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For classical dynamical systems, the polynomial entropy 
serves as a refined invariant of the topological entropy. 
In the setting of categorical dynamical systems, that is, 
triangulated categories endowed with an endofunctor, we 
develop the theory of categorical polynomial entropy, refining 
the categorical entropy defined by Dimitrov, Haiden, Katzar-
kov, and Kontsevich. We justify this notion by showing that 
for an automorphism of a smooth projective variety, the 
categorical polynomial entropy of the pullback functor on 
the derived category coincides with the polynomial growth 
rate of the induced action on cohomology. We also establish 
in general a Yomdin-type lower bound for the categorical 
polynomial entropy of an endofunctor in terms of the induced 
endomorphism on the numerical Grothendieck group of the 
category. As examples, we compute the categorical polynomial 
entropy for some standard functors like shifts, Serre functors, 
tensoring line bundles, automorphisms, spherical twists, 
P-twists, and so on, illustrating clearly how categorical 
polynomial entropy refines the study of categorical entropy 
and enables us to study the phenomenon of categorical 
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trichotomy. A parallel theory of polynomial mass growth rate 
is developed in the presence of Bridgeland stability conditions.

© 2021 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

1.1. Background

A topological dynamical system consists of a compact Hausdorff topological space X
and a continuous self-map f : X → X. The topological entropy of f , denoted by htop(f), 
is a non-negative real number (possibly infinite) measuring the complexity of the system, 
by looking at the asymptotic behavior of the iterations of the map f . More precisely, 
using an auxiliary metric1 on X, the topological entropy htop(f), which is independent 
of the metric, is defined to be the exponential growth rate of certain positive number 
cov(f, n, ε) measuring the ε-separation property of the n-th iteration of f :

htop(f) := lim
ε→0

lim sup
n→∞

log cov(f, n, ε)
n

.

We refer to [30,23,9] for more details. When restricting to the category of compact 
Kähler manifolds, the topological entropy can be understood via the cohomology; this is 
the content of the following fundamental result due to Gromov (the upper bound) and 
Yomdin (the lower bound).

Theorem 1.1 ([25,48]). Let f be a C∞ self-map of a compact differentiable manifold X. 
Then

htop(f) ≥ log ρ(f∗),

1 See [1] for a metric-free (and equivalent) definition.

http://creativecommons.org/licenses/by/4.0/
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where ρ(f∗) denotes the spectral radius of the induced endomorphism f∗ on the coho-
mology H∗(X, C). Moreover, if X is a compact Kähler manifold and f : X → X is a 
surjective holomorphic map, then

htop(f) = log ρ(f∗).

In the compact Kähler setting, a more refined study involves the so-called dynamical 
degrees (see the work of Dinh–Sibony [15,16]); some important facts on this matter are 
collected in Section 5.1. We refer to the survey of Oguiso [43] and the references therein 
for an overview of interesting examples and results on dynamical systems in algebraic 
geometry.

Recently, there has been a growing interest in dynamical systems with vanishing 
topological entropy, highlighting the study of the so-called polynomial entropy; see for 
instance [3,9,27,36–38,41,42]. More precisely, given a topological dynamical system (X, f)
with htop(f) = 0, the polynomial entropy is defined to be the polynomial growth rate of 
the number cov(f, n, ε):

hpol(f) := lim
ε→0

lim sup
n→∞

log cov(f, n, ε)
log(n) .

This provides a refined/secondary invariant for the dynamical system. In the spirit of 
Theorem 1.1, given an automorphism of a compact Kähler manifold with null entropy, 
Cantat–Paris-Romaskevich [9, Theorem 2.1 and Theorem 4.1] established some upper 
bounds for the polynomial entropy in terms of the induced action on cohomology, to-
gether with some topological data of the manifold. If certain dynamical degree is 1, the 
study of a secondary invariant called polynomial dynamical degrees is initiated by Lo 
Bianco [40, Section 1.3]. In Section 5.2 we extend his definition and results to the gen-
eral case where the dynamical degree is arbitrary. We refer to [9] and references therein 
for other results on polynomial entropy in the compact Kähler setting.

The categorical counterpart of the notion of topological entropy was introduced by 
Dimitrov, Haiden, Katzarkov, and Kontsevich [12]. The definition of categorical entropy
is motivated by the profound connection between the Teichmüller theory and the theory 
of stability conditions on triangulated categories, established recently in [21,7,26,12]. Let 
D be a triangulated category and let F : D → D be a triangulated functor that we always 
assume not to be virtually zero, that is, Fn � 0 for all n > 0. We view the pair (D, F ) as 
a categorical dynamical system. The categorical entropy of F , denoted by ht(F ), which 
is a real function in one real variable, is defined to be the exponential growth rate of 
certain positive number δt(G, Fn(G)) measuring the complexity of the image of a split 
generator G of D under the n-th iteration of F , with respect to G itself:

ht(F ) := lim log δt(G,Fn(G)) ∈ [−∞,∞).

n→∞ n
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Note that the categorical entropy is independent of the choice of the split generator. We 
review the definition and basic properties of δt and ht in Section 2.1. The value of the 
categorical entropy at t = 0 is often of particular interest, and is denoted by

hcat(F ) := h0(F ) ∈ R≥0.

The connection to the classical dynamical system justifies the notion of categorical en-
tropy: it is proved in [12, Theorem 2.12] under some technical condition and by Kikuta 
and Takahashi [34] in full generality that if f : X → X is a surjective endomorphism of 
a smooth projective complex variety and Lf∗ : Db(X) → Db(X) is the derived pullback 
functor on the bounded derived category of coherent sheaves on X, then

hcat(Lf∗) = htop(f).

See Theorem 5.6 for a more general version due to Ouchi [45].

1.2. New invariants

The goal of the present article is to lay the foundation of the theory of categorical poly-
nomial entropy, which should serve as the categorical counterpart of the aforementioned 
notion of polynomial entropy. Inspired by [9], we propose to define it as the polynomial 
growth rate of δt(G, Fn(G)):

hpol
t (F ) := lim sup

n→∞

log δt(G,Fn(G)) − nht(F )
log(n) ∈ [−∞,∞].

Note that hpol
t (F ) is independent of the choice of the split generator G. Moreover, the 

definition makes sense even if the categorical entropy ht(F ) does not vanish, as long as 
ht(F ) �= −∞. We refer to Section 2 for some basic properties of hpol

t (F ). Its value at 
t = 0 is denoted by

hpol(F ) := hpol
0 (F )

and is well-defined since h0(F ) ≥ 0 is a real number.
If the triangulated category D admits a Bridgeland stability condition σ, the notion of 

mass growth of an endofunctor F , denoted by hσ,t(F ), was defined in [12] and studied in 
[29], as a comparable invariant of categorical entropy. Mass growth is the categorical ana-
logue of the volume growth for classical dynamical systems equipped with a Riemannian 
metric, see Yomdin [48]. We develop in Section 3 the basic theory of polynomial mass 
growth for a categorical dynamical system endowed with a stability condition (D, F, σ), 
in a parallel way to the theory of categorical polynomial entropy. The polynomial mass 
growth rate is invariant under deformation of the stability condition inside the stability 
manifold (Lemma 3.5).
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Let us put those invariants into perspective, with the new ones colored in blue:
Topological system

(X,f : X→X)
Categorical system

(D,F : D→D)
Entropy htop(f) ht(F )

Polynomial entropy hpol(f) hpol
t (F )

Volume/mass growth lov(f) hσ,t(F )
Polynomial volume/mass growth povol(f) hpol

σ,t (F )

1.3. Gromov–Yomdin-type results

As a justification of our definition, when the categorical dynamical system comes from 
a classical one, namely,

(D = Db(X), F = Lf∗)

for a surjective endomorphism f of a smooth projective variety X defined over an alge-
braically closed field, it turns out that the categorical polynomial entropy behaves better 
than the (topological) polynomial entropy, in view of Theorem 1.1. More precisely, in 
Theorem 5.8, we show that the categorical polynomial entropy of Lf∗ can be computed 
using polynomial dynamical degrees (Definition 5.1), and is equal to the polynomial 
growth rate, in the generalized sense of Definition 4.1, of the induced action on the nu-
merical Grothendieck group (or the cohomology in the complex setting) of X. Here in 
the introduction, let us only state the following special case over the complex numbers 
and with the additional assumption that the entropy vanishes.

Theorem 1.2 (see Corollaries 5.9 and 5.11). Let f be a surjective endomorphism of a 
smooth projective complex variety X. Assume that the topological entropy of f is zero. 
Then hpol

t (Lf∗) is a constant function with value

hpol(Lf∗) = lim
n→∞

log ‖(fn)∗‖
log(n) = s(f∗),

where f∗ ∈ End(H∗(X, Z)) is the induced endomorphism on cohomology and s(f∗) + 1
is the maximal size of its Jordan blocks. If moreover Db(X) admits a numerical stability 
condition σ, then hpol

σ,0(Lf∗) is also equal to the above quantities.

One should compare the above theorem to the estimates on the (topological) polyno-
mial entropy of automorphisms of compact Kähler manifold established by Cantat and 
Paris-Romaskevich [9, Theorem 2.1 and Theorem 4.1].

In general, we establish the following Yomdin-type lower bound for the categorical 
polynomial entropy.
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Theorem 1.3 (see Propositions 4.3 and 4.5). Let F : D → D be an endofunctor on a 
triangulated category D, and let N (F ) be the induced endomorphism of the numerical 
Grothendieck group N (D).

(i) If D is saturated, then hcat(F ) ≥ log ρ(N (F )) by [33, Theorem 2.13]. If the equality 
holds (for instance when hcat(F ) = 0), then

hpol(F ) ≥ s(N (F )),

where s(N (F )) is the polynomial growth rate of the linear map N (F ) (cf. Defini-
tion 4.1).

(ii) If D admits a numerical stability condition σ, then hσ,0(F ) ≥ log ρ(N (F )) by [29, 
Theorem 1.2]. If the equality holds (for instance when hσ,0(F ) = 0), then

hpol
σ,0(F ) ≥ s(N (F )).

In Proposition 4.4 and Corollary 4.6, we show that the lower bounds are attained for 
any autoequivalence of the bounded derived category of a hereditary finite dimensional 
C-algebra.

1.4. Categorical trichotomy

The trichotomy for birational automorphisms of projective surfaces is one of the most 
fascinating phenomena in classical (algebraic) dynamical systems, see Cantat [8] and 
Diller–Favre [11]. Recall that given a smooth projective surface X, a birational self-
map f : X ��� X falls into three possibilities: elliptic, parabolic, and loxodromic. More 
precisely, let H be a polarization on X, which allows one to define the algebraic degree 
degH(f), then f is called

• elliptic, if degH(fn) is bounded in n; in this case, f conjugates to a map that is 
virtually isotopic to the identity;

• parabolic, if degH(fn) has polynomial growth in n; in this case, f preserves a fibra-
tion;

• loxodromic, if degH(fn) has exponential growth in n; in this case, f has positive 
entropy and there are strong restrictions to the surface.

We refer to [11] for more details.
By combining the force of categorical entropy and categorical polynomial entropy, we 

are naturally led to study the analogous categorical trichotomy by calling a categorical 
dynamical system (D, F )

• elliptic, if hcat(F ) = hpol(F ) = 0;
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• parabolic, if hcat(F ) = 0, hpol(F ) > 0;
• loxodromic, if hcat(F ) > 0.

We are indeed able to pinpoint some natural examples illustrating this phenomenon. 
The first instance we discover concerns the autoequivalences of derived categories of 
elliptic curves, refining Kikuta’s result [32, Section 3.2]. As before, N (F ) is the induced 
endomorphism on the numerical Grothendieck group, which is 2-dimensional in the curve 
case.

Theorem 1.4 (see Theorem 6.21). Let D be the bounded derived category of a smooth 
projective curve of genus 1 defined over an algebraically closed field, and let F : D → D
be an autoequivalence. Then

(i) hpol(F ) = hcat(F ) = 0 if and only if N (F ) is elliptic (i.e. |tr(N (F ))| < 2) or 
N (F ) = ±id.

(ii) hpol(F ) > 0 and hcat(F ) = 0 if and only if N (F ) is parabolic (i.e. |tr(N (F ))| = 2) 
and N (F ) �= ±id. In this case, hpol(F ) = 1.

(iii) hcat(F ) > 0 if and only if N (F ) is hyperbolic (i.e. |tr(N (F ))| > 2). In this case, 
hpol(F ) = 0.

A second instance of such categorical trichotomy is proved for the 3-Calabi–Yau cate-
gory associated to the A2-quiver, by looking at the group of autoequivalences generated 
by the two natural spherical twists, see Section 6.4 for the precise statement.

