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1. Introduction. The purpose of this paper is to classify all polarized symplectic
automorphisms of the irreducible holomorphic symplectic projective varieties
constructed by Beauville and Donagi [4], namely, the Fano varieties of (smooth) cubic
fourfolds.

Finite-order symplectic automorphisms of K3 surfaces have been studied in detail
by Nikulin in [18]. A natural generalization of K3 surfaces to higher dimensions is
the notion of irreducible holomorphic symplectic manifolds or hyper-Kähler manifolds
(cf. [2]), which, by definition, are simply connected compact Kähler manifolds with H2,0

generated by a symplectic form (i.e. nowhere degenerate holomorphic 2-form). Initiated
by Beauville [1], some results have been obtained in the study of automorphisms of
such manifolds. Let us mention [3, 5, 6, 7, 8].

In [4], Beauville and Donagi show that the Fano varieties of lines of smooth cubic
fourfolds provide an example of a 20-dimensional family of irreducible holomorphic
symplectic projective fourfolds. We propose to classify the polarized symplectic
automorphisms of this family up to conjugacy. Our classification result is shown in the
table below1. The following remarks concern this table:

(i) As is remarked in Section 2, such an automorphism comes from a (finite order)
automorphism of the cubic fourfold itself. Hence, we express the automorphism
in the fourth column as an element f in PGL6, and our classification is up to
conjugacy with respect to the action of PGL6.

(ii) In the third column, n is the order of f , which is a primary number. The reason
why we only listed the automorphisms with primary order is that every finite-
order automorphism is a product of commuting automorphisms with primary
orders, by the structure of cyclic groups. cf. Remark 4.4.

(iii) We give an explicit basis of the family in the fifth column.

1Please see the next page.
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(iv) In the sixth column, we work out the fixed loci for a generic member. For geometric
descriptions of the fixed loci, see Section 5. The numbers of moduli are in the last
column.

(v) Some of these families have been discovered and studied before: Family I is
described in [16]; Family IV-(2) first appeared in [17] and is also treated in [13];
Family V-(1) is studied in [8], where the fixed locus and the number of moduli are
calculated. More generally, the classification of prime order automorphisms of
cubic fourfolds has been done in [12]. In Mongardi’s Ph.D. thesis [15], he classifies
the prime order symplectic automorphisms of hyper-Kähler varieties which are
of K3[n]-deformation type. To the best of my knowledge, the remaining primary
order automorphisms IV-(4), IV-(5), V-(2), V-(3) are new.

THEOREM 1.1 (Classification). For any smooth cubic fourfold X, let F(X) be its
Fano variety of lines, equipped with the Plücker polarization. We classify, in the following
list, all families of cubic fourfolds equipped with an automorphism of primary order
whose members (resp. general members) are smooth if the family is isotrivial2 (resp. not
isotrivial), such that the induced actions on the Fano varieties of lines are symplectic.
Family p n = pm automorphism basis for B fixed loci dimension

0 1 1 f = idP5 deg 3 monomials F(X) 20
I 11 11 f = diag(ζ, ζ−2,

ζ 4, ζ 3, ζ 5, 1)
x2

0x1 5 pts 0

ζ = e
r

11 ·2π
√−1, 1 ≤ r ≤ 10 x2

1x2

x2
2x3

x2
3x4

x2
4x0

x3
5

II 7 7 f = diag(ζ, ζ−2, ζ−3, ζ−1,

ζ 2, ζ 3)
x2

0x1 9 pts 2

ζ = e
r
7 ·2π

√−1, 1 ≤ r ≤ 6 x2
1x2

x2
2x3

x2
3x4

x2
4x5

x2
5x0

x0x2x4

x1x3x5

2We say a family is isotrivial if it is isomorphic to a constant family after an étale base change. In particular,
in an isotrivial family, the cubic fourfolds (equipped with automorphisms) are equivariantly isomorphic.
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III 5 5 f = diag(ζ, ζ−2, ζ−1,

ζ 2, 1, 1)
x2

0x1 14 pts 4

ζ = e
r
5 ·2π

√−1, 1 ≤ r ≤ 4 x2
1x2

x2
2x3

x2
3x0

x2
4x5

x2
5x4

x3
5

x3
4

x0x2x4

x0x2x5

x1x3x4

x1x3x5

IV-(1) 3 3 f = diag(1, 1, 1, 1, ω, ω2) deg 3 monomials on x0, . . . , x3 27 pts 8

ω = e
2π

√−1
3 x3

4

x3
5

x0x4x5

x1x4x5

x2x4x5

x3x4x5

IV-(2) 3 3 f = diag(1, 1, 1, ω, ω, ω) deg 3 monomials on x0, x1, x2 an abelian 2

ω = e
2π

√−1
3 deg 3 monomials on x3, x4, x5 surface

IV-(3) 3 3 f = diag(1, 1, ω, ω, ω2, ω2) deg 3 monomials on x0, x1 27 pts 8

ω = e
2π

√−1
3 deg 3 monomials on x2, x3

deg 3 monomials on x4, x5

x0x2x4

x0x2x5

x0x3x4

x0x3x5

x1x2x4

x1x2x5

x1x3x4

x1x3x5
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IV-(4) 3 9 f = diag(1, ζ−3, ζ 3, ζ, ζ 4,

ζ−2)
x2

0x1 9 pts 0

ζ = e
r
9 ·2π

√−1, r =
1, 2, 4, 5, 7, 8

x2
1x2

x2
2x0

x2
3x4

x2
4x5

x2
5x3

IV-(5) 3 9 f =
diag(1, ζ 3, ζ−3, ζ, ζ, ζ 4)

x2
0x1 9 pts 0

ζ = e
r
9 ·2π

√−1, r =
1, 2, 4, 5, 7, 8

x2
1x2

x2
2x0

x2
3x4

x3x2
4

x3
3

x3
4

x3
5

V-(1) 2 2 f = diag(1, 1, 1, 1,−1,−1) deg 3 monomials on x0, . . . , x3 28 pts 12

x0x2
5, x1x2

5, x2x2
5, x3x2

5 & a K3

x0x2
4, x1x2

4, x2x2
4, x3x2

4 surface

x0x4x5, x1x4x5,
x2x4x5, x3x4x5

V-(2) 2 4 f = diag(1, 1,−1,−1,√−1, −√−1)
x3

0, x2
0x1, x0x2

1, x3
1 16 pts 6

x0· deg 2 monomials on x2, x3

x1· deg 2 monomials on x2, x3

x2x2
4

x3x2
4

x2x2
5

x3x2
5

x0x4x5

x1x4x5
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V-(3) 2 8 f = diag(1,−1, ζ 2, ζ−2, ζ, ζ 3) x3
0 6 pts 2

ζ = e
r
8 ·2π

√−1, r = ±1 mod 8 x0x2
1

x1x2
2

x1x2
3

x0x2x3

x3x2
4

x2x2
5

x1x4x5

The structure of this paper is as follows. In Section 2, we set up the basic notation,
and show that any polarized automorphism of the Fano variety comes from a finite-
order automorphism of the cubic fourfold. Then in Section 3, we reinterpret the
assumption of being symplectic into a numerical equation by using Griffiths’ theory of
residue. Finally we do the classification in Section 4. The basic observation is that the
generic smoothness of the family of cubics imposes strong combinatorial constraints.

