0
μ
, where iμ : B0

μ ↪→ Aμ is the natural inclusion.
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8 L. Fu

Denoting A[d] for the set of d-torsion points of A, we have

Bμ =
⊔

t∈A[d]

Bt
μ,

where Bt
μ := {(x1, . . . , xl) ∈ Aμ | ∑l

i=1
μi
d xi = t ∈ A}.

Now we specify the way that we view Bt
μ as a torsion translation of B0

μ. Since d

is the greatest common divisor of μ1, . . . , μl , it divides n+ 1. We choose t′ ∈ A[n+ 1] such

that n+1
d · t′ = t in A. Then the torsion translation on A by t′ will induce some “torsion

translation automorphism” τt′ := (t′, . . . , t′) on A[n+1]

τt′ : A[n+1] → A[n+1]

z 
→ z + t′,

(e.g., when z is a reduced subscheme of length n+ 1 given by (x1, . . . , xn+1) with xj’s

pairwise distinct, it is mapped to z + t′ := (x1 + t′, . . . , xn+1 + t′)); as well as on Aμ

τt′ : Aμ → Aμ,

(x1, . . . , xl) 
→ (x1 + t′, . . . , xl + t′).

These actions are compatible: we have the following commutative diagram with actions:

τt′ � Eμ

��











���
��������

τt′ � A[n+1]

s ������������
Aμ � τt′

sμ���������

id � A

Moreover, the action of τt′ on Aμ translates B0
μ isomorphically to Bt

μ.

3 Result of Moonen and O’Sullivan

In this section, A is an abelian variety of dimension g. For any m ∈ Z, let m be the endo-

morphism of A defined by the multiplication by m. To motivate the result of Moonen and

O’Sullivan, let us firstly recall the Beauville conjectures for algebraic cycles on abelian
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Beauville–Voisin Conjecture for Generalized Kummer Varieties 9

varieties. In [2, 4], Beauville investigates the Fourier transformation between the Chow

rings of A and its dual abelian variety Â and establishes the following theorem.

Theorem 3.1 (Beauville decomposition). Let A be a g-dimensional abelian variety.

(i) For any 0 ≤ i ≤ g, there exists a direct-sum decomposition

CHi(A)=
i⊕

s=i−g

CHi
(s)(A),

where CHi
(s)(A) := {z∈ CHi(A) | m∗z= m2i−sz, ∀m ∈ Z}.

(ii) This decomposition is functorial: Let B be another abelian variety of dimen-

sion (g + c) and f : A→ B be a homomorphism of abelian varieties. Then, for

any i,

f∗(CHi
(s)(B))⊂ CHi

(s)(A);

f∗(CHi
(s)(A))⊂ CHi+c

(s) (B).

(iii) The intersection product respects the grading: CHi
(s)(A) · CH j

(t)(A)⊂
CHi+ j

(s+t)(A). �

In the spirit of Bloch–Beilinson–Murre conjecture (cf. [1, 17]), Beauville makes

in [4] the following conjectures, which roughly say that F jCHi(A) := ⊕s≥ jCHi
(s)(A) should

give the desired conjectural Bloch–Beilinson–Murre filtration.

Conjecture 3.2 (Beauville conjectures).

(i) For any i and any s< 0, CHi
(s)(A)= 0.

(ii) For any i, the restriction of the cycle class map cl : CHi
(0)(A)→ H2i(A,Q) is

injective.