1.5. Other examples

There are many examples of autoequivalences of triangulated categories that give nat-
ural non-trivial dynamical systems with zero categorical entropy. Such examples include 
tensoring line bundles on smooth projective varieties, spherical twists along spherical 
objects (analogue of Dehn twists along Lagrangian spheres, via Homological Mirror Sym-
metry) [46], and P -twists along P -objects (analogue of Dehn twists along Lagrangian 
complex projective space) [28]. We show in Section 6 that the categorical polynomial 
entropy provides a non-trivial invariant for these autoequivalences. For example, the 
categorical polynomial entropy of the autoequivalence of tensoring a line bundle in the 
derived category of a smooth projective variety encodes the positivity property of the 
line bundle.

Theorem 1.5 (see Proposition 6.4, Theorem 6.7 and Corollary 6.9). Let L be a line 
bundle on a smooth projective variety X defined over an algebraically closed field. The 
categorical polynomial entropy of the functor − ⊗ L on Db(X) is a constant function 
whose value depends only on the numerical class of L, and satisfies
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ν(L) ≤ hpol(−⊗ L) ≤ dim(X),

where ν(L) := max{m | c1(L)m �≡ 0} is the numerical dimension of L.
Moreover, if L or L−1 is nef, then

hpol(−⊗ L) = ν(L).

We refer to Sections 6.3, 6.4, and 6.5 for results on the categorical polynomial entropy 
of spherical twists and P -twists.

Finally, we observe the following Gromov–Yomdin-type equality in the curve case, 
which is reminiscent of [32].

Theorem 1.6 (See Proposition 6.19 and Theorem 6.21). Let C be a smooth projective 
curve defined over an algebraically closed field. Let F be any autoequivalence of the 
bounded derived category Db(C). Then the categorical polynomial entropy of F is equal 
to the polynomial growth of the induced action on the (2-dimensional) cohomology/nu-
merical Grothendieck group:

hpol(F ) = s(N (F )) ∈ {0, 1}.

Convention: k is a base field. In this paper, all categories, as well as functors between 
them, are assumed to be k-linear. Functors between triangulated categories are always 
assumed to be triangulated (i.e. they preserve distinguished triangles) and not virtually
zero (i.e. no iteration is the zero functor). A triangulated category is called saturated
if it is equivalent to the homotopy category of a triangulated saturated A∞-category; 
or equivalently, it admits a dg-enhancement which is triangulated, smooth and proper. 
Note that the notion of saturatedness here is stronger than that of Bondal–Kapranov 
[4].

Acknowledgment: We would like to thank Serge Cantat, Zhi Jiang, John Lesieutre, Olga 
Paris-Romaskevich, Steffen Sagave, and Junyi Xie for helpful discussions. Lie Fu and 
Genki Ouchi also want to thank the fourth edition of Japanese-European Symposium 
on Symplectic Varieties and Moduli Spaces in Zürich 2019, where the initial ideas of 
this project took form. Lie Fu is supported by the Radboud Excellence Initiative pro-
gram of Radboud University. Genki Ouchi is supported by Interdisciplinary Theoretical 
and Mathematical Sciences Program (iTHEMS) in RIKEN and JSPS KAKENHI Grant 
number 19K14520.

2. Categorical polynomial entropy

In this section, inspired by the categorical formalism from [12] and geometrical con-
siderations from [9], we develop the basic theory of categorical polynomial entropy of an 
endofunctor of a triangulated category, as a secondary invariant of a categorical dynam-
ical system, refining the categorical entropy.
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2.1. Basic notions

Definition 2.1 (Complexity function [12, Definition 2.1]). Let D be a triangulated cat-
egory. Given any two objects M, N ∈ D, we define the following functions in a real 
variable t, which take values in R≥0 ∪ {∞}:

• the complexity function of N with respect to M :

δt(M,N) := inf
{

m∑
k=1

enkt |
0=A0→A1→···→Am=N⊕N ′,

for some N ′∈D,
cone(Ak−1→Ak)�M [nk],∀k∈Z

}
.

By convention, δt(M, N) = 0 if N � 0 and δt(M, N) = ∞ if and only if N is not in 
the thick triangulated subcategory generated by M .

• The Ext-distance function from M to N :

εt(M,N) := δt(k,RHom(M,N)) =
∑
k∈Z

dimk Hom(M,N [k]) · e−kt.

• Their values at t = 0 are of special interest and we denote

δ(M,N) := δ0(M,N); ε(M,N) := ε0(M,N),

which take values in [1, ∞] when N �� 0.

Remark 2.2. We collect some basic properties of the functions in Definition 2.1. See [12, 
Proposition 2.3, Theorem 2.7] for details.

(i) When D is saturated, the complexity function and the Ext-distance function are 
controlled by each other: there exist functions C1, C2 : R → R>0, such that for any 
M, N ∈ D, we have

C1(t)εt(M,N) ≤ δt(M,N) ≤ C2(t)εt(M,N).

(ii) They both satisfy the subadditivity condition: for any distinguished triangle N ′ →
N → N ′′ +1−−→, we have

δt(M,N) ≤ δt(M,N ′) + δt(M,N ′′);

εt(M,N) ≤ εt(M,N ′) + εt(M,N ′′).

(iii) δt satisfies the (multiplicative) triangle inequality:

δt(M1,M3) ≤ δt(M1,M2)δt(M2,M3).
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(iv) δt retracts after applying a functor: for any triangulated functor F : D → D′, we 
have

δt(M,N) ≥ δt(F (M), F (N)).

(v) If D admits a Serre functor S, then by Serre duality,

εt(M,N) = ε−t(N,S(M)).

Using the complexity functions, Dimitrov–Haiden–Katzarkov–Kontsevich [12] defined 
a categorical analogue of the notion of topological entropy, in order to measure the 
complexity of an endofunctor, viewed as a categorical dynamical system. Let us recall 
the definition.

Definition 2.3 (Categorical entropy). Let D be a triangulated category with a given split 
generator2 G. Let F : D → D be a (triangulated, not virtually zero) endofunctor. The 
categorical entropy of F is defined to be the function ht(F ) : R → [−∞, ∞) in the real 
variable t, given by

ht(F ) := lim
n→∞

log δt(G,Fn(G))
n

.

The existence of the limit is proved in [12, Lemma 2.6]. As the notation suggests, ht(F )
is independent of the choice of the generator [12, Lemma 2.6]. We denote

hcat(F ) := h0(F ) ∈ [0,∞).

Inspired by [9], even in the case of “slow” categorical dynamical systems, namely, 
when the categorical entropy vanishes, it is interesting to understand its complexity. To 
this end, we propose the following notion as a secondary invariant, which makes sense 
even when the categorical entropy does not vanish.

Definition 2.4 (Categorical polynomial entropy). In the same setting as in Definition 2.3, 
we define the polynomial entropy of F to be the function hpol

t (F ) in the real variable t
given by

hpol
t (F ) := lim sup

n→∞

log δt(G,Fn(G)) − nht(F )
log(n) ,

where ht(F ) is the categorical entropy of F . It is well-defined for any t ∈ R such that 
ht(F ) �= −∞. In particular, it is well-defined at t = 0 since h0(F ) ≥ 0. We denote 
hpol(F ) := hpol

0 (F ).

2 An object of a triangulated category is called a split generator if the smallest thick triangulated sub-
category containing it is the whole category.
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Remark 2.5 (Lower polynomial entropy). It also makes sense to use lim inf instead of 
lim sup in Definition 2.4. The function thus obtained could be called the lower polynomial 
entropy of F , denoted by hpol

t (F ). We do not know whether hpol
t (F ) and hpol

t (F ) coincide 
in general. In this paper, we will mostly focus on the study of hpol

t .

2.2. Basic properties

We show some basic properties of the categorical polynomial entropy function, in a 
parallel way to the analogous properties of the categorical entropy, as developed in [12], 
[32], [34].

Lemma 2.6. The definition of the categorical polynomial entropy is independent of the 
choice of the split generator. Moreover, for any two split generators G, G′ of D, we have

hpol
t (F ) = lim sup

n→∞

log δt(G,Fn(G′)) − nht(F )
log(n) .

Proof. The proof is similar to [12, Lemma 2.6] by using the triangle inequality and the 
retraction property of δt, recalled in Remark 2.2 (iii), (iv). �

With the saturatedness condition on the category, one can use the Ext-distance func-
tion to compute the categorical polynomial entropy.

Lemma 2.7. Assume that D is saturated. For any split generators G, G′ of D, we have 
that

hpol
t (F ) = lim sup

n→∞

log εt(G,Fn(G′)) − nht(F )
log(n)

Proof. As in [12, Theorem 2.7], one uses Remark 2.2 (i) and Lemma 2.6. �
Lemma 2.8. Notation is as before. Assume that D is saturated and there is a split gen-
erator G of D and an integer M ≥ 0 such that for any |k| ≥ M and any n ≥ 0, we 
have

Extk(G,Fn(G)) = 0,

(for example, when F preserves a bounded t-structure of finite cohomological dimension), 
then hpol

t (F ) is a constant function in t.

Proof. Similarly as in [12, Lemma 2.11], the vanishing hypothesis implies that

| log εt(G,Fn(G)) − log ε0(G,Fn(G))| ≤ M |t|.
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As the categorical entropy function ht(F ) is constant in t ([12, Lemma 2.11]), we obtain 
that

|(log εt(G,Fn(G)) − nht(F )) − (log ε0(G,Fn(G)) − nh0(F ))| ≤ M |t|.

We can conclude by dividing by log(n) and taking limit. �
Lemma 2.9 (Commutation and conjugation). Let D be a triangulated category and F1, 
F2 two endo-functors of D. Then hpol

t (F1F2) = hpol
t (F2F1).

In particular, if F1 is an autoequivalence, then hpol
t (F1F2F

−1
1 ) = hpol

t (F2).

Proof. As shown in [32, Lemma 2.8], ht(F1F2) = ht(F2F1) and for any split generator G,

δt(G, (F1F2)n(G)) ≤ δt(G,F1(G))δt(G,F2(G))δt(G, (F2F1)n−1(G)).

Hence

hpol
t (F1F2)

= lim sup
n→∞

log δt(G, (F1F2)n(G)) − nht(F1F2)
log(n)

≤ lim sup
n→∞

log δt(G,F1(G)) + log δt(G,F2(G)) + log δt(G, (F2F1)n−1(G)) − nht(F2F1)
log(n− 1)

= hpol
t (F2F1).

We get an equality by symmetry. The invariance by conjugation follows:

hpol
t (F1F2F

−1
1 ) = hpol

t (F2F
−1
1 F1) = hpol

t (F2). �
Lemma 2.10 (Powers). Notation is as before. For any positive integer m, we have

hpol
t (Fm) ≤ hpol

t (F ).

Similarly, hpol
t (Fm) ≥ hpol

t (F ). In particular, if the lim sup in the definition of hpol
t (F )

is an actual limit, then we have equalities.

Proof. By definition,

hpol
t (Fm) = lim sup

n→∞

log δt(G,Fmn(G)) − nht(Fm)
log(n) .

Using the fact that ht(Fm) = mht(F ), the right-hand side is nothing else but

lim sup log δt(G,Fmn(G)) −mnht(F )
,

n→∞ log(nm)
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which is less than or equal to hpol
t (F ). The proof for the lower polynomial entropy is 

similar. �
Lemma 2.11 (Inverse). Let D be a saturated triangulated category admitting a Serre 
functor. Then for any autoequivalence F of D, we have

ht(F−1) = h−t(F ); hpol
t (F−1) = hpol

−t (F ).

In particular, hcat(F−1) = hcat(F ) and hpol(F−1) = hpol(F ).

Proof. Let G be a split generator and S the Serre functor. Then for any n > 0,

εt(G,F−n(G)) = εt(Fn(G), G) = ε−t(G,Fn(S(G))),

where the second equality follows from Remark 2.2 (v) and the fact that all autoequiva-
lences commute with the Serre functor. As S(G) is also a split generator of D, we obtain 
that

ht(F−1) = lim
n→∞

log εt(G,F−n(G))
n

= lim
n→∞

log ε−t(G,Fn(S(G)))
n

= h−t(F ).

Consequently, combined with Lemma 2.7,

hpol
t (F−1) = lim sup

n→∞

log εt(G,F−n(G)) − nht(F−1)
log(n)

= lim sup
n→∞

log ε−t(G,Fn(S(G))) − nh−t(F )
log(n) = hpol

−t (F ). �
The following observation will be used in Section 6.2 when we study the categorical 

polynomial entropy of tensoring a line bundle.

Lemma 2.12 (Composition of commuting functors). Let D be a saturated triangulated 
category admitting a Serre functor. Let F1 be an autoequivalence and F2 an endofunctor. 
Assume that F1F2 = F2F1.