Throughout this paper, we work over the field of complex numbers with a fixed
choice of

√−1.

2. Fano varieties of lines of cubic fourfolds. First of all, let us fix the notation
and make some basic constructions. Let V be a 6-dimensional C-vector space, and
P5 := P(V ) be the corresponding projective space of 1-dimensional subspaces of V .
Let X ⊂ P5 be a smooth cubic fourfold. The following subvariety of the Grassmannian
Gr(P1, P5)

F(X) := {
[L] ∈ Gr(P1, P5) | L ⊂ X

}
, (1)

is called the Fano variety of lines3 of X . It is well-known that F(X) is a 4-dimensional
smooth projective variety. Throughout this paper, we always equip F(X) with the
polarization L , which is by definition the restriction of the Plücker line bundle on the
ambient Grassmannian Gr(P1, P5).

Consider the incidence variety (i.e. the universal projective line over F(X)):

P(X) := {(x, [L]) ∈ X × F(X) | x ∈ L} ,

and then the following natural correspondence:

P(X)
q

��

p

��

X

F(X)

we have the following

3In the scheme-theoretic language, F(X) is defined to be the zero locus of sT ∈ H0
(
Gr(P1, P5), Sym3 S∨)

,
where S is the universal tautological subbundle on the Grassmannian, and sT is the section induced by T
using the morphism of vector bundles Sym3 H0(P5,O(1)) ⊗ O → Sym3 S∨ on Gr(P1, P5).
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THEOREM 2.1 (Beauville-Donagi [4]). Keeping the above notation,

(i) F(X) is a 4-dimensional irreducible holomorphic symplectic projective variety,
i.e. F(X) is simply-connected and H2,0(F(X)) = C · ω with ω a no-where
degenerate holomorphic 2-form.

(ii) The correspondence

p∗q∗ : H4(X, Z) → H2(F(X), Z)

is an isomorphism of Hodge structures.

By definition, an automorphism ψ of F(X) is called polarized, if it preserves
the Plücker polarization: ψ∗L � L . Now, we investigate what it means for an
automorphism of F(X) to be polarized.

LEMMA 2.2. An automorphism ψ of F(X) is polarized if and only if it is induced
from an automorphism of the cubic fourfold X itself.

Proof. See [9, Proposition 4]. �
Define Aut(X) to be the automorphism group of X , and Autpol(F(X),L ) or simply

Autpol(F(X)) to be the group of polarized automorphisms of F(X). Then Lemma 2.2
says that the image of the natural homomorphism Aut(X) → Aut(F(X)) is exactly
Autpol(F(X)). This homomorphism of groups is clearly injective (since through each
point of X , passes a 1-dimensional family of lines), hence we have

COROLLARY 2.3. The natural morphism

Aut(X)
�−→ Autpol(F(X)),

which sends an automorphism f of X to the induced (polarized) automorphism f̂ of F(X)
is an isomorphism.

REMARK 2.4. This group is a finite group. Indeed, since Pic(X) = Z · OX (1),
all its automorphisms come from linear automorphisms of P5, hence Aut(X) is a
closed subgroup of PGL6 thus of finite type. On the other hand, H0(F(X), TF(X)) =
H1,0(F(X)) = 0, which implies that the group considered is also discrete, therefore
finite.

By Corollary 2.3, the classification of polarized symplectic automorphisms of
F(X) is equivalent to the classification of automorphisms of cubic fourfolds such that
the induced action satisfies the symplectic condition. The first thing to do is to find a
reformulation of this symplectic condition purely in terms of the action on the cubic
fourfold.

3. The symplectic condition. The contents of this section are borrowed from
[11, Section 1]. For the sake of completeness, we briefly reproduce it here. Let us keep
the notation of the previous section. Suppose the cubic fourfold X ⊂ P5 is defined
by a polynomial T ∈ H0(P5,O(3)) = Sym3 V∨. Let f be an automorphism of X . By
Remark 2.4, f is the restriction of a finite-order linear automorphism of P5 preserving
X , still denoted by f . Let n ∈ N+ be its order. We can assume without loss of generality
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that f : P5 → P5 is given by:

f : [x0 : x1 : · · · : x5] �→ [ζ e0 x0 : ζ e1 x1 : · · · : ζ e5 x5], (2)

where ζ = e
2π

√−1
n is a primitive nth root of unity and ei ∈ Z/nZ for i = 0, . . . , 5.

It is clear that X is preserved by f if and only if the defining equation T is contained
in an eigenspace of Sym3 V∨. More precisely: let the coordinates x0, x1, . . . , x5 of P5 be
a basis of V∨, then {x α}α∈� is a basis of Sym3 V∨ = H0(P5,O(3)), where x α denotes
xα0

0 xα1
1 . . . xα5

5 . Define

� := {
α = (α0, . . . , α5) ∈ N5 | α0 + · · · + α5 = 3

}
. (3)

We write the eigenspace decomposition of Sym3 V∨:

Sym3 V∨ =
⊕

j∈Z/nZ

⎛⎝⊕
α∈�j

C · x α

⎞⎠ ,

where for each j ∈ Z/nZ, we define the subset of �

�j := {
α = (α0, . . . , α5) ∈ N5 | α0+···+α5=3

e0α0+···+e5α5=j mod n

}
. (4)

and the eigenvalue of
⊕

α∈�j
C · x α is thus ζ j. Therefore, explicitly speaking, we have:

LEMMA 3.1. A cubic fourfold X is preserved by the f in (2) if and only if there exists
a j ∈ Z/nZ such that its defining polynomial T ∈ ⊕

α∈�j
C · x α.