(iii) For any i, the restriction of the Abel–Jacobi map AJ: CHi
(1)(A)→ J2i−1(A)Q is

injective. �

Obviously, the Beauville conjectures hold for divisors, i.e., CH1(A)= CH1
(0)(A)⊕

CH1
(1)(A) where

CH1
(0)(A)= Pics

(A)Q � NS(A)Q;

CH1
(1)(A)= Pic0

(A)Q = Â⊗Z Q.
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10 L. Fu

In particular, the Q-subalgebra of CH∗(A) generated by symmetric line bundles

on A is contained in CH∗
(0)(A) (by Theorem 3.1(iii)). As a special case of Beauville’s Conjec-

ture 3.2(ii), Voisin raised the natural question whether the cycle class map cl is injective

on this subalgebra. Recently, Moonen [20, Corollary 8.4] and O’Sullivan [23, Theorem,

pages 2–3] have given a positive answer to Voisin’s question:

Theorem 3.3 (Moonen, O’Sullivan). Let A be an abelian variety. Let P ∈ CH∗(A) be a

polynomial with rational coefficients in the first Chern classes of symmetric line bundles

on A, then P is numerically equivalent to zero if and only if P is (rationally equivalent

to) zero. �

Remark 3.4. The above result is implicit in O’Sullivan’s paper [23]. In fact, he constructs

the so-called symmetrically distinguished cycles CH∗(A)sd, which is a Q-subalgebra of

CH∗(A) containing the first Chern classes of symmetric line bundles and mapping iso-

morphically by the numerical cycle class map to CH∗(A), the Q-algebra of cycles modulo

the numerical equivalence. �

4 Proof of Theorem 1.6

Let us prove the main result. To fix the notation, we recall the following description

of line bundles on Kn (see [3, Proposition 8]). Let ε : A[n+1] → A(n+1) be the Hilbert–Chow

morphism, which is a resolution of singularities [13].

Proposition 4.1 (Beauville). We have an injective homomorphism

j : NS(A)Q ↪→ NS(Kn)Q,

ctop
1 (L) 
→ L̃|Kn

such that

Pic(Kn)Q = NS(Kn)Q = j(NS(A)Q)⊕ Q · δ|Kn,

where δ is the exceptional divisor of A[n+1]. �

Here for a line bundle L on A, the Sn+1-invariant line bundle L � · · · � L on A×
· · · × A descends to a line bundle L ′ on the symmetric product A(n+1) and we define L̃ :=
ε∗(L ′).
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Beauville–Voisin Conjecture for Generalized Kummer Varieties 11

Remark 4.2. As the notation in this proposition indicates, modifying the line bundle

L on A inside its numerical equivalence class will not change the resulting line bundle

j(L)= L̃|Kn ∈ NS(Kn)Q = Pic(Kn)Q. �

We hence obtain the following lemma.

Lemma 4.3. Given any polynomial z∈ CH(Kn) in the Chern classes of TKn and the first

Chern classes of line bundles on Kn, as in the main theorem, then:

(i) There exists γ ∈ CH(A[n+1]) which is a polynomial of algebraic cycles of one

of the three forms: c1(L̃) for some symmetric line bundle L ∈ Pics
(A)Q, δ, and

cj(TA[n+1]) for some j ∈ N, such that

γ |Kn = z in CH(Kn).

(ii) Moreover, for such γ , the automorphism τt′ of A[n+1] constructed at the end of

Section 2 satisfies

(τt′∗(γ ))|Kn = γ |Kn = z in CH(Kn). �

Proof.

(i) Note that cj(TKn)= cj(TA[n+1])|Kn, since TA is trivial. Part (i) thus follows from

Proposition 4.1 because ctop
1 : Pics

(A)Q
�−→ NS(A)Q is an isomorphism (see [4,

Page 649]).

(ii) It is clear that τt′∗(δ)= δ and τt′∗(TA[n+1])= TA[n+1] . On the other hand, the push-

forward of L by a torsion translation on A has the same numerical class

as L and hence by Remark 4.2, (τt′∗(L̃))|Kn = L̃|Kn as line bundles. Therefore,

modifying γ by the automorphism τt′ does not change its restriction to Kn,

although it might change the cycle γ itself. �

Let us start the proof of Theorem 1.6. We will use ≡ to denote the numerical

equivalence. Given z∈ CH(Kn) a polynomial of the Chern classes of TKn and line bun-

dles on Kn as in the main Theorem 1.6. By Lemma 4.3(i), we can write z= γ |Kn for

γ ∈ CH(A[n+1]) a polynomial of c1(L̃) for some L ∈ Pics
(A)Q, δ, and cj(TA[n+1]) for some j ∈ N.