(i) If ht(F1) is an odd function in t, then

ht(F1F2) = ht(F1) + ht(F2).

In this case,

hpol
t (F1F2) ≤ hpol

t (F1) + hpol
t (F2).

The equality holds if hpol
t (F1) is an odd function.
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(ii) If hcat(F1) = 0, then

hcat(F1F2) = hcat(F2).

In this case,

hpol(F1F2) ≤ hpol(F1) + hpol(F2).

If moreover hpol(F1) = 0, then hpol(F1F2) = hpol(F2).

Proof. We only show (i), as the proof of (ii) is similar. By Remark 2.2 (iii) and (iv), for 
any split generator G, we have

δt(G, (F1F2)n(G)) ≤ δt(G,Fn
1 (G))δt(G,Fn

2 (G)).

Then it is easy to see that ht(F1F2) ≤ ht(F1) + ht(F2) ([12, Section 2.2]). Since F1F2
and F−1

1 also commute, we have

ht(F2) ≤ ht(F1F2) + ht(F−1
1 ) = ht(F1F2) + h−t(F1),

where the last equality follows from Lemma 2.11. Hence

ht(F2) − h−t(F1) ≤ ht(F1F2) ≤ ht(F1) + ht(F2).

When ht(F1) is an odd function, we get the claimed equality. In this case,

hpol
t (F1F2) = lim sup

n→∞

log δt(G, (F1F2)n(G)) − nht(F1F2)
log(n)

≤ lim sup
n→∞

log δt(G,Fn
1 (G)) + log δt(G,Fn

2 (G)) − nht(F1) − nht(F2)
log(n)

≤ lim sup
n→∞

log δt(G,Fn
1 (G)) − nht(F1)
log(n) + lim sup

n→∞

log δt(G,Fn
2 (G)) − nht(F2)
log(n)

= hpol
t (F1) + hpol

t (F2).

Using again the fact that F1F2 commutes with F−1
1 and ht(F−1

1 ) = h−t(F1), we get

hpol
t (F2) ≤ hpol

t (F−1
1 ) + hpol

t (F1F2) = hpol
−t (F1) + hpol

t (F1F2),

where the last equality uses Lemma 2.11. Therefore,

hpol
t (F2) − hpol

−t (F1) ≤ hpol
t (F1F2) ≤ hpol

t (F1) + hpol
t (F2).

This gives the claimed equality when hpol
t (F1) is an odd function. �
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3. Polynomial mass growth rate

As is proposed and sketched in [12, Section 4.5] and worked out in detail in [29], when 
the triangulated category D admits a Bridgeland stability condition, one can measure 
the complexity of an endofunctor on D by the so-called (exponential) growth rate of 
mass. We study in this section the polynomial analogue of mass growth and compare it 
to the categorical polynomial entropy. Let us first recall some basic notions.

Let D be a triangulated category and σ = (Z, A) be a stability condition in the sense 
of Bridgeland [5], where Z : K0(D) → Γ → C is a homomorphism3 called the central 
charge, and A is the heart of a bounded t-structure on D. Then for any non-zero object 
E, its mass function with respect to σ is defined as the following real function in t:

mσ,t(E) :=
∑
k

|Z(Ak)|eφ(Ak)t,

where Ak are the σ-semistable factors of E and φ is the phase function. Denote mσ :=
mσ,0. The space of stability conditions is denoted by Stab(D) (or more precisely StabΓ(D)
if one want to specify the choice of Γ), which is naturally a complex manifold of dimension 
rk(Γ), by [5].

Remark 3.1. We collect some fundamental properties of the mass function, due to [12]
and [29].

(i) (Triangle inequality). For any distinguished triangle E′ → E → E′′ +1−−→, we have

mσ,t(E) ≤ mσ,t(E′) + mσ,t(E′′).

(ii) For any non-zero objects E, E′, mσ,t(E) ≤ mσ,t(E′)δt(E′, E), where δt is the com-
plexity function in Definition 2.1.

(iii) If the distance (defined in [5]) between two stability conditions σ, τ is finite, then 
there exist two functions C1(t), C2(t) : R → R>0, such that for any non-zero object 
E, we have

C1(t)mτ,t(E) < mσ,t(E) < C2(t)mτ,t(E).

Recall also the definition of the mass growth in [12, Section 4.5].

Definition 3.2 (Mass growth). Let D be a triangulated category endowed with a stability 
condition σ. Let G be a split generator of D, then the mass growth function of an 
endofunctor F is defined as

3 We always assume that Z factors through some finite-rank free abelian group Γ, which is often taken to 
be the numerical Grothendieck group N (D) in this paper, and that σ satisfies the support property of [35].
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hσ,t(F ) := lim sup
n→∞

logmσ,t(Fn(G))
n

.

It is shown in [29, Theorem 3.5] that the definition is independent of the choice of the 
split generator, and

hσ,t(F ) = sup
0�=E∈D

{
lim sup
n→∞

logmσ,t(Fn(E))
n

}
.

Moreover, it depends only on the connected component of Stab(D) in which σ lies [29, 
Proposition 3.10]. We denote hσ(F ) := hσ,0(F ), the value at t = 0.

We propose the following notion as a secondary measurement of the mass growth, 
similarly to Definition 2.4.

Definition 3.3 (Polynomial mass growth). In the same setting as in Definition 3.2, the 
polynomial mass growth function of F is defined to be

hpol
σ,t (F ) := lim sup

n→∞

logmσ,t(Fn(G)) − nhσ,t(F )
log(n) ,

where hσ,t(F ) is the mass growth of F . Let hpol
σ (F ) := hpol

σ,0(F ).

Lemma 3.4. The definition of hpol
σ,t (F ) is independent of the choice of the split generator 

G. Moreover,

hpol
σ,t (F ) = sup

0�=E∈D

{
lim sup
n→∞

logmσ,t(Fn(E)) − nhσ,t(F )
log(n)

}
.

Proof. The proof is the same as in [29, Theorem 3.5(1)], by using Remark 3.1 (ii). �
Lemma 3.5 (Deforming stability conditions). The function hpol

σ,t (F ) only depends on the 
connected component of Stab(D) in which σ lies.

Proof. Similarly as in [29, Proposition 3.10], it is a direct consequence of Remark 3.1
(iii). �

Given an endofunctor, to relate its mass growth to its entropy, Ikeda [29, Theorem 
3.5 (2)] showed that hσ,t(F ) ≤ ht(F ). The following is its polynomial counterpart.

Lemma 3.6 (Comparison with polynomial entropy). For any real number t, if hσ,t(F ) =
ht(F ), then

hpol
σ,t (F ) ≤ hpol

t (F ).
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Proof. Fix a split generator G. Remark 3.1(ii) implies that

mσ,t(Fn(G)) ≤ mσ,t(G)δt(G,Fn(G)).

Hence

logmσ,t(Fn(G)) − nhσ,t(F ) ≤ logmσ,t(G) + log δt(G,Fn(G)) − nht(F ).

One can conclude by dividing by log(n) and taking limit. �
Recall that a stability condition σ = (Z, A) is called algebraic if the corresponding 

heart A is a finite length abelian category with finitely many isomorphism classes of sim-
ple objects. Examples of triangulated categories admitting algebraic stability conditions 
include derived categories with full strong exceptional collection, derived categories of 
(homologically) finite-dimensional dg-modules over a connective dg-algebra of finite type 
etc.

Lemma 3.7 (Algebraic stability conditions). If a connected component Stab◦(D) ⊂
Stab(D) contains an algebraic stability condition, then for any σ ∈ Stab◦(D), we have

hpol
σ,t (F ) = hpol

t (F ).

Proof. The proof is similar to [29, Theorem 3.14]. Ikeda proved hσ,t(F ) = ht(F ) by 
showing more strongly that there exists a special algebraic stability condition σ0 in the 
same connected component of the stability manifold, such that

e
t
2 δt(G,Fn(G)) ≤ mσ0,t(Fn(G)) ≤ mσ0,t(G)δt(G,Fn(G)),

which allows us to deduce that hpol
σ0,t(F ) = hpol

t (F ). One concludes by Lemma 3.5. �
4. Yomdin-type estimates

In the spirit of Gromov–Yomdin’s Theorem 1.1, given an endofunctor of a triangulated 
category, we want to understand its polynomial entropy and its polynomial mass growth 
rate, which are of categorical nature, in terms of some cohomological data, which is 
essentially a matter of linear algebra.

4.1. Polynomial growth rate in linear algebra

Let us recall some linear algebra facts here. Given a square complex matrix M , let 
ρ(M) denote the spectral radius of M , namely, the maximal absolute value of the eigen-
values of M . If M is a virtually unipotent4 matrix (so ρ(M) = 1), then the growth 

4 A matrix is called virtually unipotent, or quasi-unipotent, if a positive power of the matrix is unipotent.
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of ‖Mn‖ is asymptotically ns(M), where s(M) + 1 is the size of the maximal Jordan 
block of M ; the integer s(M) is called the polynomial growth rate of M in this case. 
If ρ(M) > 1, then the growth of ‖Mn‖, when n → ∞, is asymptotically ρ(M)nns(M), 
where s(M) + 1 is the size of maximal Jordan blocks with eigenvalues having maximal 
modulus; we feel that it is meaningful to call s(M) the polynomial growth rate of M . To 
make this idea precise, we propose the following definition, which generalizes the notion 
of polynomial growth rate used in [9, Section 2], by normalizing the exponential growth 
rate determined by the spectral radius.

Definition 4.1 (Polynomial growth rate). Let φ be an endomorphism of a finite-
dimensional vector space endowed with some norm ‖ −‖. The polynomial growth rate of 
φ is defined to be

s(φ) := lim
n→∞

log ‖φn‖ − n log(ρ(φ))
log(n) .

As all norms on the space of matrices are equivalent, s(φ) is independent of the choice 
of the norm.

Let us record the following basic result.

Lemma 4.2. Notation is as before. The limit in Definition 4.1 exists, and it is precisely 
one less than the maximal size of the Jordan blocks whose eigenvalues are of maximal 
absolute value ρ(φ). In particular, s(φ) is a natural number.

Proof. Let φ
ρ(φ) = D + N be the Jordan decomposition, where D is semisimple, N is 

nilpotent and ND = DN . Then the eigenvalues of D are of modulus ≤ 1. Let s + 1 be 
the maximal size of the Jordan blocks of φ

ρ(φ) whose eigenvalues are of maximal modulus 
1. We have

φn

ρ(φ)n =
∑
j<s

(
n

j

)
Dn−jN j +

(
n

s

)
Dn−sNs +

∑
j>s

(
n

j

)
Dn−jN j ,

where, on the right-hand side, the norm of the first term has growth at most O(ns−1), 
the norm of the second term has growth equivalent to ns, and the third term tends to 
zero, when n → ∞. Therefore, 

∥∥∥ φn

ρ(φ)n

∥∥∥ has growth equivalent to ns. �
4.2. Lower bound for categorical polynomial entropy

Given a saturated triangulated category D, its numerical Grothendieck group, denoted 
by N (D), is by definition the quotient of the Grothendieck group K0(D) by the radical 
of the Euler pairing χ(E, E′) :=

∑
k∈Z(−1)k dim Hom(E, E′[k]).

We establish the following Yomdin-type lower bound for the categorical polynomial 
entropy in terms of the induced action on the numerical Grothendieck group. In passing, 
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we provide an alternative proof for the lower-bound of the categorical entropy previously 
obtained by [33, Theorem 2.13].

Proposition 4.3 (Yomdin-type lower bound). Let D be a saturated triangulated category 
with a split generator G. Let F be an endofunctor of D. Denote by N (F ) the induced 
endomorphism of the numerical Grothendieck group N (D). Then we have ([33])

hcat(F ) ≥ log ρ(N (F )).

If the equality holds (for example when hcat(F ) = 0), then

hpol(F ) ≥ s(N (F )),

where s is the polynomial growth rate.

Proof. For ease of notation, denote f := N (F ) ∈ End(N (D)). Let λ be an eigenvalue 
of f with |λ| = ρ(f) such that its characteristic space ker(f − λ id)∞ has a maximal 
Jordan block, whose size is denoted s + 1 (s ≥ 0). Let v ∈ N (D)C be a vector such that 
{v = v0, v1, . . . , vs} is a basis of such a maximal Jordan block, where vk := (f − λ id)kv
for k = 0, . . . , s.