Next, we deal with the symplectic condition. Note that Theorem 2.1 (ii) says in
particular that

p∗q∗ : H3,1(X)
�−→ H2,0(F(X)),

is an isomorphism. If X is equipped with an action f as before, we denote by f̂
the induced automorphism of F(X). Since the construction of F(X) as well as the
correspondence p∗q∗ are both functorial with respect to X , the condition that f̂ is
symplectic, i.e. f̂ ∗ acts on H2,0(F(X)) as identity, is equivalent to the condition that f ∗

acts as identity on H3,1(X). Working this out, we arrive at the congruence equation (5)
in the following:

LEMMA 3.2 (Symplectic condition). Let f be the linear automorphism in (2), and
X be a cubic fourfold defined by equation T. Then the followings are equivalent:
• f preserves X and the induced action f̂ on F(X) is symplectic;
• There exists a j ∈ Z/nZ satisfying the equation

e0 + e1 + · · · + e5 = 2j mod n, (5)

such that the defining polynomial T ∈ ⊕
α∈�j

C · x α, whereas in (4)

�j := {
α = (α0, . . . , α5) ∈ N5 | α0+···+α5=3

e0α0+···+e5α5=j mod n

}
.
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Proof. Firstly, the condition that f preserves X is given in Lemma 3.1. As is
remarked before the lemma, f̂ is symplectic if and only if f ∗ acts as identity on H3,1(X).
On the other hand, by Griffiths’ theory of Hodge structures of hypersurfaces (cf. [20,
Chapter 18]), H3,1(X) is generated by the residue Res �

T2 , where � := ∑5
i=0(−1)ixidx0 ∧

· · · ∧ d̂xi ∧ · · · ∧ dx5 is a generator of H0(P5, KP5 (6)). The map f being defined in (2),
we find f ∗� = ζ e0+···+e5� and f ∗(T) = ζ jT . Hence the action of f ∗ on H3,1(X) is
multiplication by ζ e0+···+e5−2j, from which we obtain the equation (5). �

4. Classification. We now turn to the classification of polarized symplectic
automorphisms of primary order of smooth cubic fourfolds. Retaining the notation of
Section 3, we define the parameter space

B := P

⎛⎝⊕
α∈�j

C · x α

⎞⎠ . (6)

Let B ⊂ B be the open subset parameterizing the smooth ones.
In this paper, we are only interested in the smooth cubic fourfolds, that is the

case when B �= ∅, or equivalently, when a general member of B is smooth. The easy
observation below (see Lemma 4.1) which makes the classification feasible is that this
non-emptiness condition imposes strong combinatorial constraints on the defining
equations.

LEMMA 4.1. If a general member in B is smooth then for each i ∈ {0, 1, . . . , 5}, there
exists i′ ∈ {0, 1, . . . , 5}, such that xi

2xi′ ∈ B.

Proof. Suppose on the contrary that, without loss of generality, for i = 0, none of
the monomials x3

0, x2
0x1, x2

0x2, x2
0x3, x2

0x4, x2
0x5 are contained in B, then every equation

in this family can be written in the following form:

x0Q(x1, . . . , x5) + C(x1, . . . , x5),

where Q (resp. C) is a homogeneous polynomial of degree 2 (resp. 3). It is clear that
[1, 0, 0, 0, 0, 0] is always a singular point, which is a contradiction. �

Since a finite-order automorphism amounts to the action of a finite cyclic group,
which is the product of some finite cyclic groups with order equal to a power of a prime
number, we only have to classify automorphisms of primary order, that is n = pm for p a
prime number and m ∈ N+. To get general results for any order from the classification
of primary order case, see Remark 4.4. We thus assume n = pm in the sequel.

For the convenience of the reader, we summarize all the relevant equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
e0 + e1 + · · · + e5 = 2j mod pm;

α0 + · · · + α5 = 3; αi ∈ N;

e0α0 + · · · + e5α5 = j mod pm;

(∗) ∀i, ∃i′ such that 2ei + ei′ = j mod pm

(7)

where the last condition (∗) comes from Lemma 4.1.
We associate to each solution of (7) a diagram, i.e. a finite oriented graph, as

follows:
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(i) The vertex set is the quotient set of {0, . . . , 5} with respect to the equivalence
relation defined by: i1 ∼ i2 if and only if ei1 = ei2 mod pm.

(ii) For each pair (i, i′) satisfying 2ei + ei′ = j mod pm, there is an arrow from i
to i′.

The arrows in (ii) are well-defined because we have taken into account the
equivalence relation in (i). It is also obvious that each vertex can have at most one
arrow going out. Thanks to condition (∗) in (7), we know that each vertex has exactly
one arrow going out.

REMARKS 4.2.

(i) If p �= 2, it is easy to see that each vertex has at most one arrow coming in.
Since the total going-out degree should coincide with the total coming-in
degree, each vertex has exactly one arrow coming-in. As a result, the diagram
is in fact a disjoint union of several cycles4 in this case.

(ii) If p �= 3, then 3 is always invertible modulo n = pm. Let γ be an integer
representing the inverse 3−1 mod pm. By the change of variables ei � ei −
γj, which does not change the automorphism f , we reduce immediately to
the case j = 0.

Before the detailed case-by-case analysis, let us point out that a cycle in the diagram
would have some congruence implications:

LEMMA 4.3.

(i) There cannot be cycles of length 2.
(ii) If p �= 3, there is at most one cycle of length 1.

(iii) If there is a cycle of length l =3, 4, 5 or 6, then p divides (−2)l−1
3 .

Proof.

(i) It is because 2ei + ei′ = 2ei′ + ei mod pm will imply ei = e′
i mod pm,

contradicting the definition of a cycle.
(ii) A cycle of length 1 means 3ei = j mod pm, and when p �= 3, ei is determined by

j.
(iii) Without loss of generality, we can assume that the cycle is given by:

2e0 + e1 = 2e1 + e2 = · · · = 2el−2 + el−1 = 2el−1 + e0 = j mod pm.

This system of congruence equations implies that

(
(−2)l − 1

)
e0 = (−2)l − 1

3
· j mod pm. (8)

If p does not divide (−2)l−1
3 , then by (8), we have j = 3e0 mod pm, and hence

e0 = e1 = · · · = el−1, contradicting the definition of a cycle.
�

Next, we work out the classification case-by-case. The result is summarized in
Theorem 1.1.