Assuming z≡ 0, we want to prove that z= 0. Adopting the previous notation, then

for any μ ∈ P(n+ 1), we have by Lemma 2.2

(Eμ∗(γ ))|Bμ = Γμ∗(γ |Kn)= Γμ∗(z)≡ 0.
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12 L. Fu

Define β := Eμ∗(γ ) ∈ CH(Aμ), the above equality says that β|Bμ ≡ 0, in particular,

β|B0
μ
≡ 0. (3)

To describe β, we need the following proposition, which is the analogue of the

corresponding result [25, Proposition 2.4] due to Voisin, and we will give its proof in the

next section.

Proposition 4.4. For γ ∈ CH(A[n+1]) as above (i.e., a polynomial of cycles of the forms:

c1(L̃) for some L ∈ Pics
(A)Q, δ, and cj(TA[n+1]) for some j ∈ N), the algebraic cycle β =

Eμ∗(γ ) ∈ CH(Aμ) is a polynomial with rational coefficients in cycles of the two forms:

(1) pr∗
i (L) for some symmetric line bundle L on A and 1 ≤ i ≤ lμ;

(2) big diagonal Δi j of Aμ = Alμ for 1 ≤ i �= j ≤ lμ. �

See the next section for its proof.

Corollary 4.5. With the same notation, β is a polynomial with rational coefficients in

algebraic cycles of the form φ∗(L), for some homomorphism of abelian varieties φ : Aμ →
A and some L ∈ Pics

(A)Q. �

Proof. It is enough to remark that the big diagonal Δi j is nothing but the pull-back of

OA ∈ CH0(A) via the homomorphism

Aμ → A,

(x1, . . . , xlμ) 
→ xi − xj,

and OA ∈ CH0(A) is proportional to θ2 for some symmetric polarization θ ∈ Pics
(A)Q, cf. [2,

Page 249, Corollaire 2]. �

Let us continue the proof of Theorem 1.6. Let B0
μ be the identity component of Bμ,

iμ : B0
μ ↪→ Aμ and pμ : Aμ � B0

μ be the inclusion and the splitting constructed in Section 2.

By assumption, we have equation (3): β|Bμ ≡ 0; therefore, i∗
μ(β)= β|B0

μ
≡ 0, and hence,

p∗
μ(i

∗
μ(β))≡ 0.

On the other hand, since iμ ◦ pμ : Aμ → Aμ is an endomorphism of Aμ,

Corollary 4.5 implies that the numerically trivial cycle p∗
μ(i

∗
μ(β)) is also a polynomial
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Beauville–Voisin Conjecture for Generalized Kummer Varieties 13

of cycles of the form φ∗(L), for some homomorphism of abelian varieties φ : Aμ → A and

some L ∈ Pics
(A)Q. As a result, p∗

μ(i
∗
μ(β)) is in the subalgebra of CH(Aμ) generated by the

first Chern classes of symmetric line bundles of Aμ.

Therefore, by the result of Moonen and O’Sullivan (Theorem 3.3), p∗
μ(i

∗
μ(β))≡ 0

implies p∗
μ(i

∗
μ(β))= 0. As a result,

β|B0
μ
= i∗

μ(p
∗
μ(i

∗
μ(β)))= 0. (4)

Recall that d= gcd(μ1, . . . , μl) and for any d-torsion point t of A, the automorphism τt′

constructed at the end of Section 2 translates B0
μ to Bt

μ; therefore (4) implies that

τt′∗(β)|Bt
μ
= 0 for any t ∈ A[d].