Take objects M1, . . . , Mm in D such that their classes in N (D) form a basis. We define 
the following norm on N (D)C:

‖w‖ :=
m∑
i=1

|χC([Mi], w)|

for any w ∈ N (D)C, where χC is the linear extension of the Euler pairing χ.
Write v =

∑m
i=1 ai[Mi] with ai ∈ C. Choose positive integers li > |ai| for all i =

1, . . . , m. Consider the object E =
⊕m

i=1 M
⊕li
i . We have for any n > 0,

ε

(
G⊕

m⊕
i=1

Mi, F
n(G⊕E)

)
≥ ε

(
m⊕
i=1

Mi, F
n(E)

)

=
m∑
i=1

m∑
j=1

ljε(Mi, F
n(Mj))

≥
m∑
i=1

m∑
j=1

|aj |ε(Mi, F
n(Mj))

≥
m∑
i=1

m∑
j=1

|aj | · |χ(Mi, F
n(Mj))|

=
m∑

|aj | · ‖Fn(Mj)‖

j=1
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≥ ‖fn(v)‖

= ‖λnv0 +
(
n

1

)
λn−1v1 + · · · +

(
n

s

)
λn−svs‖.

Since G ⊕
⊕m

i=1 Mi and G ⊕E are split generators, we obtain

hcat(F ) = lim
n→∞

log ε (G⊕
⊕m

i=1 Mi, F
n(G⊕E))

n

≥ lim
n→∞

log ‖λnv0 +
(
n
1
)
λn−1v1 + · · · +

(
n
s

)
λn−svs‖

n

= log |λ|

= log ρ(N (F )).

This recovers [33, Theorem 2.13].
Now if hcat(F ) = log |λ|, by Lemma 2.7, we have

hpol(F ) = lim sup
n→∞

log ε (G⊕
⊕m

i=1 Mi, F
n(G⊕ E)) − nhcat(F )

log(n)

≥ lim sup
n→∞

log ‖λnv0 +
(
n
1
)
λn−1v1 + · · · +

(
n
s

)
λn−svs‖ − n log |λ|

log(n)

= s

= s(N (F )). �
In general, the inequality in Proposition 4.3 can be strict, see Example 6.8. We give 

here an example where the previously established lower bound is achieved. More examples 
will be presented in Section 6. Recall that an associative algebra is called hereditary if 
its has global dimension at most 1. Important examples of hereditary algebras include 
semisimple algebras, path algebras of finite quivers without oriented cycles etc.

Proposition 4.4 (Hereditary algebras). Let A be a hereditary finite dimensional (not nec-
essarily commutative) C-algebra. Then for any autoequivalence F of Db(A), we have 
hpol(F ) = s(N (F )).

Proof. There are projective A-modules P1, · · ·, Pd such that 〈P1, · · ·, Pd〉 is a full strong 
exceptional collection of Db(A). Let vi := [Pi] ∈ N (A) for 1 ≤ i ≤ d. Then v1, · · ·, vd is a 
basis of the numerical Grothendieck group N (A) of Db(A). Consider the following norm 
on N (A)R:

‖w‖ :=
d∑

|χR(vi, w)|.

i=1



Y.-W. Fan et al. / Advances in Mathematics 383 (2021) 107655 21
Since A is hereditary, an indecomposable object of Db(A) is isomorphic to a shift of an 
indecomposable A-module. Note that Fn(Pi) is indecomposable for all n ≥ 1. Therefore, 
we have

ε(Pi, F
n(Pj)) = |χ(Pi, F

n(Pj))|

for 1 ≤ i, j ≤ d. By [33, Proposition 2.14],

hcat(F ) = log ρ(N (F )).

Let M := max{‖vi‖ | 1 ≤ i ≤ d}. Note that

‖N (F )nv‖ ≤ ‖N (F )n‖ · ‖v‖

for any v ∈ N (A). Therefore, we have

hpol(F ) = lim sup
n→∞

log ε(
⊕d

i=1 Pi, F
n(
⊕d

j=1 Pj)) − n log ρ(N (F ))
log(n)

= lim sup
n→∞

log
∑d

i,j=1 ε(Pi, F
n(Pj)) − n log ρ(N (F ))
log(n)

= lim sup
n→∞

log
∑m

i,j=1 |χR(vi,N (F )nvj)| − n log ρ(N (F ))
log(n)

= lim sup
n→∞

log
∑d

j=1 ‖N (F )nvj‖ − n log ρ(N (F ))
log(n)

≤ lim sup
n→∞

log ‖N (F )n‖ + log d + logM − n log ρ(N (F ))
log(n)

= lim sup
n→∞

log ‖N (F )n‖ − n log ρ(N (F ))
log(n)

= s(N (F )).

One can deduce the desired equality by combining it with Proposition 4.3. �
4.3. Lower bound for polynomial mass growth

We establish the analogue of Proposition 4.3 for the polynomial mass growth rate (see 
Section 3) in the presence of Bridgeland stability conditions.

Proposition 4.5 (Yomdin-type lower bound). Let D be a triangulated category with a split 
generator G. Assume D admits a stability condition σ that factors through N (D), the 
numerical Grothendieck group of D. Let F be an endofunctor of D. Denote N (F ) the 
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induced endomorphism on N (D). If we have hσ(F ) = log ρ(N (F )) (for example when 
hσ(F ) = 0), then

hpol
σ (F ) ≥ s(N (F )),

where s is the polynomial growth rate.
More generally, if the central charge of the stability condition σ factors through 
cl : K0(D) → Γ for some lattice Γ, and suppose that the homomorphism cl is surjec-
tive and its kernel is preserved by F . Then we have hpol

σ (F ) ≥ s(Γ(F )) provided that 
hσ(F ) = ρ(Γ(F )), where Γ(F ) is the induced endomorphism on Γ.

Proof. We only prove the case where the central charge Z factors through N (D), the 
general case is similar. We proceed as in the proof of Proposition 4.3. Keeping the same 
notation there and using the fact that mσ(−) ≥ |Z(−)|, we have that for any n > 0,

mσ(Fn(G⊕ E)) ≥ mσ(Fn(E))

=
m∑
j=1

ljmσ(Fn(Mj))

≥
m∑
j=1

|aj |mσ(Fn(Mj))

≥
m∑
j=1

|aj | · |Z(Fn(Mj))|

=
m∑
j=1

|aj | · |Z(fn([Mj ]))|

≥ |Z(fn(v))|

=
∣∣∣∣Z

(
λnv0 +

(
n

1

)
λn−1v1 + · · · +

(
n

s

)
λn−svs

)∣∣∣∣ .
If hσ(F ) = log |λ|, assume moreover that Z(vs) �= 0, since G ⊕E is a split generator, we 
have the following, by Lemma 2.7,

hpol
σ (F ) = lim sup

n→∞

logmσ(Fn(G⊕E)) − nhσ(F )
log(n)

≥ lim sup
n→∞

log
∣∣Z (

λnv0 +
(
n
1
)
λn−1v1 + · · · +

(
n
s

)
λn−svs

)∣∣− n log |λ|
log(n)

= s

= s(N (F )).
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The condition Z(vs) �= 0 can always be achieved by deforming the stability condition σ
(note that dim Stab(D) = dimN (F )), and this does not affect hσ(F ) or hpol

σ (F ), thanks 
to Lemma 3.5. �
Corollary 4.6. In the situation of Proposition 4.4, if moreover D admits a numerical 
stability condition σ, then we have

hpol
σ (F ) = s(N (F )).

Proof. By [33, Proposition 2.14] and [29, Theorem 1.2], we have that

hcat(F ) = hσ(F ) = log ρ(N (F )).

Therefore, Lemma 3.6 and Proposition 4.5 imply that

hpol(F ) ≥ hpol
σ (F ) ≥ s(N (F )).

Then Proposition 4.4 allows us to conclude the proof. �
5. Classical dynamical systems: a categorical retake

In this section, we make a connection of the categorical theory developed so far to the 
classical setting. Let k be an algebraically closed field and let X be a smooth projective 
k-variety endowed with a surjective (regular) endomorphism f : X → X. Note that f
is automatically finite and flat. There has been extensive study of the complexity of 
the system (X, f) by topological, geometric, algebraic, analytic and even probabilistic 
approaches. We employ here a categorical method (as in [12], [34]) by looking at the 
naturally associated categorical dynamical system (Db(X), Lf∗).

5.1. Dynamical degrees

We recall some basic properties of a series of fundamental invariants, called dynamical 
degrees, of an algebraic/complex dynamical system. The material here is well-established 
in the literature. We are in the following more broad setting:

• f is a dominant rational self-map of a normal projective variety X defined over k, or
• when k = C, f is a dominant meromorphic self-map of a compact Kähler manifold X.

Let f : X ��� X be as above. Denote by d the dimension of X. For any integer 
0 ≤ p ≤ d, the p-th dynamical degree of f , denoted by dp(f), is by definition

dp(f) := lim
n→∞

⎛
⎝∫

(fn)∗ωp ∧ ωd−p

⎞
⎠

1
n

,

X
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where ω is the first Chern class of an ample line bundle (or a Kähler class in the compact 
Kähler setting). The definition is independent of the choice of ω and it is invariant under 
birational conjugation. The existence of the limit is due to Dinh–Sibony [16,14] when 
k = C, and to Truong [47] (see Dang [10] for an alternative treatment) when char(k) is 
arbitrary.

Let Np := Np(X) be the group of algebraic cycles of codimension p on X modulo 
numerical equivalence. For a rational self-map g of X, we denote by g∗Np the induced 
endomorphism on Np(X). Thanks to [10, Theorem 2], we have

dp(f) = lim
n→∞

‖(fn)∗Np‖ 1
n ,

which is equal to ρ(f∗
Np) when f is regular, where ρ denotes the spectral radius.

Similarly, in the compact Kähler setting, we have

dp(f) = lim
n→∞

‖(fn)∗Hp,p‖ 1
n ,

which is equal to ρ(f∗
Hp,p) when f is holomorphic (or more generally, algebraically stable), 

where Hp,p is the (p, p)-part in the Hodge decomposition of H2p(X, C).
By the Teisser–Khovanskii inequality (see [24]), the sequence {dp(f)}dp=0 is log-concave 

([14,47,10]). When k = C, a celebrated theorem of Gromov–Yomdin [25,48] (cf. Theo-
rem 1.1) says that when f is holomorphic (and surjective), the topological entropy can 
be computed from the dynamical degrees as well as the action on cohomology:

htop(f) = max
0≤p≤d

log(dp(f)) = log lim
n→∞

‖(fn)∗H∗‖ 1
n = log ρ(f∗

H∗).

As a consequence, f has positive topological entropy if and only if d1(f) > 1.

5.2. Polynomial dynamical degrees

Keep the same setting as in Section 5.1. Consider f : X ��� X as before. In the Kähler 
situation, under the hypothesis that the topological entropy of f is zero, Lo Bianco 
[40, Section 1.3] initiated the study of the so-called polynomial dynamical degrees, the 
polynomial counterpart of dynamical degrees discussed in Section 5.1, for holomorphic 
endomorphisms, which was later extended by Cantat–Paris-Romaskevich [9, Section 3]
to meromorphic self-maps.

Using the idea of normalizing the exponential growth as in Definition 4.1, we gener-
alize this notion of polynomial dynamical degrees to rational/meromorphic self-maps of 
arbitrary entropy over arbitrary algebraically closed base field k:

Definition 5.1 (Polynomial dynamical degree). Let f : X ��� X be as above. For any 
integer 0 ≤ p ≤ d, the p-th polynomial dynamical degree, denoted by sp(f), is by definition
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sp(f) := lim sup
n→∞

log(
∫
X

(fn)∗ωp ∧ ωd−p) − n log dp(f)
log(n) ,

where ω is the first Chern class of an ample line bundle (or a Kähler class when k = C) 
and dp(f) is the p-th dynamical degree of f . We will see shortly in Proposition 5.3 that 
if f is regular/holomorphic, then the lim sup is actually a limit, and takes values in N, 
the set of non-negative integers.

Remark 5.2. By [10, Theorem 1 (ii)], the definition is independent of the choice of ω, 
and it is invariant under birational conjugation. Thanks to [10, Theorem 2], for any 
0 ≤ p ≤ d, we have

sp(f) = lim sup
n→∞

log ‖(fn)∗Np‖ − n log dp(f)
log(n) ,

where Np := Np(X) is the group of codimension-p cycles modulo numerical equivalence. 
Similarly, in the compact Kähler setting,

sp(f) = lim sup
n→∞

log ‖(fn)∗Hp,p‖ − n log dp(f)
log(n) .

We do not know whether the lim sup is a limit in general.

Recall the notion of polynomial growth rate in linear algebra in Definition 4.1.

Proposition 5.3. Notation is as above. If f is moreover regular, then for any 0 ≤ p ≤ d, 
the lim sup in Definition 5.1 is a limit, and

sp(f) = s(f∗
Np) = lim

n→∞
log ‖(fn)∗Np‖ − n log dp(f)

log(n) ∈ N.