4Here, we use the terminology ‘cycle’ in the sense of graph theory: it means a loop in an oriented graph with
no arrow repeated. The length of a cycle will refer to the number of arrows appearing in it.
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Case 0. When p ≥ 13.
If we have a cycle of length l ≥ 3, since in Lemma 4.3, (−2)l−1

3 could only be
−3, 5,−11, 21, all of which are prime to p, this will lead to a contradiction. Therefore,
we only have cycles of length 1. As p �= 3, 3−1j mod pm is well-defined, hence we have
e0 = e1 = · · · = e5. As a result, f is the identity action of P5, which is Family 0 in
Theorem 1.1.

Case I. When p = 11.
Let the order of the automorphism be n = 11m. We can assume j = 0 without loss of
generality by Remark 4.2(ii). As in the previous case, by Lemma 4.3, cycles of length
2, 3, 4 or 6 cannot occur. Thus, the only possible lengths of cycles are 1 and 5. If there
is no cycle of length 5, then as before, since p �= 3, all ei’s will be equal and f will be the
identity. Let the 5-cycle be

2e0 + e1 = 2e1 + e2 = 2e2 + e3 = 2e3 + e4 = 2e4 + e0 = j = 0 mod 11m.

Hence, e0 = e0; e1 = −2e0; e2 = 4e0; e3= − 8e0; e4 = 16e0; e5= − 11e0 mod 11m where
the last equality comes from the first equation in (7). Moreover as in (8) we have
33e0 = 0 mod 11m, i.e. e0 is divisible by 11m−1. Therefore, we must have m = 1 and
n = 11:

e0 = e0; e1 = −2e0; e2 = 4e0; e3 = 3e0; e4 = 5e0; e5 = 0 mod 11.

As a result

f = diag
(
ζ, ζ−2, ζ 4, ζ 3, ζ 5, 1

)
,

where ζ = e
r

11 ·2π
√−1 and 1 ≤ r ≤ 10. Going back to (7), we easily work out all solutions

for αi’s, and the corresponding family

B = P
(
Span〈x2

0x1, x2
1x2, x2

2x3, x2
3x4, x2

4x0, x3
5〉

)
.

It is easy to see that this family is actually isotrivial and in particular the cubic fourfolds
in this family are all isomorphic. Hence in order to verify the smoothness of its
members, it suffices to verify one, say, x2

0x1 + x2
1x2 + x2

2x3 + x2
3x4 + x2

4x0 + x3
5 by the

standard Jacobian criterion, which is quite easy. This is Family I in Theorem 1.1. We
would like to mention that this example was discovered in [16].

Case II. When p = 7.
Let the order be n = 7m. As before, we can assume j = 0 by Remark 4.2(ii). By Lemma
4.3, cycles of length 2, 3, 4 or 5 cannot occur. Thus, the only possible lengths of cycles
are 1 and 6; and except the trivial Family 0, there must be a 6-cycle:

2e0 + e1 = 2e1 + e2 = 2e2 + e3 = 2e3 + e4 = 2e4 + e5 = 2e5 + e0 = 0 mod 7m.

Hence, e0 = e0; e1 = −2e0; e2 = 4e0; e3 = −8e0; e4 = 16e0; e5 = −32e0 mod 7 and
moreover as in (8), 63e0 = 0 mod 7m i.e. e0 is divisible by 7m−1. Hence, we must
have m = 1 and n = 7. Therefore

e0 = e0; e1 = −2e0; e2 = −3e0; e3 = −e0; e4 = 2e0; e5 = 3e0 mod 7.
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One verifies easily that it satisfies e0 + · · · + e5 = 0. As a result

f = diag
(
ζ, ζ−2, ζ−3, ζ−1, ζ 2, ζ 3) ,

where ζ = e
r
7 ·2π

√−1 and 1 ≤ r ≤ 6. Going back to (7), we easily work out all solutions
for αi’s and the corresponding family

B = P
(
Span〈x2

0x1, x2
1x2, x2

2x3, x2
3x4, x2

4x5, x2
5x0, x0x2x4, x1x3x5〉

)
.

To show that a general member of this family is smooth, we only need to remark that
x2

0x1 + x2
1x2 + x2

2x3 + x2
3x4 + x2

4x5 + x2
5x0 is smooth. This accomplishes Family II in

Theorem 1.1.

Case III. When p = 5.
By the remark on orders, we have m = 1 or 2. And again, by Remark 4.2(ii), we can
assume j = 0. As before, by Lemma 4.3, cycles of length 2,3,5 or 6 cannot occur. Thus
the only possible lengths of cycles are 1 and 4; and except the trivial Family 0, there
must be a 4-cycle:

2e0 + e1 = 2e1 + e2 = 2e2 + e3 = 2e3 + e0 = 0 mod 5m.

As in (8), we get 15e0 = 0 mod 5m, i.e. e0 is divisible by 5m−1. Hence

e0 = e0; e1 = −2e0; e2 = −e0; e3 = 2e0 mod 5m.

Since 2-cycle does not exist, for i = 4, 5, either ei takes value in e0, . . . , e3, or it is a
1-cycle: 3ei = 0, i.e. ei = 0. Therefore, in any case, we must have m = 1 and n = 5.

We write e4 = ae0 and e5 = be0 for a, b ∈ Z/5Z. Taking into account the first
equation in (7), we obtain

a + b = 0 mod 5.

As a result,

f = diag
(
ζ, ζ−2, ζ−1, ζ 2, ζ a, ζ−a)

where ζ = e
r
5 ·2π

√−1 for 1 ≤ r ≤ 4 and a ∈ Z/5Z. Going back to (7), we work out the
solutions for αi’s depending on the value of a:

Subcase III (i). When a �= 0.
We treat the case a = 1 first, that is, p = 5, m = 1, (e0, . . . , e5) = (1,−2,−1, 2, 1,−1),
and

f = diag
(
ζ, ζ−2, ζ−1, ζ 2, ζ, ζ−1) ,

where ζ = e
r
5 ·2π

√−1 for 1 ≤ r ≤ 4. Solving αi’s from equation (7), we get the
corresponding family

B = P
(
Span〈x2

0x1, x2
1x2, x2

2x3, x2
3x0, x2

4x1, x2
3x4, x2

4x3, x2
1x5, x2

5x3, x0x1x4, x2x3x5〉
)
.

However, there is no smooth cubic fourfolds in this family: in fact each member would
have two singular points in the line (x0 = x1 = x3 = x4 = 0).
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When a = 2, we have p = 5, m = 1, (e0, . . . , e5) = (1,−2,−1, 2, 2,−2), and ζ =
e

r
5 ·2π

√−1 for 1 ≤ r ≤ 4, therefore f = diag
(
ζ, ζ−2, ζ−1, ζ 2, ζ 2, ζ−2

)
.

