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Introduction

Let F be an abelian group, i be a non-negative integer, we have the functor of
singular cohomology with coefficient in F:

Hi(−, F) : T opop → Ab,

from the category of topological spaces to the category of abelian groups.
Thanks to the representability of singular cohomology by Eilenberg-Maclane
spaces [Hat02, Theorem 4.57], we find that the group consisting of the mor-
phisms between two such functors HomFct(Hi(−, F),H j(−, F′)) is H j(K(i, F), F′),
where K(i, F) is the Eilenberg-Maclane space representing the singular coho-
mology functor Hi(−, F), we call such natural transformations cohomological
operations. In ‘generic’ cases, there are only some obvious cohomological op-
erations, for example, the zero map, the identity map if i = j and F = F′,
or more generally, the change of coefficient map if i = j with a morphism of
abelian groups F → F′, and a little bit less obviously, Bockstein homomor-
phisms, etc. In [Ste62], Steenrod constructed, in the case F = Z/pZ with p
a prime number, some series of cohomological operations which are not at all
obvious, called Steenrod squares if p = 2 and reduced Steenrod powers if p is an
odd prime number. They measure the obstruction to lift the commutativity of
cup-product to the level of co-chain. These cohomological operations give more
algebraic structures on cohomology groups, namely the graded A(p)−module
structures, where A(p) is the graded Steenrod algebra.

This extra algebraic structure turns out to be quite important in some cir-
cumstances, for instance, the famous counter-example of the integral Hodge
conjecture provided by Atiyah and Hirzebruch [AH62], relies on the coho-
mological operations to prove some torsion classes they constructed cannot
be algebraic. It is natural to consider the analogies for algebraic cycles. In
[Voe03] Voevodsky constructs the analogous cohomological operations on his
motivic cohomology, and hence on the mod p Chow groups. After that, Bros-
nan [Bro03] also constructs a series of homological operations on the Chow
groups in a more elementary way. We need to mention that it remains a ques-
tion whether Brosnan’s cohomological operations coincide with the restriction
on the usual Chow groups of Voevodsky’s cohomological operations defined for
the motivic cohomology groups.

In this note, we want to follow the article of Brosnan [Bro03] to generalize
the cohomological operations in the context of Chow groups, which are com-
patible with the Steenrod’s cohomological operations on singular cohomology
groups under the cycle class map for complex algebraic varieties.

The first main result is the following:

Theorem 0.1 (=Theorem 3.18) Let X be a smooth n-dimensional alge-
braic variety over a field k, A∗(X) be the Fp-coefficient Chow group of X, set
A∗(X) = An−∗(X). We have a series of operations (Definition 3.26): for any i,

S i : Aq(X)→ Aq+i(p−1)(X)

for any non-negative integers q, satisfying:
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(a)(Additivity) Each S i is additive, i.e. a homomorphism of abelian groups;

(b)(Functoriality) For any morphism between smooth varieties f : X → Y,
and any integers i, q, the operation S i commutes with the l.c.i.1 pull-back
f !.

f !S i = S i f ! : Aq(Y)→ Aq+i(p−1)(X)

(c)(Range) S i : Aq(X)→ Aq+i(p−1)(X) is the zero map if i > q or i < 0;

(d)(p-th power) S q : Aq(X)→ Apq(X) is the p-th power map, that is, x 7→ xp,
the intersection product 2;

(e) S 0 = id;

(f) S 0([X]) = [X] and S i([X]) = 0 for any i , 0;

(g)(Cycle map) If the base field k = C, then S i is compatible with the topo-
logical Steenrod operations in the following sense:
If p = 2, then cl ◦S i = Sq2i ◦ cl:

Aq(X) S i
//

cl
²²

Aq+i(X)

cl
²²

H2q(X; Z/2)
Sq2i

// H2q+2i(X; Z/2)

where Sq2i is the Steenrod square, c.f. Theorem 3.6.

If p is an odd prime, then cl ◦S i = Pi ◦ cl:

Aq(X) S i
//

cl
²²

Aq+i(p−1)(X)

cl
²²

H2q(X; Z/p) Pi
// H2q+2i(p−1)(X; Z/p)

where Pi is the reduced Steenrod power, c.f. Theorem 3.7.