Similarly, in the compact Kähler setting, if f is moreover holomorphic, then

sp(f) = s(f∗
Hp,p) = lim

n→∞
log ‖(fn)∗Hp,p‖ − n log dp(f)

log(n) ∈ N.

Proof. By [10, Theorem 2], | log(
∫
X

(fn)∗ωp∧ωd−p) − log ‖(fn)∗Np‖| is bounded by some 
universal constant depending only on X. Since the sequence

log ‖(fn)∗Np‖ − n log dp(f)
log(n) = log ‖(f∗

Np)n‖ − n log ρ(f∗
Np)

log(n)

is convergent to a natural number by Lemma 4.2, the sequence in Definition 5.1 is also 
convergent with the same limit. �

In the sequel when discussing the concavity properties, we have to stay in the following 
more restrictive setting:



26 Y.-W. Fan et al. / Advances in Mathematics 383 (2021) 107655
• f is a surjective (regular) endomorphism of a smooth projective variety X defined 
over k, or

• f is a surjective holomorphic endomorphism of a compact Kähler manifold X.

Thanks to the log-concavity of the sequence {dp(f)}, there exist integers 0 ≤ p0 ≤
p1 ≤ d, such that d0 < · · · < dp0−1 < dp0 = · · · = dp1 > dp1+1 > . . . . The following 
results extend Lo Bianco’s observation [40, Proposition 1.3.9].

Lemma 5.4 (Concavity). Let f : X → X be as above. The sequence {sp(f)}p1
p=p0

is con-
cave.

Proof. Let λ = dp0(f) = · · · = dp1(f). By the Teisser–Khovanskii inequality ([24]), for 
any n > 0,

p �→ log(
∫
X

(fn)∗ωp ∧ ωd−p) − n log dp(f) = log(
∫
X

(fn)∗ωp ∧ ωd−p) − n log λ

is a concave sequence for p0 ≤ p ≤ p1. One concludes by dividing by log(n) and taking 
limit. Note that the argument does not apply to the more general case where f is only 
assumed to be rational/meromorphic, as lim sup does not preserve the concavity. �
Proposition 5.5. Notation is as before (in particular, f is regular). Let N∗ :=

⊕
p N

p(X). 
We have

s(f∗
N∗) = max

p0≤p≤p1
sp(f).

Similarly, in the compact Kähler setting,

s(f∗
H∗) = max

p0≤p≤p1
sp(f).

Proof. Let λ = maxp dp(f). The case for N∗ is almost immediate:

s(f∗
N∗) = lim

n→∞
log ‖(f∗

N∗)n‖ − n log λ
logn = lim

n→∞

log ‖(f∗
⊕p0≤p≤p1N

p)n‖ − n log λ
logn

= max
p0≤p≤p1

s(f∗
Np) = max

p0≤p≤p1
sp(f).

In the compact Kähler situation, we need to show in addition that for any 0 ≤ i, j ≤
d, if ρ(f∗

Hi,j ) = λ, then s(f∗
Hi,j ) ≤ maxp0≤p≤p1 sp(f). Given such a couple (i, j) with 

ρ(f∗
Hi,j ) = λ, as it is shown in [13, Proposition 5.8] that ρ(f∗

Hi,j ) ≤
√
di(f)dj(f), we 

must have that p0 ≤ i, j ≤ p1. Let (f, f) be the endomorphism of X × X sending 
(x, x′) to (f(x), f(x′)), then it is easy to see (cf. [13, Proposition 5.8]) that there exists 
a constant C > 0 such that for any n > 0,
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‖(fn)∗Hi,j‖2 ≤ C‖(fn, fn)∗Hi+j,i+j‖. (5.1)

Since ρ(f∗
Hi,j ) = λ by assumption, (5.1) implies that

di+j(f, f) ≥ λ2.

Let us show that this is actually an equality and compute the corresponding polynomial 
dynamical degree of (f, f). For any Kähler form ω on X, π∗

1ω + π∗
2ω is a Kähler form 

on X ×X, where π1 and π2 are the natural projections from X ×X to X. Let Ci,j,l :=(
i+j
l

)(2d−i−j
2d−l

)
, then

∫
X×X

(fn, fn)∗(π∗
1ω + π∗

2ω)i+j ∧ (π∗
1ω + π∗

2ω)2d−i−j

=
i+j∑
l=0

Ci,j,l

⎛
⎝∫

X

(fn)∗ωl ∧ ωd−l ·
∫
X

(fn)∗ωi+j−l ∧ ωd+l−i−j

⎞
⎠ ,

where the l-th term has growth in n equivalent to dl(f)nnsl(f)di+j−l(f)nnsi+j−l(f), hence 
the sum has growth equivalent to λ2nns, with

s = max
p0≤l≤p1

p0≤i+j−l≤p1

(sl(f) + si+j−l(f)).

Therefore di+j(f, f) = λ2 and

si+j(f, f) = max
p0≤l≤p1

p0≤i+j−l≤p1

(sl(f) + si+j−l(f)).

By the concavity of the sequence sp0 , . . . , sp1 (Lemma 5.4), if i + j = 2p is even, then 
si+j(f, f) = 2sp(f); if i + j = 2p + 1 is odd, then si+j(f, f) = sp(f) + sp+1(f). In any 
case, si+j(f) ≤ 2 maxp0≤p≤p1 sp(f).

Now use again (5.1), we obtain that

s(f∗
Hi,j ) = lim

n→∞

log ‖(fn)∗Hi,j‖ − n log(λ)
log(n)

≤ lim
n→∞

log(C) + log ‖(fn, fn)∗Hi+j,i+j‖ − n log(λ2)
2 log(n)

= 1
2si+j(f, f)

≤ max sp(f). �

p0≤p≤p1
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5.3. Using derived categories

Let f : X → X be a surjective endomorphism of a smooth projective variety X defined 
over k. Let Db(X) be the bounded derived category of coherent sheaves on X. Let 
Lf∗ : Db(X) → Db(X) be the derived pullback functor. As f is flat, Lf∗ = f∗, but 
we will continue writing Lf∗ in the sequel to remind that it is a functor and to avoid 
confusion with the induced action on cohomology. When k = C, Kikuta–Takahashi [34]
showed that its categorical entropy coincides with the topological entropy of f :

hcat(Lf∗) = htop(f). (5.2)

This result was later extended over any algebraically closed field by Ouchi [45, Theorem 
5.2]. Let us state their results as follows, incorporating also the discussion in Section 5.1
as well as some contribution from Ikeda [29].

Theorem 5.6 (Kikuta–Takahashi, Ouchi). Let f : X → X be a surjective endomorphism 
of a smooth projective variety X defined over an algebraically closed field k. Then ht(Lf∗)
is constant with value

hcat(Lf∗) = max
p

log dp(f) = log ρ(f∗
N∗).

If k = C, they are also equal to log ρ(f∗
H∗) = htop(f).

Moreover, if Db(X) admits a stability condition, then the previous quantities are equal 
to the mass growth rate hσ(Lf∗) for any numerical stability condition σ.

Remark 5.7 (Numerical Chow and numerical Grothendieck). In the above situation, ob-
serve that the Mukai-vector map induces an f∗-equivariant isomorphism between the 
numerical Grothendieck group N (X)Q := N (Db(X))Q and the numerical Chow group 
N∗(X)Q := CH∗(X)/ ≡, both with rational coefficients,

v : N (X)Q
∼=−→ N∗(X)Q.

As a consequence, ρ(N (Lf∗)) = ρ(f∗
N∗) and s(N (Lf∗)) = s(f∗

N∗).

The main result of this section is the following analogy of Theorem 5.6 for the poly-
nomial entropy.

Theorem 5.8. Let f be a surjective endomorphism of a smooth projective variety X de-
fined over an algebraically closed field k. Let Lf∗ : Db(X) → Db(X) be the derived 
pullback functor. Then the categorical polynomial entropy function of Lf∗ is constant 
with value

hpol(Lf∗) = max sp(f) = s(f∗
N∗), (5.3)



Y.-W. Fan et al. / Advances in Mathematics 383 (2021) 107655 29
where the maximum runs over all integers p such that dp(f) attains the maximal dy-
namical degree of f . Here sp(f) denotes the p-th polynomial dynamical degree of f (see 
Section 5.2), and s(f∗

N∗) is the polynomial growth rate of the induced action on the 
numerical Chow group N∗(X) :=

⊕
p N

p(X).

Proof. First of all, the fact that the function hpol
t (Lf∗) is constant follows from 

Lemma 2.8, since Lf∗ = f∗ preserves the standard t-structure on Db(X). Let d be 
the dimension of X. By Fujita’s vanishing theorem ([20], see also [39, 1.4.35]), there 
exists a very ample line bundle L such that

Hi(X,L⊗ L′) = 0,

for all i > 0 and all nef line bundle L′. Take split generators G =
⊕d+1

j=1 L
−j and 

G′ = G∨ =
⊕d+1

j=1 L
j of Db(X) ([44, Theorem 4]). By the choice of L, we have that

Exti(G, (fn)∗(G′)) = Hi(X,G∨ ⊗ (fn)∗(G′)) = 0,

for all n > 0 and all i > 0.
Therefore, we obtain that

ε(G, (Lf∗)n(G′)) = dimH0(X,G∨ ⊗ (f∗)n(G′)) = χ(G, (f∗)n(G′)).

Since χ(−, −) is a non-degenerate bilinear form on N (X), there exists a constant C > 0
such that

χ(G, (f∗)n(G′)) ≤ C · ‖N (Lf∗)n‖.

It yields that

hpol(Lf∗) = lim sup
n→∞

log ε(G, (Lf∗)n(G′)) − nhcat(Lf∗)
log(n)

= lim sup
n→∞

log ε(G, (Lf∗)n(G′)) − nρ(N (Lf∗))
log(n)

≤ lim sup
n→∞

logC + log ‖N (Lf∗)n‖ − nρ(N (Lf∗))
log(n)

= s(N (Lf∗)),

where the first equality uses Lemma 2.7 (note that Db(X) is saturated), and the second 
equality uses Theorem 5.6 (and Remark 5.7).

On the other hand, by Theorem 5.6, the hypothesis in Proposition 4.3 is satisfied. 
Hence we get the Yomdin-type lower bound:

hpol(Lf∗) ≥ s(N (Lf∗)).
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We conclude that this is an equality; hence, hpol(Lf∗) = s(f∗
N∗) by Remark 5.7. The 

remaining assertions follow from Proposition 5.5. �
Combining the previous theorem with our discussion on polynomial dynamical degrees 

in Section 5.2, we deduce the following consequence.

Corollary 5.9 (Complex setting). If f is a surjective holomorphic endomorphism of a 
projective complex manifold X, then the categorical polynomial entropy of Lf∗ is equal 
to the polynomial growth rate of the induced action f∗ on the cohomology H∗(X, Q):

hpol(Lf∗) = s(f∗).

In particular, if the topological entropy of f is zero, then hpol
t (Lf∗) is a constant function 

with value

hpol(Lf∗) = lim
n→∞

log ‖(f∗)n‖
log(n) = s(f∗),

where s(f∗) + 1 is the maximal size of the Jordan blocks of f∗.

Proof. The first part can be easily deduced by combining Proposition 5.5 with Theo-
rem 5.8. Now assuming the vanishing of the topological entropy, the Gromov–Yomdin 
Theorem 1.1 implies that all dynamical degrees are equal to 1 and the spectral radius 
of f∗ on H∗(X) is 1. Thanks to the integral structure on cohomology, all the eigenval-
ues of f∗ are algebraic integers, hence they are roots of unity by Kronecker’s theorem. 
Therefore, f∗ is virtually unipotent and hpol(Lf∗) = s(f∗) has the description by Jordan 
blocks in the statement, thanks to Lemma 4.2. �
Remark 5.10. Corollary 5.9 should be compared with the inequalities in [9, Theorem 2.1 
and Theorem 4.1]. Note that unlike its categorical counterpart, the topological polyno-
mial entropy of an automorphism can indeed be different from the polynomial growth 
rate of the induced action on cohomology. For instance, the automorphism of the pro-
jective line given by [x : y] �→ [x + y : y] has topological polynomial entropy 1, while its 
action on cohomology is trivial.

Corollary 5.11 (Polynomial mass growth). In the same situation as in Theorem 5.8, if 
Db(X) admits a numerical stability condition σ, then

hpol(Lf∗) = hpol
σ (Lf∗) = s(f∗

N∗).