By the transformation ζ �→ ζ 2, this f is exactly the one when a = 1 which is already
discussed.
When a = 3, by the symmetry, it is the same case as a = 2. Similarly, the case a = 4 is
the same as the case a = 1.

Subcase III (ii). When a = 0.
p = 5, m = 1, (e0, . . . , e5) = (1,−2,−1, 2, 0, 0), and

f = diag
(
ζ, ζ−2, ζ−1, ζ 2, 1, 1

)
,

where ζ = e
r
5 ·2π

√−1 for 1 ≤ r ≤ 4. Solving αi’s from the equation (7), we obtain the
corresponding family

B = P
(
Span〈x2

0x1, x2
1x2, x2

2x3, x2
3x0,

x2
4x5, x2

5x4, x3
5, x3

4, x0x2x4, x0x2x5, x1x3x4, x1x3x5〉
)
.

Moreover, a general cubic fourfold in this family is smooth. Indeed, we give a particular
smooth member: x2

0x1 + x2
1x2 + x2

2x3 + x2
3x0 + x3

4 + x3
5. This is Family III in Theorem

1.1.

Case IV. When p = 3.
Still by Lemma 4.3, we know that cycles of length 2, 4 or 5 cannot occur. Thus, the
only possible lengths of cycles are 1, 3 and 6. We first claim that a 6-cycle cannot exist.
Suppose on the contrary that the diagram is a 6-cycle:

2e0 + e1 = 2e1 + e2 = 2e2 + e3 = 2e3 + e4 = 2e4 + e5 = 2e5 + e0 = j mod 3m,

then we have as in (8) that 63e0 = 21j mod 3m. Thus there exists r ∈ Z/3Z, such that
j = 3e0 + r · 3m−1 mod 3m, and

e0 = e0; e1 = e0 + r · 3m−1; e2 = e0 − r · 3m−1; e3 = e0; e4 = e0

+ r · 3m−1; e5 = e0 − r · 3m−1 mod 3m.

This contradicts the assumption that ei’s are distinct. Therefore, there are only 1-
cycles and 3-cycles. A 1-cycle means 3ei = j mod 3m. On the other hand, a 3-cycle
2e0 + e1 = 2e1 + e2 = 2e2 + e0 = j mod 3m would imply 9e0 = 3j. In particular, 9e0 =
9e1 = · · · = 9e5 = 3j mod 3m. Without loss of generality, we can demand e0 = 0. As
a result, f has the form f = diag(1, ζ a1 , . . . , ζ a5 ) where ζ = e

2π
√−1
9 . In particular, f is of

order 3 or 9.

Subcases IV (i). If f is of order 3.
Let ω := e

2π
√−1
3 . Then, up to isomorphism, f is one of the following automorphisms:

• diag(1, 1, 1, 1, 1, ω): this case does not satisfy condition (∗).
• diag(1, 1, 1, 1, 1, ω2): this case does not satisfy condition (∗).
• diag(1, 1, 1, 1, ω, ω2): we find Family IV-(1) in Theorem 1.1. We remark that its

general member is indeed smooth because in particular the Fermat cubic fourfold
(which is smooth) is contained in this family.

• diag(1, 1, 1, 1, ω, ω): this case does not satisfy condition (∗).
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• diag(1, 1, 1, 1, ω2, ω2): this case does not satisfy condition (∗).
• diag(1, 1, 1, ω, ω, ω2): Here we find B has a basis:

x5 · degree 2 monomials on x0, x1 and x2; x4x2
5, x3x2

5, x0x3x4, x1x3x4, x2x3x4, x0x2
3,

x1x2
3, x2x2

3, x0x2
4, x1x2

4, x2x2
4,

However, any cubic fourfold in this family is singular along a conic curve in the
projective plane (x3 = x4 = x5 = 0).

• diag(1, 1, 1, ω2, ω2, ω): this is as in the previous case, with ω replaced by ω2.
• diag(1, 1, 1, ω, ω, ω): By solving (7), we find the following basis for B:

degree 3 monomials on x0, x1 and x2; degree 3 monomials on x3, x4 and x5.

As the Fermat cubic fourfold is in this family, the general member is also smooth.
This is Family IV-(2) in Theorem 1.1. We remark that this family was discovered
first in [17] and also was studied in [13].

• diag(1, 1, ω, ω, ω2, ω2): The basis of B is

degree 3 monomials on x0 and x1; degree 3 monomials on x2 and

x3; degree 3 monomials on x4 and x5;

x0x2x4, x0x2x5, x0x3x4, x0x3x5, x1x2x4, x1x2x5, x1x3x4, x1x3x5.

Because B contains the Fermat cubic fourfold, its general member is smooth. This
is Family IV-(3) in Theorem 1.1.

Subcase IV (ii). If the order n = 9 and the diagram consists of two 3-cycles (thus ei’s
are distinct, so m ≥ 2):{

2e0 + e1 = 2e1 + e2 = 2e2 + e0 = j
2e3 + e4 = 2e4 + e5 = 2e5 + e3 = j

mod 3m,

From which we have 3j = 9e0 = 9e3 mod 3m. Hence, there exists t = ±1 such that
j = 3e0 + t · 3m−1 and

e0 = e0; e1 = e0 + t · 3m−1; e2 = e0 − t · 3m−1; e3 = e0 + r · 3m−2;

e4 = e0 + t · 3m−1 − 2r · 3m−2; e5 = e0 − t · 3m−1 + 4r · 3m−2 mod 3m.

where r ∈ Z/9Z. Note that r �= 0, 3, 6 mod 9, since otherwise the ei’s cannot be
distinct. By the first equation in (7)

t = −r mod 3.

Putting this back into the previous system of equations, we obtain:
p = 3, m = 2, n = 9, (e0, . . . , e5) = (0,−3, 3, 1, 4,−2), j = −3 mod 9, and

f = diag
(
1, ζ−3, ζ 3, ζ, ζ 4, ζ−2) ,

where ζ = e
r
9 ·2π

√−1 for r ∈ {1, 2, 4, 5, 7, 8}. Solving αi’s from equation (7), we have the
corresponding family

B = P
(
Span〈x2

0x1, x2
1x2, x2

2x0, x2
3x4, x2

4x5, x2
5x3〉

)
.
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This family is clearly isotrivial. Since the cubic fourfold x2
0x1 + x2

1x2 + x2
2x0 + x2

3x4 +
x2

4x5 + x2
5x3 is smooth by Jacobian criterion, so is every cubic fourfold in this family.