However, τt′∗(β)= τt′∗(Eμ∗(γ ))= Eμ∗(τt′∗(γ )) by the compatibility of the actions of τt′ on

A[n+1] and on Aμ, as explained in Section 2.

We thus obtain that for any t ∈ A[d],

Γμ∗(z)|Bt
μ
= Γμ∗(τt′∗γ |Kn)|Bt

μ
= (Eμ∗(τt′∗γ ))|Bt

μ
= τt′∗(β)|Bt

μ
= 0.

Here the first equality comes from Lemma 4.3(ii), see also Remark 4.2; the second equal-

ity uses Lemma 2.2. Since Bμ is the disjoint union of all Bt
μ for all t ∈ A[d], we have

Γμ∗(z)= 0 for any μ ∈ P(n+ 1).

Using De Cataldo–Migliorini’s result (rather Corollary 2.3), we have for z= γ |Kn as before,

z=
∑

μ∈P(n+1)

cμ Γ
∗
μ ◦ Γμ∗(z)= 0.

The proof of Theorem 1.6 is complete if one admits Proposition 4.4.

5 The proof of Proposition 4.4

The proof of Proposition 4.4 is quite technical but analogous to that of [25, Proposi-

tion 2.4]. For the convenience of the reader, we give in this section a more or less self-

contained proof closely following [25], emphasizing the differences from the case in [25].

The author thanks Claire Voisin for allowing him to reproduce her arguments. For sim-

plicity, we switch from n+ 1 to n. Let A still be an abelian surface.
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14 L. Fu

There are two natural vector bundles on A[n]. The first one is the tangent bundle

Tn := TA[n] , and the second one is the rank n vector bundle On := pr1∗(OUn), where Un ⊂
A[n] × A is the universal subscheme and pr1 : A[n] × A→ A[n] is the first projection. As

c1(On)= − 1
2δ, we can generalize Proposition 4.4 by proving it for any γ a polynomial of

c1(L̃) for some L ∈ Pics
(A)Q, ci(On) for some i ∈ N, and cj(Tn) for some j ∈ N.

For any L ∈ Pics
(A), by the construction of Eμ ⊂ A[n] × Aμ, the restriction pr∗

1(L̃)|Eμ

is the pull-back of the line bundle L⊗μ1 � · · · � L⊗μl on Aμ. Hence, by projection formula,

we only need to prove the following proposition.

Proposition 5.1. For γ ∈ CH(A[n]) a polynomial with rational coefficients of cycles of the

forms:

(1) ci(On) for some i ∈ N;

(2) cj(Tn) for some j ∈ N,

the algebraic cycle β = Eμ∗(γ ) ∈ CH(Aμ) is a polynomial with rational coefficients in the

big diagonals Δi j of Aμ = Alμ for 1 ≤ i �= j ≤ lμ. �

To show Proposition 5.1, we actually prove the more general Proposition 5.2

(note that Proposition 5.1 corresponds to the special case m = 0), which allows us to do

induction on n. Let us introduce some notation first: for any m ∈ N, let Eμ,m be the cor-

respondence between A[n] × Am and Aμ × Am defined by Eμ,m := Eμ ×ΔAm . Let In be the

ideal sheaf of the universal subscheme Un ⊂ A[n] × A. For any 1 ≤ i �= j ≤ m, we denote

by pr0 : A[n] × Am → A[n], respectively, pri : A[n] × Am → A, respectively, pr0i : A[n] × Am →
A[n] × A, respectively, pri j : A[n] × Am → A× A the projection onto the factor A[n], respec-

tively, the ith factor of Am, respectively, the product of the factor A[n] and the ith factor

of Am, respectively, the product of the ith and jth factors of Am.