(h)(Cartan formula) For any x ∈ Aq(X), y ∈ Ar(X), we have

S k(x · y) =

k∑

i=0

S i(x) · S k−i(y)

in Aq+r+k(p−1)(X), or more neatly, S •(x · y) = S •(x) · S •(y) where S • is the
total Steenrod operation and the product · is the intersection product 3;

1 f is l.c.i., see the argument before the proof of Proposition 2.6
2[Ful98] Chapter 8
3[Ful98] Chapter 8
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(i)(Adem relations) For any 0 < a < pb, we have:

S a ◦ S b =

ba/pc∑

j=0

(−1)a+ j
(

(p−1)(b− j)−1
a−p j

)
S a+b− j ◦ S j

In other words, for a smooth variety, the Fp-coefficient graded Chow group
is an graded S (p)-module, and such module structure is natural with respect
to the l.c.i pull-backs, where S (p) is the reduced Steenrod algebra.

As for the property of the operations under push-forwards, we introduce
another S (p)-module structure on Chow groups, called twisted Steenrod oper-
ations defined by

U•(t) := w(TX, t)−1 ◦ S •(t),

where TX is the tangent bundle of X, w is certain characteristic class, and S •

is the total Steenrod operation mentioned above.
Here is the second main result:

Theorem 0.2 (=Theorem 4.5) Let f : X → Y be a morphism between
smooth varieties, and we suppose that f is projective in the strong sense,
that is, f admits a factorization f : X ↪→ Y × Pr → Y, where the first map is a
closed immersion, and the second one is a trivial projective bundle. Then the
operations U j commutes with the proper push-forward f∗:

f∗ ◦ U j = U j ◦ f∗ : Ai(X)→ Ai−(p−1) j(Y)

i.e. the following diagram is commutative:

Ai(X)

f∗
²²

U j
// Ai− j(p−1)(X)

f∗
²²

Ai(Y) U j
// Ai− j(p−1)(Y)

Thanks to this result, we can extend the twisted Steenrod operations U
to any algebraic variety over k, giving an S (p)-module structure on its Fp

coefficient Chow groups (Theorem 4.12). And we will generalize the above
result that such S (p) module structures are natural with respect to any proper
push-forward.

The main techniques used to construct the Steenrod operations in Chow
theory is parallel to the method used in [Ste62], namely, the equivariant Chow
groups in the place of equivariant cohomology groups, and of course some
equivariant intersection theory is involved.

This note is organized as follows. We start in §1 with some review of
basic notions concerning the group action, for example, freeness, geometric
quotients, principal homogenous spaces. We reconstruct the equivariant in-
tersection theory in §2, in the spirit of [EG98] and [Bro03]. In §3, we first
summarize the essential properties characterizing the Steenrod operations in
algebraic topology, define the reduced Steenrod algebra, then we state the first
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main result (Theorem 0.1) summarizing the analogous properties of the Steen-
rod operations on Chow groups that we are going to construct, and introduce
the twisted Steenrod operations, prove the second main result (Theorem 0.2),
and we will explain how to extend this twisted operations to an arbitrary va-
riety. §4 deals with the explicit construction of the Steenrod operations on
Chow groups, including the proof of the first main result (Theorem 0.1). Fi-
nally, we give an application of the Steenrod operations in §5, to prove the
degree formula following [Mer03].

In this note, the terminology ‘variety’ means an integral (=irreducible and
reduced) separated scheme of finite type defined over a field.

1 Generalities on Group Actions

In this preliminary section, we will talk about some notions concerning the
group actions, such as quotients, principal bundles, etc.

Let k be a field, k be a fixed algebraic closure of k. Let G be a linear
algebraic group over k, and X an algebraic variety defined over k.

1.1 Group Actions, Freeness

The standard reference is [MFK94].

Definition 1.1 (Actions) Let X be an algebraic variety over k, and G be a
linear algebraic group over k. An action of G on X is a k-morphism:

σ : G × X → X

satisfying the following properties:

(a)(Associativity) The following diagram is commutative:

G ×G × X
µ×idX

²²

idG ×σ // G × X
σ

²²

G × X σ
// X

where µ : G × G → G is the multiplication morphism of the algebraic
group G;

(b)(Identity) The composition

X � Spec k × X
e−→ G × X

σ−→ X

equals to idX,

where e : Spec k → G is the morphism of ‘the neutral element’ of G.