This is Family IV-(4) in Theorem 1.1.

Subcase IV (iii). If the order n = 9 and the diagram contains only one 3-cycle:

2e0 + e1 = 2e1 + e2 = 2e2 + e0 = j mod 9.

As before, we can assume e0 = 0, then e1 = j, e2 = −j and 3j = 0 mod 9. In particular,
3|j. Since j �= 0 mod 9 (otherwise e0 = e1 = e2 is a contradiction), j = ±3. For i =
3, 4, 5, ei either takes value in {e0, e1, e2}, or 3ei = j.
If j = 3, then f has the form

f = diag(1, ζ 3, ζ−3, ζ a, ζ b, ζ c),

where a, b, c ∈ {0, 3, 6, 1, 4, 7}. By the first equation in (7),

a + b + c = 6 mod 9.

Thus, either a, b, c ∈ {0, 3, 6}, or a, b, c ∈ {1, 4, 7}. While the former will make f of order
3, which has been treated in Subcases IV(i). Therefore a, b, c ∈ {1, 4, 7} and a + b + c =
6. There are only three possibilities (up to permutations of a, b, c): (a, b, c) = (1, 1, 4)
or (4, 4, 7) or (7, 7, 1). However, these three correspond to the following automorphism

f = diag
(
1, ζ 3, ζ−3, ζ, ζ, ζ 4) ,

Back to (7), we solve the corresponding αi’s to get the following basis for B:

B = P
(
Span〈x2

0x1, x2
1x2, x2

2x0, x2
3x4, x2

4x3, x3
3, x3

4, x3
5〉

)
.

This family is clearly isotrivial. As we have a smooth member x2
0x1 + x2

1x2 + x2
2x0 +

x3
3 + x3

4 + x3
5 in this family, every cubic fourfold in it is also smooth. This is Family

IV-(5) in Theorem 1.1.
If j = −3, it reduces to the j = 3 case by replacing ζ by ζ−1, thus already included in
Family IV-(5) of the theorem.

Subcase IV (iv). If n = 9 and the diagram has only 1-cycles, i.e. for any 0 ≤ i ≤ 5,

3ei = j mod 9.

In particular, 3|j. First of all, j �= 0, otherwise, f is of order 3, which is treated in
Subcases IV(i).
If j = 3. Then ei ∈ {1, 4, 7} for any i. Taking into account the first equation of (7), we
find all the solutions for (e0, . . . , e5), up to permutations:

(e0, . . . , e5) = (1, 1, 1, 4, 4, 4), (1, 1, 1, 7, 7, 7), (4, 4, 4, 7, 7, 7), (1, 1, 1, 1, 4, 7),

(4, 4, 4, 4, 1, 7), (7, 7, 7, 7, 1, 4), (1, 1, 4, 4, 7, 7)

where the automorphisms in the first line are equal to diag(1, 1, 1, ω, ω, ω), which
has been done in Family IV-(2); the automorphisms in the second line are equal to
diag(1, 1, 1, 1, ω, ω2), which has been done in Family IV-(1); the last automorphism is
equal to diag(1, 1, ω, ω, ω2, ω2), which has been done in Family IV-(3) in Theorem 1.1.
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Case V. When p = 2.
By Lemma 4.3, we find that the associated diagram has only 1-cycles. The new
phenomenon is that the coming-in degree in this case is not necessarily 1. As before, we
reduce to the case j = 0 by Remark 4.2(ii). Then we claim that the order of f divides
32. Indeed, for any 1-cycle 3ei = 0 mod 2m implies ei = 0 mod 2m. Hence a vertex
pointing to a 1-cycle is divisible by 2m−1, and a vertex pointing to a vertex pointing to
a 1-cycle is divisible by 2m−2, etc. And every vertex arrives at the 1-cycle vertex after at
most 5 steps.

7 −9 3 −13 −5 11 −151 −7 9 −3 13 5 −11

8 −8

−4 12 −12

2 −14 01−641016−

−1 15

0

16

−2

4

Let us put Z/32Z into the above complete binary tree. Then our associated diagram
clearly is a sub-diagram of this tree, satisfying two properties:

• If a vertex belongs to the diagram then so do its ancestors;
• The sum of vertices (multiplicities counted) is zero modulo 32.

It is immediate that the leaves (vertices on the bottom sixth level) cannot appear in
the diagram: since by the parity of their sum, if there are leaves, there are at least two.
But we already have five ancestors to include, while we have only six places in total.
Next, we remark that the vertices in the fifth level cannot belong to the diagram either:
since the sum is divisible by 4, there are at least two vertices from the fifth level if there
is any, and they should have the same father (otherwise we need to include at least five
ancestors, and it will be out of place). Therefore we only have four possibilities, and it
is straightforward to check that none of them has sum zero as demanded.

As a result, we have a further reduction: since only the first four levels can appear,
the order of f always divides 8. We can assume now n = 8 and ei ∈ Z/8Z. Similarly,
we put Z/8Z into the following complete binary tree:

Then our diagram is a sub-diagram of this tree which is as before ‘ancestor-
closed’ and its multiplicities-counted sum is zero modulo 8. We easily work out all the
possibilities as follows.

• (e0, . . . , e5) = (0, 0, 0, 0, 4, 4) or (0, 0, 4, 4, 4, 4). In this case, f is the involution
diag(1, 1, 1, 1,−1,−1) and we reduce to n = p = 2 with (e0, . . . , e5) =
(0, 0, 0, 0, 1, 1). The equation for αi’s becomes α4 + α5 = 0 mod 2. This is Family
V-(1) in Theorem 1.1, whose generic smoothness is easy to verify: x2

4x0 + x2
5x1 +

x4x5x2 + x3
0 + x3

1 + x3
2 + x3

3 is smooth. This family of cubic fourfolds has been
studied in [8].
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0

4

2−2

−1 3 1 −3

• (e0, . . . , e5) = (0, 0, 0, 4, 2, 2) or (0, 4, 4, 4,−2,−2). They both correspond to the
following automorphism of order n = 4:

f = diag(1, 1, 1,−1,
√−1,

√−1).

We thus reduce to n = 4, and (e0, . . . , e5) = (0, 0, 0, 2, 1, 1). The equation (7) for αi’s
becomes 2α3 + α4 + α5 = 0 mod 4. We easily obtain a basis for B:

degree 3 monomials on x0, x1, x2; x0x2
3, x1x2

3, x2x2
3, x3x4x5, x3x2

4, x3x2
5.