Proposition 5.2. For γ ∈ CH(A[n] × Am) a polynomial with rational coefficients of cycles

of the forms:

(1) pr∗
0(cj(On)) for some j ∈ N;

(2) pr∗
0(cj(Tn)) for some j ∈ N;

(3) pr∗
0i(cj(In)) for some 1 ≤ i ≤ m and j ∈ N;

(4) pr∗
i j(ΔA) for some 1 ≤ i �= j ≤ m,

the algebraic cycle Eμ,m∗(γ ) ∈ CH(Alμ+m) is a polynomial with rational coefficients in the

big diagonals Δi j of Alμ+m, for 1 ≤ i �= j ≤ lμ + m. �
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Beauville–Voisin Conjecture for Generalized Kummer Varieties 15

The main tool to prove this proposition is the so-called nested Hilbert schemes,

which we briefly recall here (cf. [22]). By definition, the nested Hilbert scheme is the

incidence variety

A[n−1,n] := {(z′, z) ∈ A[n−1] × A[n] | z′ ⊂ z},

where z′ ⊂ z means that z′ is a closed subscheme of z. It admits natural projections to

A[n−1] and A[n], and also a natural morphism to A which associates the residue point to

such a pair of subschemes (z′ ⊂ z). The situation is summarized by the following dia-

gram:

A[n−1] A[n−1,n]

φ

��

ψ

		

ρ

��

A[n]

A

(5)

We collect here some basic properties of the nested Hilbert scheme

(cf. [12, 19, 22]):

(1) The nested Hilbert scheme A[n−1,n] is irreducible and smooth of dimension 2n

(cf. [9]).

(2) The natural morphism σ := (φ, ρ) : A[n−1,n] → A[n−1] × A is the blow up

along the universal subscheme Un−1 ⊂ A[n−1] × A. Define a line bundle L :=
OA[n−1,n](−E) on A[n−1,n], where E is the exceptional divisor of the blow up.

(3) The natural morphism σ = (φ, ρ) : A[n−1,n] → A[n−1] × A is also identified with

the projection

P(In−1)= Proj(SymIn−1)→ A[n−1] × A.

Then L is identified with OP(In−1)(1) .

(4) The morphism ψ is generically finite of degree n.

(5) The natural morphism (ψ, ρ) : A[n−1,n] → A[n] × A is identified with the projec-

tion

P(ωUn)→ A[n] × A,

where ωUn is the relative dualizing sheaf (supported on Un) of the universal

subscheme Un ⊂ A[n] × A.
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16 L. Fu

Before we return to the proof of Proposition 5.2, we do the following

calculation:

Lemma 5.3. Let Abe an abelian surface andΔA ⊂ A× Abe the diagonal. Then in CH(A×
A), c1(OΔA)= c3(OΔA)= c4(OΔA)= 0, and c2(OΔA)= −ΔA. �

Proof. We apply the Grothendieck–Riemann–Roch formula to the diagonal embedding

A ↪→ A× A. We get (since td(TA)= td(TA×A)= 1): ch(OΔA)=ΔA ∈ CH2(A× A), and the cal-

culation of Chern classes follows. �

Proof of Proposition 5.2. We do induction on n. When n= 0, there is nothing

to prove.

When n= 1, the only possible μ= (1), and hence Eμ,m is the identity correspon-

dence of Am+1. Since O1 is the structure sheaf, T1 = TA is trivial and I1 = IΔA is the ideal

sheaf of the diagonal, whose Chern classes are either zero or ΔA (by Lemma 5.3), Propo-

sition 5.2 is verified in this case.

Now assuming that the statement holds for n− 1, let us prove it for n. In the

rest of the proof, a partition of n means a grouping of the set {1,2, . . . ,n} rather than

just a decreasing sequence of natural numbers with sum n as before. More precisely,

a partition μ of length l is a sequence of mutually exclusive subsets μ1, . . . , μl ∈ 2{1,...,n}

such that
∐l

j=1 μ j = {1, . . . ,n}. Thus, we can naturally identify Aμ := Alμ with the diagonal

{(x1, . . . , xn) ∈ An | xi = xj if i, j ∈μk for some k} ⊂ An.