Proof. By the last assertion of Theorem 5.6, one can apply Lemma 3.6 to see that

hpol(Lf∗) ≥ hpol
σ (Lf∗) ≥ s(N (Lf∗)), (5.4)
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where the second inequality is the Yomdin-type estimate in Proposition 4.5. Therefore 
Theorem 5.8 implies that both inequalities in (5.4) are equalities. Finally, one can identify 
s(f∗

N∗) with s(N (Lf∗)) by Remark 5.7. �
6. Examples

We compute in this section the categorical polynomial entropy, as well as the poly-
nomial mass growth rate of some standard functors, in a parallel way to [12, Section 
2]. Recall that when concentrating in the value of entropy functions at t = 0, we write 
δ = δ0, ε = ε0, mσ = mσ,0, hcat = h0, hpol = hpol

0 , hσ = hσ,0, and hpol
σ = hpol

σ,0, etc.

6.1. Shifts

The following lemma shows that cohomological shifts do not affect the polynomial 
entropy.

Lemma 6.1 (Shifts (I): entropy). Let D be a saturated triangulated category and F an 
endofunctor of D. Then for any integer m,

hpol
t (F ◦ [m]) = hpol

t (F ).

In particular, hpol
t ([m]) = 0.

Proof. In [34, Lemma 3.7], it is shown that the categorical entropy of the shift functor 
[m] is ht([m]) = mt and more generally, for any endofunctor F , we have ht(F ◦ [m]) =
ht(F ) + mt.
Now it follows from definition that for any split generator G of D,

εt(G,Fn(G)[mn]) = εt(G,Fn(G)) · emnt.

Therefore, using Lemma 2.7, we see that

hpol
t (F ◦ [m]) = lim sup

n→∞

log(εt(G,Fn(G)) · emnt) − n(ht(F ) + mt)
log(n) = hpol

t (F ). �
Similarly for the mass growth, we have the following result.

Lemma 6.2 (Shifts (II): mass growth). Let D be a triangulated category endowed with a 
stability condition σ. Let F be a endofunctor of D. Then for any integer m,

hσ,t(F ◦ [m]) = hσ,t(F ) + mt; hpol
σ,t (F ◦ [m]) = hpol

σ,t (F ).

In particular, hσ,t([m]) = mt and hpol
σ,t ([m]) = 0.
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Proof. The proof is the same as in Lemma 6.1, by using the fact that mσ,t(E[m]) =
mσ,t(E)emt for any object E and any integer m. �
Remark 6.3 (Serre functor of fractional CY categories). A triangulated category D with 
a Serre functor S is called fractional Calabi–Yau, if there exist integers n > 0 and m
such that Sn ∼= [m]. The rational number mn is called the Calabi–Yau dimension of D. 
In [12, Section 2.6.1], it is shown that if D is saturated, then

ht(S) = m

n
t.

As for the polynomial entropy, we claim that

hpol
t (S) = 0.

Indeed, fixing a split generator G of D, for any t ∈ R and any N > 0, if one writes 
N = nq + r with q = �N

n � and 0 ≤ r < n, then we have

εt(G,SN (G)) = εt(G,Sr(G)[mq]) = εt(G,Sr(G)) · emqt.

Therefore

log εt(G,SN (G)) −N · ht(S) = log εt(G,Sr(G)) − mr

n
t.

To conclude, it suffices to observe that the absolute value of the right-hand side is 
bounded, independently of N , by

max
0≤r≤n−1

{| log εt(G,Sr(G))|} + |mt|.

Similarly, for the mass growth rate, instead of assuming the saturatedness, we suppose 
there exists a stability condition σ on D, then

hσ,t(S) = m

n
t and hpol

σ,t (S) = 0.

As a consequence, for any endofunctor F commuting with S (for example, an autoequiv-
alence), Lemma 2.12 implies that

ht(F ◦ S) = ht(F ) + m

n
t and hpol

t (F ◦ S) = hpol
t (F ).

6.2. Tensoring line bundles

Let the base field k be algebraically closed. Let X be a smooth projective variety 
defined over k and L a line bundle on X. We consider here the autoequivalence of 
tensoring with L on the derived category of X:
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−⊗ L : Db(X) → Db(X).

It is shown in [12] that the categorical entropy function of this functor is the constant 
zero function:

ht(−⊗ L) = hcat(−⊗ L) = 0. (6.1)

We shall study its categorical polynomial entropy, which is indeed a non-trivial and 
meaningful invariant. The first result below estimates the polynomial entropy. Recall 
that the numerical dimension of L is by definition

ν(L) := max{m | c1(L)m �≡ 0},

where ≡ denotes the numerical equivalence relation.

Proposition 6.4. Notation is as before. Let d = dim(X).

(i) The polynomial entropy function hpol
t (− ⊗ L) is constant in t.

(ii) hpol(− ⊗ L) ≤ d.
(iii) hpol(− ⊗ L) ≥ ν(L).

Proof. (i) follows from Lemma 2.8, since − ⊗ L preserves the standard t-structure of 
Db(X).
(ii). By definition and (6.1), the value of this constant function is

hpol(−⊗ L) = lim sup
n→∞

log ε(G,G⊗ L⊗n)
log(n) ,

where G is any split generator. In the sequel, we choose G to be a locally free sheaf on 
X, for example 

⊕d
i=0 OX(i). By definition,

ε(G,G⊗ L⊗n) =
d∑

k=0

dimHk(X,G∨ ⊗G⊗ L⊗n). (6.2)

By [39, Example 1.2.33], for any k, the growth of dimHk(X, G∨ ⊗G ⊗ L⊗n) is at most 
like a polynomial of degree d; hence ε(G, G ⊗L⊗n) = O(nd), and (ii) follows immediately.
(iii). We claim that the polynomial growth of the endomorphism

·[L] : N (X) → N (X)

is the numerical dimension of L, where N (X) := N (Db(X)) is the numerical 
Grothendieck group of X. Indeed, denoting by N∗(X)Q := CH∗(X)Q/≡ the Chow 
group of algebraic cycles modulo numerical equivalence, then the Mukai-vector map
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v: N (X)Q → N∗(X)Q

is an isomorphism of finite-dimensional Q-vector spaces, making the following diagram 
commutative:

N (X)Q
·[L]

v ∼=

N (X)Q

v ∼=

N∗(X)Q
·ec1(L)

N∗(X)Q,

where the bottom arrow is the intersection product with

ec1(L) =
ν(L)∑
k=0

1
k!c1(L)k.

It is then clear that the spectral radius of ·ec1(L) ∈ End(N∗(X)) is 1 and its polynomial 
growth rate is ν(L). The claim is proved. Combined with the Yomdin-type lower bound 
established in Proposition 4.3 (note that hcat(− ⊗L) = 0), we obtain that hpol(− ⊗L) ≥
s(·[L]) = ν(L). �

Now we try to determine precisely the value of the polynomial entropy of the functor 
− ⊗L. It turns out to be quite related to the positivity properties of L. For illustration, 
let us first show the following result on big and nef line bundles.

Lemma 6.5 (Nef and big line bundles). Let L be a nef line bundle on a smooth projective 
variety X. If L is moreover big, then hpol(− ⊗ L) = d.
If L is not big, then hpol(− ⊗ L) ≤ d − 1.

Proof. This is a special case of Theorem 6.7 below, but we prefer to give a direct proof 
here. If L is big and nef, then by [39, Corollary 1.4.41], dimH0(X, G∨⊗G ⊗L⊗n) grows 
exactly as a polynomial of degree d. Hence ε(G, G ⊗L⊗n) grows at least as a polynomial 
of degree d. Therefore hpol(− ⊗L) ≥ d. We can conclude as Proposition 6.4 (ii) provides 
the other inequality.
If L is nef but not big, on one hand, [39, Theorem 1.4.40] implies that the growth of the 
k-th term of (6.2) is at most like a polynomial of degree d − k:

dimHk(X,G∨ ⊗G⊗ L⊗n) = O(nd−k).

On the other hand, the hypothesis implies that (c1(L)d) = 0, then [39, Corollary 1.4.41]
says that the 0-th term of (6.2) also grows at most as a polynomial of degree d − 1. 
As a result, ε(G, G ⊗ L⊗n) grows at most as a polynomial of degree d − 1. Therefore 
hpol(− ⊗ L) ≤ d − 1. �



Y.-W. Fan et al. / Advances in Mathematics 383 (2021) 107655 35
To generalize Lemma 6.5, we first establish the following result on the growth of 
cohomology of powers of nef line bundles, which will be used in the proof of Theorem 6.7. 
It is probably well-known to experts, but as we cannot find a reference, a proof is provided 
for the sake of completeness.

Proposition 6.6. Let X be a smooth projective variety over an algebraically closed field 
k. Let L be a nef line bundle and F be a coherent sheaf on X. Then

dimHk(X,F ⊗ L⊗n) = O(nν(L)),

that is, there exists a constant C > 0 such that for all k ≥ 0 and n ≥ 0, we have

dimHk(X,F ⊗ L⊗n) ≤ Cnν(L),

where ν(L) is the numerical dimension of L.

Proof. The proof is similar to [39, Theorem 1.4.40]. We proceed by induction on the 
dimension of X. By Fujita’s vanishing theorem [20], there is a very ample divisor H such 
that

Hk(X,F ⊗OX(H) ⊗ L⊗n) = 0 (6.3)

for all k > 0 and all n ≥ 0. Up to replacing H by a general member in its linear system, 
we can assume that H is smooth and does not contain any subvariety of X defined by 
associated primes of F . Therefore we have the exact sequence

0 → F ⊗ L⊗n → F ⊗ L⊗n ⊗OX(H) → F ⊗ L⊗n ⊗OX(H) ⊗OH → 0

for any n ≥ 0. Let us look at the corresponding long exact sequence of cohomology 
groups.

For any k > 0, by the vanishing hypothesis (6.3), we have

dimHk(X,F ⊗ L⊗n) ≤ dimHk−1(H,F ⊗ L⊗n ⊗OX(H) ⊗OH),

which is O(nν(L|H)) by the induction hypothesis. As ν(L|H) ≤ ν(L), we conclude that 
dimHk(X, F ⊗ L⊗n) = O(nν(L)).

For k = 0, again by (6.3),

dimH0(X,F ⊗ L⊗n) ≤ dimH0(X,F ⊗ L⊗n ⊗OX(H)) = χ(X,F ⊗ L⊗n ⊗OX(H)).

Thanks to the Hirzebruch–Riemann–Roch formula, χ(X, F ⊗ L⊗n ⊗OX(H)) is a poly-
nomial in n of the form
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d∑
i=0

ni

∫
X

c1(L)iαi,

where αi is some i-dimensional algebraic cycle of X. As c1(L)i ≡ 0 for all i > ν(L), 
the above polynomial is of degree at most ν(L). Therefore we can conclude that 
dimH0(X, F ⊗ L⊗n) = O(nν(L)).

The induction process is complete. �
We are ready to determine the polynomial entropy for tensoring a nef line bundle.

Theorem 6.7 (Nef line bundles). Let L be a line bundle on a smooth projective variety 
X defined over an algebraically closed field k. If L or L−1 is nef, then the polynomial 
entropy of the functor − ⊗ L is equal to the numerical dimension of L:

hpol(−⊗ L) = ν(L).

Proof. We only need to treat the case where L is nef, as the anti-nef case follows from 
the nef case by using Lemma 2.11. Keep the notation in the proof of Proposition 6.4. 
Applying Proposition 6.6 to the case F = G∨⊗G, we obtain that each term on the right-
hand side of (6.2) is O(nν(L)), thus so is ε(G, G ⊗L⊗n). Consequently, hpol(− ⊗L) ≤ ν(L). 
Combined with the lower bound in Proposition 6.4 (iii), we must have an equality. �

The nefness assumption in Theorem 6.7 can not be removed. Let us give a simple 
example of line bundle whose polynomial entropy is strictly bigger than its numerical 
dimension.

Example 6.8. Let S be a smooth projective surface and H be an ample divisor on it. 
Assume that the degree of S is a square, that is, (H2) = m2 for some m ∈ Z>0; for 
example when S = P 2 and H = c1(OP2(1)). Let τ : S′ → S be the blow up of S at a 
point. Let H ′ := τ∗(H) be the pullback of the polarization and E the exceptional divisor. 
We have that (H ′2) = m2, (H ′ ·E) = 0, and (E2) = −1. Consider D := H ′ +mE. Hence 
(D2) = 0 and the numerical dimension of OS′(D) is 1. On the other hand, we claim that 
hpol(− ⊗ OS′(D)) = 2. Indeed, let us fix split generators G =

⊕2
i=0 O(i) and G′ = G∨

where O(1) is a very ample line bundle on S′ (see [44]). Then ε(G′, G ⊗ OS′(nD)) ≥
h0(S′, G ⊗ G ⊗ OS′(nD)) ≥ h0(S′, OS′(nD)⊕9), which has quadratic growth rate in 
n, since D is a big divisor. Hence hpol(− ⊗ OS′(D)) = 2. By taking product of S′

with another variety and pulling back the divisor to the product, one can also produce 
examples where the polynomial entropy is strictly between the numerical dimension and 
the dimension.