Unfortunately, any cubic fourfold in this family is singular on two points on the line
defined by (x0 = x1 = x2 = x3 = 0).

• (e0, . . . , e5) = (0, 0, 0, 4,−2,−2) or (0, 4, 4, 4, 2, 2). They both correspond to the
same f , which becomes the automorphism of the previous case if we replace

√−1
by −√−1.

• (e0, . . . , e5) = (0, 4, 2, 2, 2,−2) or (0, 4, 2,−2,−2,−2). They both correspond to
the following automorphism of order n = 4:

f = diag(1,−1,
√−1,

√−1,
√−1,−√−1).

We thus reduce to n = 4 and (e0, . . . , e5) = (0, 2, 1, 1, 1,−1), the equation for αi’s
becomes 2α3 + α4 − α5 = 1 mod 4. The basis for B is:

x4 · degree 2 monomials on x0, x1, x2; x2
3x4, x0x3x5, x1x3x5, x2x3x5, x3

5, x2
4x5.

Each cubic fourfold in this family is singular along a conic curve in the plane defined
by (x3 = x4 = x5 = 0).

• (e0, . . . , e5) = (0, 0, 4, 4, 2,−2). It is the following automorphism of order n = 4:

f = diag(1, 1,−1,−1,
√−1,−√−1).

We then reduce to n = 4 and (e0, . . . , e5) = (0, 0, 2, 2, 1,−1). The equation for αi’s
is 2α2 + 2α3 + α4 − α5 = 0 mod 4. It corresponds Family V-(2) in Theorem 1.1. It
is easy to find a smooth member, for example, x3

0 + x3
1 + x2

2x0 + x2
3x1 + x2

4x2 + x2
5x3.

• (e0, . . . , e5) = (0, 4, 4, 2,−1,−1) or (0, 4, 4, 2, 3, 3) or (0, 4, 4,−2, 1, 1) or
(0, 4, 4,−2,−3,−3). Although they are different automorphisms of order n = 8,
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they correspond to four possible choices of the primitive eighth root of unity ζ in
the automorphism:

f = diag(1,−1,−1, ζ−2, ζ, ζ ),

where ζ = e
r
8 ·2π

√−1 for r = ±1,±3. For each choice of r, the equation (7) becomes

4α1 + 4α2 − 2α3 + α4 + α5 = 0 mod 8.

The solutions form a basis for B:

B = P
(
Span〈x3

0, x0x2
1, x0x2

2, x0x1x2, x2x2
3, x1x2

3, x3x2
4, x3x2

5, x3x4x5〉
)
.

However, any cubic fourfold in this family is singular at two points on the line
defined by (x0 = x1 = x2 = x3 = 0).

• (e0, . . . , e5) = (0, 0, 4, 2,−1, 3) or (0, 0, 4,−2, 1,−3). They are different automorph-
isms of order n = 8. In fact, the four possible choices of the primitive eighth root of
unity ζ collapse into two cases. The automorphism:

f = diag(1, 1,−1, ζ 2, ζ−1, ζ 3),

where ζ = e
r
8 ·2π

√−1 for r = ±1 (here r = ±3 will give the same two automorphisms).
In this case, (7) gives

4α2 + 2α3 − α4 + 3α5 = 0 mod 8.

We easily resolve it to obtain

B = P
(
Span〈degree 3 monomials on x0 and x1, x0x2

2, x1x2
2, x2x2

3, x3x2
4, x3x2

5〉
)
.

But each member in this family is singular at least at two points of the line defined
by (x0 = x1 = x2 = x3 = 0).

• (e0, . . . , e5) = (0, 4, 2,−2, 1, 3) or (0, 4, 2,−2,−1,−3). As in the previous case,
although they are different automorphisms of order n = 8, each corresponds to
two possible choices of the primitive eighth root of unity ζ . The automorphism is

f = diag(1,−1, ζ 2, ζ−2, ζ, ζ 3),

where ζ = e
r
8 ·2π

√−1 for r = ±1 (here r = ±3 will give the same two automorphisms).
In this case, we get the Family V-(3) in Theorem 1.1. To verify the smoothness of the
general member we claim that the cubic fourfold defined by the following equation
is smooth:

T := x3
0 + x0x2

1 + x1x2
2 + x1x2

3 + x0x2x3 + x3x2
4 + x2x2

5.

Indeed, it is straightforward to check that the system of equations ∂T
∂x0

= ∂T
∂x1

= · · · =
∂T
∂x5

= 0 has no non-zero solutions.
The classification is now complete and the result is summarized in Theorem 1.1.

REMARKS 4.4. We have some explanations to make concerning the usage of our
list.
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• In the fifth column of the table in Theorem 1.1, we give a basis for the compactified
parameter space B, which contains of course singular members. To pick out the
smooth ones (i.e. to determine the non-empty open dense subset B), we have to
apply the usual method of Jacobian criterion.

• Strictly speaking, the moduli space of cubic fourfolds is the geometric quotient

M := P
(
H0(P5,O(3))

)
// PGL6,

and each B we have given in the theorem is a sub-projective space of
P

(
H0(P5,O(3))

)
, whose image in M is (a component of) the ‘moduli space’ of

cubic fourfolds admitting a ‘symplectic’ automorphism of certain primary order.
• For an automorphism f of a given order n, say n = 2r2 3r3 5r5 7r7 11r11 , where r2 =

0, 1, 2 or 3; r3 = 0,1 or 2 and r5, r7, r11 = 0 or 1. Then f = f2f3f5f7f11 where fp

is an automorphisms of order prp commuting with each other. Thus, they can be
diagonalised simultaneously. Therefore to classify automorphisms of a given order,
it suffices to intersect the corresponding B’s in the list, after independent scaling and
permutation of coordinates, inside the complete linear system P

(
H0(P5,O(3))

)
. Of

course it may end up with an empty family or a family consisting of only singular
members.