Consider the reduced fiber product (Aμ ×A(n) A[n−1,n])red, which has lμ irreducible

components dominating Aμ, depending on the choice of the residue point. Let us pick

one component, for example, the one where over a general point (x1, . . . , xn) ∈ Aμ, the

residue point is xn. Let μ′ be the partition of {1,2, . . . ,n− 1} given by μ′
i :=μi\{n} for all

i. Let us call this irreducible component Eμ,μ′ . Set theoretically,

Eμ,μ′ = {((x1, . . . , xn), z
′ ⊂ z) ∈ Aμ × A[n−1,n] | [z′] = x1 + · · · + xn−1, [z] = x1 + · · · + xn};

Eμ = {((x1, . . . , xn), z) ∈ Aμ × A[n] | [z] = x1 + · · · + xn};

Eμ′ = {((x1, . . . , xn−1), z
′) ∈ Aμ

′ × A[n−1] | [z′] = x1 + · · · + xn−1},

where [−] means the Hilbert–Chow morphism.
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Beauville–Voisin Conjecture for Generalized Kummer Varieties 17

We have the following commutative diagram with natural morphisms:

Aμ
′ × A Aμ

ι

��

Eμ′ × A

gμ′,1

��

fμ′ ,1
��

Eμ,μ′
χ ′

��

χ

		

p

��

Eμ

gμ

��

fμ

��

A[n−1] × A A[n−1,n]

σ=(φ,ρ)
��

ψ

		 A[n]

(6)

Here and in the sequel, for any morphism h and any m ∈ N, we denote by hm the

morphism h × idAm . In the above diagram, fμ, gμ, fμ′ , gμ′ are the natural projections;

both χ = (idAμ, ψ) : ((x1, . . . , xn), z′ ⊂ z) 
→ ((x1, . . . , xn), z), χ ′ = (prAμ′ , σ ) : ((x1, . . . , xn), z′ ⊂
z) 
→ ((x1, . . . , xn−1), z′, xn) are of degree 1; and finally ι : (x1, . . . , xn) 
→ ((x1, . . . , xn−1), xn) is

either an isomorphism or a diagonal embedding depending on whether n is the only one

element in the subset of partition where n belongs to.

Here comes the key setting for the induction process. For any m ∈ N, we

make a product of the above diagram with Am and replace any morphism h by

hm := h × idAm :

Aμ
′ × Am+1 Aμ × Am

ιm

��

Eμ′ × Am+1

gμ′ ,m+1

��

fμ′ ,m+1

��

Eμ,μ′ × Am
χ ′

m

��

χm

		

pm

��

Eμ × Am

gμ,m

��

fμ,m

��

A[n−1] × Am+1 A[n−1,n] × Am

σm

��

ψm

		 A[n] × Am

(7)

Given γ ∈ CH(A[n] × Am) a polynomial expression as in Proposition 5.2, we want

to prove that gμ,m∗( f∗
μ,mγ ) ∈ CH(Aμ × Am) is a polynomial of big diagonals of Alμ+m. Since

ιm is either an isomorphism or a diagonal embedding, it suffices to prove the same thing
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18 L. Fu

for ιm∗ ◦ gμ,m∗( f∗
μ,mγ ) ∈ CH(Aμ

′ × Am+1). However,

ιm∗ ◦ gμ,m∗( f∗
μ,mγ )= ιm∗ ◦ gμ,m∗ ◦ χm∗ ◦ χ∗

m ◦ f∗
μ,m(γ ) (since χm is of degree 1)

= gμ′,m+1∗ ◦ χ ′
m∗ ◦ χ∗

m ◦ f∗
μ,m(γ )

= gμ′,m+1∗ ◦ χ ′
m∗ ◦ p∗

m ◦ ψ∗
m(γ )

= gμ′,m+1∗ ◦ f∗
μ′,m+1 ◦ σm∗ ◦ ψ∗

m(γ ) (by [25, Page 626 (2.13)]).