Corollary 6.9 (Numerical nature of entropy). Let L be a line bundle on a smooth projec-
tive variety X. The polynomial entropy hpol(− ⊗L) depends only on the numerical class 
of L.
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Proof. For any numerically trivial (in particular nef) line bundle L0, Theorem 6.7 implies 
that hcat(− ⊗L0) = hpol(− ⊗L0) = 0. Applying Lemma 2.12 to the commuting functors 
F1 = − ⊗ L0 and F2 = − ⊗ L, we see that hpol(− ⊗ L ⊗ L0) = hpol(− ⊗ L). �

We can deduce from the above results some information about the mass growth of 
the functor − ⊗ L:

Corollary 6.10. Let L be a line bundle on a smooth projective variety X. Assume that 
Db(X) admits a stability condition σ that factors through the numerical Grothendieck 
group. Then hσ(− ⊗ L) = 0 and

hpol(−⊗ L) ≥ hpol
σ (−⊗ L) ≥ ν(L).

In particular, if L or L−1 is nef, then hpol
σ (− ⊗ L) = ν(L).

Proof. By [29, Theorem 3.5(2) and Proposition 3.11] and the fact that hcat(− ⊗L) = 0, 
we have hσ(− ⊗ L) = 0. Hence the hypothesis of Lemma 3.6 is satisfied for t = 0, and 
we have hpol(− ⊗L) ≥ hpol

σ (− ⊗L). The lower bound hpol
σ (− ⊗L) ≥ ν(L) is actually the 

Yomdin-type inequality established Proposition 4.5, since ν(L) is the polynomial growth 
rate of the endomorphism ·[L] of N (X) by the proof of Proposition 6.4 (iii). The last 
statement follows from Theorem 6.7. �
Remark 6.11 (Serre functor for a variety). Let X be a smooth projective variety. The 
Serre functor of the derived category Db(X) is given by SX = − ⊗ ωX [dim(X)]. Its 
categorical entropy is computed in [12, §2.6.2], namely, ht(SX) = dim(X)t. As for 
its polynomial entropy, we see a close link with the birational geometry of X: using 
Lemma 6.1, Proposition 6.4, and Theorem 6.7, we obtain that hpol

t (SX) is a constant 
function with value

hpol(SX) = hpol(−⊗ ωX),

which is

• between the numerical dimension of ωX and dim(X);
• equal to dim(X) if X is minimal and of general type;
• equal to dim(X) if ω∨

X is nef and big, i.e. X is a weak Fano variety;
• equal to the numerical dimension of ωX if X is a minimal model. Assuming the 

abundance conjecture when char(k) = 0, then it is equal to the Kodaira dimension 
of X.

6.3. Spherical twists (I)

Let D be a saturated triangulated category endowed with a Serre functor S. Recall 
that an object E in D is called d-spherical for some positive integer d, if S(E) ∼= E [d] and 
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dim HomD(E , E [∗]) = dimH∗(Sd, Q), where Sd is the d-dimensional topological sphere. 
Examples of spherical objects are line bundles in the derived category of Calabi–Yau 
varieties, the structure sheaf of (-2)-curves on K3 surfaces etc.

The most interesting feature of spherical objects is that they induce autoequivalences 
of the triangulated category [46,2], called spherical twists. More precisely, for a d-spherical 
object E , the spherical twist around E is the autoequivalence

TE : D → D
E �→ Cone(RHom(E , E) ⊗ E → E).

It follows from definition that TE(E) ∼= E [1 − d] and TE |E⊥ ∼= id.
To study the polynomial entropy of spherical twists, we need the following estimate, 

which improves upon [45, Proof of Theorem 3.1].

Lemma 6.12 (Upper bound). For any objects G, G′ ∈ D and any positive integer n, we 
have

εt(G′, Tn
E (G)) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

netAt + Bt if d = 1;
nAt + Bt if t = 0;
e(1−d)nt

e(1−d)t−1At + Bt if t < 0 and d ≥ 2;
et

1−e(1−d)tAt + Bt if t > 0 and d ≥ 2;

where At = εt(G′, RHom(E , G) ⊗ E) and Bt = εt(G′, G) are positively valued functions, 
which are independent of n.

Proof. For any n > 0, applying Tn−1
E to the distinguished triangle

RHom(E , G) ⊗ E → G → TE(G) +1−−→,

we get

RHom(E , G) ⊗ E [(1 − d)(n− 1)] → Tn−1
E (G) → Tn

E (G) +1−−→ .

Therefore, εt(G′, Tn
E (G)) ≤ εt(G′, Tn−1

E (G)) + Ate
((1−d)n+d)t, hence

εt(G′, Tn
E (G)) ≤ εt(G′, G) + At

n∑
i=1

e((1−d)i+d)t = Bt + At

n∑
i=1

e((1−d)i+d)t.

The cases when d = 1 or t = 0 follow immediately. Assume now d ≥ 2 and t �= 0. Then

εt(G′, Tn
E (G)) ≤ Bt + At

et

e(1−d)t − 1
(e(1−d)tn − 1).

One can conclude easily by separating the cases t > 0 and t < 0. �
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Proposition 6.13. Let d be a positive integer. Let E be a d-spherical object in a saturated 
triangulated category D.

(i) If d = 1, then 0 ≤ hpol
t (TE) ≤ 1.

(ii) If t = 0, then 0 ≤ hpol(TE) ≤ 1.
(iii) If d ≥ 2 and t < 0, then hpol

t (TE) = 0.
(iv) If d ≥ 2 and t > 0, assuming moreover that E⊥ := {E ∈ D | HomD(E , E[k]) =

0 for all k ∈ Z} �= 0, then hpol
t (TE) = 0.

Proof. In any of the cases (i) ∼ (iv), Ouchi [45] computed the categorical entropy of the 
spherical twist TE :

ht(TE) =
{

(1 − d)t, if t ≤ 0;
0 if t > 0.

Fix two split generators G, G′ of D. We first establish, in any case of (i) ∼ (iv), the lower 
bound that

hpol
t (TE) ≥ 0

For (i) ∼ (iii), ht(TE) = (1 − d)t. As G ⊕ E is also a split generator,

hpol
t (TE) = lim sup

n→∞

log εt(G′, Tn
E (G⊕ E)) − ht(TE)
log(n)

≥ lim sup
n→∞

log εt(G′, Tn
E (E)) − n(1 − d)t
log(n)

= lim sup
n→∞

log εt(G′, E [(1 − d)n]) − n(1 − d)t
log(n)

= lim sup
n→∞

log εt(G′, E)
log(n)

= 0.

Here we used the fact that TE(E) ∼= E [1 − d].
As for (iv), take E a non-zero object in E⊥, as G ⊕E is also a split generator,

hpol
t (TE) = lim sup

n→∞

log εt(G′, Tn
E (G⊕ E)) − ht(TE)

log(n)

≥ lim sup
n→∞

log εt(G′, Tn
E (E))

log(n)

= lim sup log εt(G′, E)

n→∞ log(n)
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= 0,

where we used the fact that TE(E) ∼= E.
Let us now establish the upper bounds in the statement:

(i) When d = 1, ht(TE) = 0 and Lemma 6.12 says that

εt(G′, Tn
E (G)) ≤ netAt + Bt.

Therefore,

hpol
t (TE) = lim sup

n→∞

log εt(G′, Tn
E (G))

log(n) ≤ log(netAt + Bt)
log(n) = 1.

(ii). When t = 0, Lemma 6.12 implies that

hpol(TE) = lim sup
n→∞

log εt(G′, Tn
E (G))

log(n) ≤ log(nAt + Bt)
log(n) = 1.

(iii). When t < 0 and d ≥ 2, using Lemma 6.12, we see that

hpol
t (TE) = lim sup

n→∞

log εt(G′, Tn
E (G)) − nht(TE)
log(n)

≤ lim sup
n→∞

log( e(1−d)nt

e(1−d)t−1At + Bt) − n(1 − d)t
log(n)

= 0.

(iv) When t > 0 and d ≥ 2, assuming E⊥ �= 0, then Lemma 6.12 yields that

hpol
t (TE) = lim sup

n→∞

log εt(G′, Tn
E (G)) − nht(TE)
log(n)

≤ lim sup
n→∞

log( et

1−e(1−d)tAt + Bt)
log(n)

= 0. �
Remark 6.14. When D is the derived category of a projective K3 surface, the condition 
on the orthogonal complement in Proposition 6.13 (iv) is often satisfied (for example 
when Picard number is 1), see Bayer’s appendix of [45].

6.4. Spherical twists (II): quiver Calabi–Yau categories

Let Q be an acyclic quiver with vertices labeled by {1, 2, . . . , n}, and let DQ be the 
3-Calabi–Yau category constructed from the Ginzburg Calabi–Yau dg-algebra associated 
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to the quiver Q [22,31]. For each vertex 1 ≤ i ≤ n, there is an associated spherical object 
Si ∈ DQ. We denote Ti the spherical twist associated to Si. The morphisms between 
spherical objects are determined by the quiver: if there are eij arrows from vertex i to 
vertex j, then Hom•(Si, Sj) = C⊕eij [−1]. By Lemma 3.7 and the same computations as 
in [29, Section 4.2], we have

hpol(T k
i ) = lim

n→∞
log �(n)
logn = 1

for any power k of the spherical twist Ti. Here �(n) is a linear polynomial which depends 
on k and the valency of the i-th vertex.

We focus on the case of the 3-Calabi–Yau category D = DA2 associated to the A2-
quiver

• → •.

The subgroup of Aut(D) generated by the spherical twists T1, T2 is isomorphic to the 
standard braid group on 3 strings

〈T1, T2〉 ∼= Br3 = 〈σ1, σ2 : σ1σ2σ1 = σ2σ1σ2〉 ,

cf. [6, Section 2]. There is a short exact sequence

1 → Z → 〈T1, T2〉 → PSL(2,Z) → 1,

where the map Z → 〈T1, T2〉 is given by sending 1 to (T1T2)3 = [5], and the map

φ : 〈T1, T2〉 → PSL(2,Z)

is given by the induced action on the numerical Grothendieck group N (D):

T1 �→
(

1 1
0 1

)
, T2 �→

(
1 0
−1 1

)

with respect to the basis {[S1], [S2]} of N (D).
We prove the following trichotomy.

Proposition 6.15. Let F ∈ 〈T1, T2〉 ⊂ Aut(D). Then

(i) hpol(F ) = hcat(F ) = 0 if and only if N (F ) is elliptic (i.e. |tr(N (F ))| < 2) or 
N (F ) = ±id. In this case, Fn = [m] for some integers n, m.

(ii) hpol(F ) > 0 and hcat(F ) = 0 if and only if N (F ) is parabolic (i.e. |tr(N (F ))| = 2) 
and N (F ) �= ±id. In this case, hpol(F ) = 1.
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(iii) hcat(F ) > 0 if and only if N (F ) is hyperbolic (i.e. |tr(N (F ))| > 2). In this case, F
is pseudo-Anosov in the sense of [19].

Moreover, the Gromov–Yomdin-type equality holds for both categorical entropy and cat-
egorical polynomial entropy of any F ∈ 〈T1, T2〉:

hcat(F ) = log ρ(N (F )) and hpol(F ) = s(N (F )).

Proof. (i). An elliptic element in PSL(2, Z) is conjugate to either
(

0 1
−1 0

)
,
(

1 1
−1 0

)
, or

(
0 1
−1 −1

)
.

Observe that

φ(T1T2T1) =
(

0 1
−1 0

)
, φ(T2T1) =

(
1 1
−1 0

)
, and φ((T2T1)2) =

(
0 1
−1 −1

)
.

Hence if N (F ) is elliptic, then

F = gF ′g−1[k]

for some g ∈ 〈T1, T2〉, F ′ ∈ {T1T2T1, T2T1, (T2T1)2}, and k ∈ Z. Since

T1T2T1, T2T1, (T2T1)2

are of finite order up to shifts, hence Fn = [m] for some integers n, m. In this case, we 
have

hcat(F ) = hpol(F ) = log ρ(N (F )) = s(N (F )) = 0.

(ii). A parabolic element in PSL(2, Z) is conjugate to

φ(Tn
1 ) =

(
1 n
0 1

)

for some n ∈ Z. Hence if N (F ) is parabolic and N (F ) �= ±id, then

F = gTn
1 g

−1[k]

for some g ∈ 〈T1, T2〉, n ∈ Z\{0}, and k ∈ Z. By the previous computations, we have

hcat(F ) = 0 and hpol(F ) = 1.