Definition 1.2 (Stabilizer) Let the linear algebraic group G act on an al-
gebraic variety X, σ : G × X → X be the action, we define:
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1. the (universal) stabilizer S is the X-scheme defined by the fibre product:

S
�i

²²

ω // X
∆X

²²

G × X
Ψ=σ×pr2

// X × X

Thus S is a group scheme over X, i.e. a group object in the category
Sch /X, in fact, since i is a closed immersion, S is a closed subgroup
scheme of G × X over X.

2. For any point f ∈ X(T ), that is a morphism f : T → X, define S( f ) the
stabilizer of f, as the fibre of S at the point f :

S( f )

�
²²

// S
ω

²²

T
f

// X

In particular, for any geometric point x of X, x : Spec(k) → X, the
stabilizer of x, S(x), is by definition above just the fibre of S at x, it is
a closed subgroup scheme of Gk, in particular, S(x)(k) is a subgroup of

G(k).
S(x)

i′
²²

// S
i

²²

Gk̄

²²

// G × X
pr2

²²

Spec(k̄) x // X

Thus, roughly speaking, the group scheme S is a family of subgroups of
G parameterized by X, and the subgroup as the fiber over a point x of X
is just the stabilizer of x under the action of G.

Definition 1.3 Let the linear algebraic group G act on an algebraic variety
X, σ : G × X → X be the action, and denote

Ψ : G × X
σ×pr2−−−−→ X × X.

We define:

1. the action is called closed if the orbit of any geometric point is closed in
Xk̄;

2. the action is called separated if the image of Ψ : G × X
σ×pr2−−−−→ X × X is

closed;

3. the action is called proper if Ψ : G × X
σ×pr2−−−−→ X × X is proper;
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4. the action is called transitive if Ψ : G × X
σ×pr2−−−−→ X × X is surjective;

5. the action is called free or schematically-free if Ψ : G × X
σ×pr2−−−−→ X × X is

a closed immersion;

6. the action is called geometrically free if the stabilizer of every geometric
point is trivial, that is, for any geometric point of X, say x : Spec(k̄)→ X,
the stabilizer S(x), i.e. the fibre of S on x, is trivial;

7. the action is called set-theoretically free if for any geometric point of X,
say x : Spec(k̄) → X, its set-theoretical stabilizer is trivial, that is, the
stabilizer of x under the action of group G(k̄) on X(k̄) is trivial.

Remark 1.4 (Transitivity) Keep the notations as above. The transitivity
of the action σ is equivalent to the surjectivity of Ψ by definition, which is
further equivalent to the surjectivity of Ψ(k̄), on the level of geometric points,
thanks to [Gro60, Page 147 Proposition 6.3.10]. However, Ψ(k̄) is surjective
if and only if the action on the geometric points σ(k̄) : G(k̄) × X(k̄) → X(k̄) is
transitive. Therefore, the notion of transitivity defined above coincides with
the naive notion of transitivity on the level of geometric points.

Proposition 1.5 (Set-theoretical freeness versus geometrical freeness)
Let G be a linear algebraic group acting on a variety X as above, and ω : S → X
be the (universal) stabilizer. Then it admits an identity section eX : X → S.
Suppose either one of the following is satisfied:

• char(k) = 0; or

• G is finite étale.

Then the action is set-theoretically free if and only if it is geometrically free.

Proof. In fact, S is a group scheme over X, ω is the structure morphism, it
admits an identity section eX : X → S, ω ◦ eX = idX, induced by the neutral
element e : Spec k → G. For any geometric point x : Spec(k̄)→ X, the stabilizer
of x, denoted by S(x), is the fibre of ω : S → X over x and the set-theoretical
stabilizer of x is just the k̄-point of the k̄-group scheme S(x):

StabG(k̄)(x) = S(x)(k̄)

Therefore, geometrical freeness of the action, which means S(x) is trivial for
any closed point x, implies StabG(k̄)(x) is a trivial group by the above displayed
formula, thus the action is set-theoretically free.