Using the induction hypothesis (since μ′ is a partition of n− 1), we find that to finish the

proof, it is enough to verify

Proposition 5.4. If γ ∈ CH(A[n] × Am) is a polynomial expression in the cycles of the

following forms:

(1) pr∗
0(cj(On)) for some j ∈ N;

(2) pr∗
0(cj(Tn)) for some j ∈ N;

(3) pr∗
0i(cj(In)) for some 1 ≤ i ≤ m and j ∈ N;

(4) pr∗
i j(ΔA) for some 1 ≤ i �= j ≤ m;

then σm∗ ◦ ψ∗
m(γ ) ∈ CH(A[n−1] × Am+1) is a polynomial in cycles of these four forms with n

replaced by n− 1 and m replaced by m + 1. �

This will follow essentially from the formulae below established in [11]. We

adopt the notation in Diagram (5)–(7) and the definition of the line bundle L after Dia-

gram (5). In our case of abelian surface, the formulae are simplified thanks to the fact

that TA is trivial.

Theorem 5.5 ([11], Proposition 2.3, Lemma 2.1, in the proof of Proposition 3.1 and Lemma

1.1). We have the following equalities in the Grothendieck group K0(A[n−1,n]):

(i) ψ !Tn = φ!Tn−1 + L · σ !I∨
n−1 + 1;

(ii) ψ !On = φ!On−1 + L;

an equality in the Grothendieck group K0(A[n−1,n] × A):

(iii) ψ !
1In = φ!

1In−1 − (L � OA) · ρ!
1(OΔA);

and an equality in the Chow group CH(A[n−1] × A):

(iv) σ∗(c1(L)i)= (−1)ici(−In−1). �
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Beauville–Voisin Conjecture for Generalized Kummer Varieties 19

Return to the proof of Proposition 5.4. Taking the Chern classes of both sides

of (i), (ii), (iii) in Theorem 5.5, we get formulae for pull-backs by ψ or ψ1 of the Chern

classes of Tn,On, In in terms of polynomial expressions of the first Chern class of L
and the pull-backs by φ, ρ, σ of the Chern classes of Tn−1,On−1, In−1 and OΔA. Therefore,

by the calculations in Lemma 5.3 and the fact that σ = (φ, ρ), we obtain that ψ∗
m(γ ) ∈

CH(A[n−1,n] × Am) is a polynomial of cycles of the following five forms:

(1) σ ∗
m ◦ pr∗

0(cj(Tn−1)) for some j ∈ N;

(2) pr∗
0(c1(L));

(3) σ ∗
m ◦ pr∗

0i(cj(In−1)) for some 1 ≤ i ≤ m + 1 and j ∈ N;

(4) σ ∗
m ◦ pr∗

0(cj(On−1)) for some j ∈ N;

(5) σ ∗
m ◦ pr∗

i j(ΔA) for some 1 ≤ i �= j ≤ m + 1,

where we also use pr0 to denote the projection A[n−1,n] × Am → A[n−1,n], etc.

When applying σm∗ to a polynomial in cycles of the above five types, using the pro-

jection formula for the birational morphism σm and Theorem 5.5(iv), we conclude that

σm∗ ◦ ψ∗
m(γ ) is of the desired form. This finishes the proof of Proposition 5.4 and thus,

completes the proof of Proposition 4.4. �
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no. 4 (1986): 647–51.

 at E
cole N

orm
ale Superieure on A

pril 8, 2014
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/
http://imrn.oxfordjournals.org/


20 L. Fu

[5] Beauville, A. “On the Splitting of the Bloch–Beilinson Filtration.” Algebraic Cycles and

Motives, Vol. 2, 38–53. London Mathematical Society Lecture Note Series 344. Cambridge:

Cambridge Univeristy Press, 2007.
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