EXAMPLE 4.5. We investigate the example of Fermat cubic fourfold X = (x3
0 +

x3
1 + x3

2 + x3
3 + x3

4 + x3
5 = 0). We know that (cf. [19, 14]) its automorphism group is

Aut(X) = (Z/3Z)5
� S6, which is generated by multiplications by third roots of unity

on coordinates and permutations of coordinates. Using Griffiths’ residue description
of Hodge structure as in the proof of Lemma 3.2, we find that

Autpol,symp(F(X)) = {
f ∈ Aut(X) | f ∗|H3,1(X) = id

} = (Z/3Z)4
� A6,

where each element has the form:

[x0, x1, x2, x3, x4, x5] �→ [xσ (0), ω
i1 xσ (1), . . . , ω

i5 xσ (5)],

where ω = e
2π

√−1
3 , i1, . . . , i5 = 0, 1 or 2 with sum i1 + · · · + i5 divisible by 3, and σ ∈ A6

is a permutation of {0, 1, . . . , 5} with even sign.
Then X is

• not in Family I, II, IV-(4), IV-(5) or V-(3) simply because X does not admit
automorphisms of order 11, 7, 9 or 8;

• in Family III, since [x0, x1, x2, x3, x4, x5] �→ [x1, x2, x3, x4, x0, x5] is an order 5
automorphism which induces a symplectic automorphism on its Fano variety of
lines. The eigenvalues of the corresponding permutation matrix are 1, 1, ζ, ζ 2, ζ 3, ζ 4,
thus it is exactly the automorphism in the list (up to a linear automorphism of P5).

• in IV-(1), IV-(2), IV-(3) obviously;
• in V-(1) and V-(2), because [x0, x1, x2, x3, x4, x5] �→ [x1, x2, x3, x0, x5, x4] is an order

4 automorphism inducing a symplectic automorphism of its Fano variety. The
eigenvalues are 1, 1,−1,−1,

√−1, −√−1, therefore the automorphism is the one
given in V-(2) (up to a linear automorphism of P5).

5. Fixed loci. We calculate the fixed loci of a generic member for each example in
the list of Theorem 1.1. Firstly, we make several general remarks concerning the fixed
loci:
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REMARK 5.1. For a smooth variety, the fixed locus of any automorphism
of finite order is a (not necessarily connected) smooth subvariety. For a proof,
cf. [10, Lemma 4.1]. If furthermore the variety is symplectic and the finite-order
automorphism preserves the symplectic form, then the components of the fixed locus
are symplectic subvarieties. Indeed, for a given fixed point, the automorphism acts
also on the tangent space at this fixed point, preserving the symplectic form, where
the tangent space of the component of the fixed locus passing through this point is
exactly the fixed subspace. However, since the fixed subspace is orthogonal to the other
eigenspaces with respect to the symplectic form, it must be a symplectic subspace. As
a consequence, the fixed locus is a (smooth) symplectic subvariety.

According to the above remark, in the case of this paper, the fixed loci must be
disjoint unions of (isolated) points, K3 surfaces and abelian surfaces, and we will see
that all three types do occur in the list in Theorem 1.1.

We now describe the fixed loci in our classification. For a cubic fourfold X with
an action f , we denote f̂ the induced action on F(X). Then the fixed points of f̂ in
F(X) are the lines contained in X which are preserved by f . Since any automorphism
of P1 admits two (not necessarily distinct) fixed points, it suffices to check for each line
joining two fixed points of f in X whether it is contained in X . In the following, we
choose to give an outline only for new or interesting families in our list which have not
been treated before, while referring to the literature for the complete result.

Let P0 := [1, 0, 0, 0, 0, 0], P1 := [0, 1, 0, 0, 0, 0], . . . , P5 := [0, 0, 0, 0, 0, 1]. Denote
by PQ the line joining two points P and Q. We have explicit descriptions of the fixed
loci:
Family I: the five fixed points correspond to P0P2,P0P3, P1P3, P1P4, P2P4.
Family II: the nine fixed points are given by the following nine lines: P0P2, P0P3, P0P4,
P1P3, P1P4, P1P5, P2P4, P2P5, P3P5.
Family III: let C(x4, x5) + R(x0, . . . , x5) be the defining equation of a cubic fourfold in
this family, where C is a homogeneous polynomial of degree 3, and R is a polynomial
with the degrees of x4 and x5 at most 1. Then the 14 fixed points correspond to P0P2,
P1P3 and Pi, [0, 0, 0, 0, x4, x5] for 0 ≤ i ≤ 3 and [x4, x5] being solutions of C.
Family IV-(1): let C(x0, . . . , x3) + R be the defining equation of a cubic fourfold in
this family, where C is of degree 3 and each term of R contains x4 or x5. The fixed
locus corresponds to the 27 lines contained in the cubic surface defined by C.
Family IV-(2): let C1(x0, x1, x2) + C2(x3, x4, x5) be the defining equation of a cubic
fourfold in this family, where C1, C2 are of degree 3. Let E1, E2 be the elliptic curve
defined by C1 and C2 respectively, then the fixed locus is isomorphic to the abelian
surface E1 × E2. See [17], [13].
Family IV-(3): let C1(x0, x1) + C2(x2, x3) + C3(x4, x5) + R be the defining equation
of a cubic fourfold in this family, where Ci are of degree 3 while each term of R is
square-free. Then the fixed locus corresponds to the 27 lines QikQjl for 0 ≤ i < j ≤ 3
and k, l = 1, 2, 3, where Qi1, Qi2, Qi3 are the three points satisfying the equation Ci.
Family IV-(4): the nine fixed points correspond to the following nine lines: P0P3, P0P4,
P0P5, P1P3, P1P4, P1P5, P2P3, P2P4, P2P5.
Family IV-(5): let C(x3, x4) + a0x2

0x1 + a1x2
1x2 + a2x2

2x0 + a5x3
5 be the defining

equation of a cubic fourfold in this family, where C is of degree 3. Let Q1, Q2, Q3

be the three points on the line P3P4 satisfying C. Then the fixed locus in F(X)
corresponds to the 9 lines: PiQj for i = 0, 1, 2 and j = 1, 2, 3.
Family V-(1): the fixed locus is a K3 surface, see [8].
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Family V-(2): the fixed point set of f , viewed as an automorphism of P5, consists of
the disjoint union of P0P1, P2P3 and P4, P5. The lines P2P3 and P4P5 are contained
in X ; there are three points Q1, Q2, Q3 ∈ P0P1 such that QiPj is contained in X ,
for i = 1, 2, 3 and j = 4, 5; there are two points Q4, Q5 ∈ P2P3 such that Q4P4 and
Q5P5 are contained in X ; finally for each Qi ∈ P0P1, 1 ≤ i ≤ 3, there exist two
points on P2P3 such that the joining line is contained in X . Thus, f̂ has altogether
2 + 3 × 2 + 2 + 3 × 2 = 16 isolated fixed points.
Family V-(3): the fixed points are given by the six lines: P1P4, P1P5, P2P3, P2P4, P3P5,
P4P5.
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