Since N (F ) in this case is quasi-unipotent and has a single Jordan block of size 2, we 
have
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hcat(F ) = log ρ(N (F )) = 0 and hpol(F ) = s(N (F )) = 1.

(iii). The spectral radius of a hyperbolic element is greater than 1. Thus, if N (F ) is 
hyperbolic, then hcat(F ) ≥ log ρ(N (F )) > 0. We will show that in fact the equality 
holds. Any conjugacy class in PSL(2, Z) of infinite order has a representative of the form

(
1 1
0 1

)a1 (1 0
1 1

)b1

· · ·
(

1 1
0 1

)an
(

1 0
1 1

)bn

for some non-negative integer exponents a1, b1, . . . , an, bn ∈ Z (see for instance [17, 
Proposition 2.3]). Therefore, if N (F ) is hyperbolic, then F is conjugate to an autoequiv-
alence of the form

T a1
1 T−b1

2 · · ·T an
1 T−bn

2

up to shifts. By the computations in [19, Theorem 3.1], the mass growth and the poly-
nomial mass growth of the split generator S1 ⊕ S2 of such an autoequivalence coincide 
with the spectral radius and the polynomial growth rate of the corresponding element 
in PSL(2, Z). The eigenvalues of N (F ) are ρ(N (F )) > 1 and 1 > ρ(N (F ))−1 > 0, each 
with a Jordan block of size one. Hence

hcat(F ) = log ρ(N (F )) > 0 and hpol(F ) = s(N (F )) = 0.

Moreover, such autoequivalence is pseudo-Anosov in the sense of [19], by [19, Theo-
rem 3.1]. �
Remark 6.16 (Discontinuity of categorical polynomial entropy functions). The spherical 
twists T1 and T2 on this quiver 3-Calabi–Yau category provide examples of autoe-
quivalences with discontinuous categorical polynomial entropy functions. Indeed, by 
Proposition 6.13 (iii),

hpol
t (T1) = hpol

t (T2) = 0 for t < 0,

and since T1 and T2 are parabolic, we have

hpol
0 (T1) = hpol

0 (T2) = 1.

Hence the categorical polynomial entropy functions of T1 and T2 are discontinuous at 
t = 0.

6.5. P-twists

As an analogue of spherical objects, Huybrechts–Thomas [28] studied the so-called 
P -objects. Recall that given a saturated triangulated category D endowed with a Serre 
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functor S, an object E in D is called a Pd-object for some positive integer d, if S(E) ∼= E [2d]
and HomD(E , E [∗]) ∼= H∗(Pd

C, Z) ⊗ k as k-algebras. Examples of P -objects include line 
bundles in the derived category of a projective hyper-Kähler manifold, the structure 
sheaf of an embedded Pd inside a 2d-dimensional holomorphic symplectic variety, etc.

Similar to spherical twits, any P -object E also induces an autoequivalence PE of the 
triangulated category [28], called P -twists. We refer to [28] for the precise definition and 
properties. Note that PE(E) ∼= E [−2d] and PE |E⊥ ∼= id.

As an analogue of Lemma 6.12, we have the following estimate, which improves upon 
[18, Proof of Theorem 3.1].

Lemma 6.17 (Upper bound). For any objects G, G′ ∈ D and any positive integer n, we 
have

εt(G′, Pn
E (G)) ≤

⎧⎪⎪⎨
⎪⎪⎩
nAt + Bt if t = 0;
e−2dnt

e−2dt−1At + Bt if t < 0;
et

1−e−2dtAt + Bt if t > 0,

where At = εt(G′, C) and Bt = εt(G′, G) are positively valued functions (independent of 
n). Here C := Cone(Hom(E , G[∗ − 2]) ⊗ E → Hom(E , G[∗]) ⊗ E).

Proof. The proof is similar to Lemma 6.12. Applying Pn−1
E to the distinguished triangle

C → G → PE(G) +1−−→,

we get

C[−2d(n− 1)] → Pn−1
E (G) → Pn

E (G) +1−−→ .

Therefore, εt(G′, Pn
E (G)) ≤ εt(G′, Pn−1

E (G)) + Ate
(1−2d(n−1))t, hence

εt(G′, Pn
E (G)) ≤ Bt + At

n−1∑
i=0

e(1−2di)t.

The case t = 0 follows immediately. For t �= 0, we get

εt(G′, Pn
E (G)) ≤ Bt + At

et

e−2dt − 1(e−2dtn − 1).

One can conclude easily by separating the cases t > 0 and t < 0. �
Proposition 6.18. Let d be a positive integer. Let E be a Pd-object in a saturated trian-
gulated category D. Then
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(i) If t < 0, then hpol
t (PE) = 0;

(ii) If t > 0 and E⊥ �= 0, then hpol
t (PE) = 0;

(iii) If t = 0, then 0 ≤ hpol(PE) ≤ 1.

Proof. Once we have Lemma 6.17, the proof goes exactly as in Proposition 6.13. We 
leave the details to the reader. �
6.6. Autoequivalences for curves

In this section, we study categorical polynomial entropy of autoequivalences of derived 
categories of smooth projective curves. The discussion splits into two parts: standard 
autoequivalences (which covers the cases of non-elliptic curves), and elliptic curves (where 
the Fourier–Mukai transform plays an essential role).

6.6.1. Standard autoequivalences

Proposition 6.19. Let C be a smooth projective curve defined over an algebraically closed 
field k. Let F be a standard autoequivalence of Db(C), namely, it is of the form F =
f∗(− ⊗L)[m] for some f ∈ Aut(C), L ∈ Pic(C), and m ∈ Z. Then hpol

t (F ) is a constant 
function in t with value

hpol(F ) =
{

0 if deg(L) = 0;
1 if deg(L) �= 0.

In particular, hpol(F ) coincides with the polynomial growth rate of the induced action 
the Hochschild homology or the numerical Grothendieck group:

hpol(F ) = s(N (F )).

Proof. By Lemma 6.1, we can assume that m = 0, hence F = f∗(− ⊗ L). Since F
preserves the standard t-structure, hpol

t (F ) is constant in t by Lemma 2.8. Fix an ample 
line bundle O(1) on C and consider a split generator G = O(1) ⊕ O(2). As is observed 
in [34, Proof of Proposition 3.3], if L has positive degree, then for n large enough, 
G∨ ⊗ Fn(G∨) is a direct sum of line bundles of positive degree; if L has non-positive 
degree, then G∨ ⊗Fn(G∨) is a direct sum of line bundles of negative degree. Therefore, 
using the Riemann–Roch formula,

ε(G,Fn(G∨)) = |χ(C,G∨ ⊗ Fn(G∨)|
= |deg(G∨ ⊗ Fn(G∨)) + 4(1 − g)|
= |deg(G∨ ⊗G∨ ⊗ L⊗n) + 4(1 − g)|,

which is constant in n if deg(L) = 0 and has linear growth in n if deg(L) �= 0. �
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6.6.2. Elliptic curves
Let (E, x0) be a smooth projective curve of genus 1 defined over an algebraically 

closed field k, together with a closed point x0 ∈ E. Define autoequivalences

T := (−⊗O(x0)) and S := ΦP ,

where ΦP is the Fourier–Mukai transform along the Poincaré line bundle P ∈ Coh(E ×
E). The natural map

φ : Aut(Db(E)) → Aut(N (E), χ) ∼= SL(2,Z)

is surjective, which sends

T �→
(

1 0
1 1

)
and S �→

(
0 1
−1 0

)

with respect to the basis {[OE ], [Ox0 ]} of the numerical Grothendieck group N (E). Here 
Aut(N (E), χ) is the group of isometries of N (E) with respect to the Euler pairing χ. It 
is well-known that there is a short exact sequence

1 → Aut(E) � (Pic0(E) × Z[2]) → Aut(Db(E)) φ−→ SL(2,Z) → 1.

Lemma 6.20. The map

hpol : Aut(Db(E)) → [−∞,∞]

factors through φ : Aut(Db(E)) → SL(2, Z).

Proof. We follow the same idea of the proof of [32, Lemma 3.4]. The aim is to show that 
if

F = F ′g

for some F, F ′ ∈ Aut(Db(E)) and g ∈ Aut(E) � (Pic0(E) × Z[2]), then

hpol(F ) = hpol(F ′).

Since Aut(E) � (Pic0(E) × Z[2]) is a normal subgroup in Aut(Db(E)), for each n there 
exists gn ∈ Aut(E) � (Pic0(E) × Z[2]) such that

Fn = F ′ngn.

Fix an ample line bundle O(1) on E and let G = O(1) ⊕O(2) be a split generator. Then
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δ(G,FnG∨) ≤ δ(G,F ′nG)δ(F ′nG,FnG∨)

= δ(G,F ′nG)δ(F ′nG,F ′ngnG
∨)

≤ δ(G,F ′nG)δ(G, gnG
∨)

By [32, Lemma 3.4], we have hcat(F ) = hcat(F ′). Therefore,

log δ(G,FnG∨) − nhcat(F )
log n ≤ log δ(G,F ′nG) − nhcat(F ′)

logn + log δ(G, gnG
∨)

logn . (6.4)

The argument in the proof of [32, Lemma 3.4] shows that

lim
n→∞

log δ(G, gnG
∨)

log n = lim
n→∞

log ε(G, gnG
∨)

log n = lim
n→∞

log |χ(G,G∨)|
log n = 0.

Taking limit n → ∞ of (6.4) gives hpol(F ) ≤ hpol(F ′). One can prove hpol(F ′) ≤ hpol(F )
using the same argument. Hence we have hpol(F ) = hpol(F ′). �

The main result of this section is the following trichotomy, where the statements 
concerning categorical entropy is due to Kikuta [32, Section 3.2]. One sees clearly how 
polynomial entropy further refines his study.

Theorem 6.21. Let F ∈ Aut(Db(E)). We have

(i) hpol(F ) = hcat(F ) = 0 if and only if N (F ) is elliptic (i.e. |tr(N (F ))| < 2) or 
N (F ) = ±id.

(ii) hpol(F ) > 0 and hcat(F ) = 0 if and only if N (F ) is parabolic (i.e. |tr(N (F ))| = 2) 
and N (F ) �= ±id. In this case, hpol(F ) = 1.

(iii) hcat(F ) > 0 if and only if N (F ) is hyperbolic (i.e. |tr(N (F ))| > 2). In this case, 
hpol(F ) = 0.

Moreover, we have the following Gromov–Yomdin-type equality for the categorical poly-
nomial entropy:

hpol(F ) = s(N (F )).

Proof. (i). An elliptic element in SL(2, Z) is conjugate to either

±
(

0 1
−1 0

)
, ±

(
1 1
−1 0

)
, or ±

(
0 1
−1 −1

)
.

Observe that

φ(S) =
(

0 1
−1 0

)
, φ(ST ) =

(
1 1
−1 0

)
, and φ((ST )2) =

(
0 1
−1 −1

)
.
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Hence if N (F ) is elliptic, by Lemma 6.20, we have

hpol(F ) = hpol(F ′),

where F ′ ∈ {S, ST, (ST )2}. Since S, ST, (ST )2 are all of finite order up to shifts [46, 
Section 3d], their categorical and polynomial entropy both vanish. Hence

hpol(F ) = hcat(F ) = 0

for autoequivalences F such that N (F ) is elliptic. Moreover, in this case N (F ) is of finite 
order, hence

hpol(F ) = s(N (F )) = 0.

(ii). A parabolic element in SL(2, Z) is conjugate to

±
(

1 0
n 1

)

for some n ∈ Z. Hence if N (F ) is parabolic, by Lemma 6.20,

φ(F ) = φ(Tn)

for some n ∈ Z. By Proposition 6.19, we have

hcat(F ) = 0 and hpol(F ) = 1

if n �= 0. Moreover, in this case N (F ) is quasi-unipotent and has a single Jordan block 
of size 2. Therefore, we have

hpol(F ) = s(N (F )) = 1.

(iii). Suppose N (F ) is hyperbolic. By [32, Proposition 3.9], we have

hcat(F ) = log ρ(N (F )) > 0.

Moreover, using the argument of the proof of [32, Proposition 3.9], we have

hpol(F ) = lim sup
n→∞

log ε(G∨, FnG) − nhcat(F )
logn

= lim sup
n→∞

log |χ(G⊗ FnG)| − n log ρ(N (F ))
log n .

Since
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χ(G⊗ FnG) = Aρ(N (F ))n + Bρ(N (F ))−n

for some constant A, B with A �= 0, we obtain that hpol(F ) = 0. Moreover, in this case 
N (F ) has eigenvalues ρ(N (F )) > 1 and 1 > ρ(N (F ))−1 > 0. Each of the eigenvalues 
has a single Jordan block of size one. Hence hpol(F ) = s(N (F )) = 0. �
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