Conversely, set-theoretical freeness of the action implies S(x)(k̄) is trivial
for every closed point x. We notice that under either condition listed in the
statement of the proposition, S(x) is a reduced algebraic group: in character-
istic zero, it is a general theorem of Cartier (cf.[DG70, II §6,1.1]), while if G
is finite étale, every subgroup of G is obviously reduced. Therefore, S(x) is
reduced with only one closed point, by Nullstellensatz, S(x) itself is trivial, as
wanted. �
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Proposition 1.6 Let G be a linear algebraic group acting on a variety X,
suppose either one of the following is satisfied:

• char(k) = 0; or

• G is finite étale.

then the action is schematically free if and only if it is proper and set-theoretically
free.

We remark that by Proposition 1.5, we have, under the assumptions men-
tioned in the statement, the equivalence between set-theoretical freeness and
geometrical freeness.

Proof. Firstly, we assume that the action is (schematically) free, i.e. Ψ :
G × X → X × X is a closed immersion (hence proper), then by base change
ω : S → X is also a closed immersion (hence proper), and in particular, any
fibre of ω is trivial. So we have ‘free’ implies ‘set-theoretically free’ and ‘proper’.

For the converse, see [EG98, Lemma 8]. We reproduce the proof here, the
issue is to prove Ψ : G × X → X × X is a closed immersion. To this end, by
assumption, the fibers of Ψ are proper, and at the same time affine (since it
is a translation of a closed subgroup of G), thus finite. Therefore Ψ is quasi-
finite and proper, and hence finite by Zariski’s Main Theorem ([Gro66, Page
45, 8.12.6]). Now we look at an arbitrary geometric fibre of Ψ, say, over the
closed point (x, y) ∈ X(k̄) × X(k̄). This fibre F(x,y) is the transporter of y to x, it
can also be characterized as the fibre over {x} of

Gk̄ ' Gk̄ ×̄
k
{y} → Xk̄,

here we write {x} and {y} for the Spec k̄ corresponding to x and y respectively.
By definition, F(x,x) is the stabilizer of x, which is the fibre over {x} of

Gk̄ ' Gk̄ ×̄
k
{x} → Xk̄.

If F(x,y) is nonempty, then any of its geometric point g defines the right trans-
lations τg and τg−1 of Gk̄, which make the following diagram commutative:

Gk̄ ' Gk̄ ×k̄{y}
τg−1

//

&&LLLLLLLLLLL
Gk̄ ' Gk̄ ×k̄{x}

τg
oo

xxrrrrrrrrrrr

Xk̄

In particular, the two fibres are isomorphic as varieties over k̄. Thanks to
Proposition 1.5, the stabilizer F(x,x) is trivial, hence the transporter F(x,y) is
also trivial. Now we can conclude that Ψ is a closed embedding, by applying
[Gro66, Page 42, 8.11.5]. �
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1.2 Quotients

Definition 1.7 (Invariants) Let G = Spec H be a linear algebraic group over
a field k, defined by a commutative Hopf algebra (H, ·, 1,∆, ε), where · is the
(commutative) multiplication, 1 is the unit for the algebra structure, ∆ : H →
H⊗k H is the comultiplication, ε : H → k is the counit map. Let X = Spec A be
an affine algebraic variety over k, where A is a (commutative) reduced finitely
generated k-algebra. Suppose we have an action of G over X, defined by the
map

ρ : A→ H ⊗k A

giving an H-comodule structure on A.
The invariants AG is defined to be the subring of A consisting of the ‘cofixed’

elements of A by H:
AG := {a ∈ A|ρ(a) = 1 ⊗ a}

Definition-Proposition 1.8 (Affine case: algebraic quotient) Suppose that
G is a linear algebraic group over k, acting on an affine k-variety X = Spec A,
(A is a finitely generated reduced k-algebra), the algebraic quotient X �G is
by definition the affine scheme defined by the invariants:

X �G := Spec AG

We mention that if the algebraic group G is reductive, X�G is in fact a k-variety,
i.e. the invariants AG is also a reduced finitely generated k-algebra.

Proof. [MFK94] P27, Chapter 1, §2. �

For more about the algebraic quotient in the affine case, see the end of this
subsection, Theorem 1.20.

Definition 1.9 (Categorical quotient) Given an action σ : G × X → X, a
pair (Y, φ) consisting of a variety Y, and a morphism φ : X → Y is called a
categorical quotient, if the following diagram is cocartesian:

G × X
pr2

²²

σ // X
φ

²²

X
φ

// Y

(1)

That is, the above diagram commutes, and Y is the universal push-out, as
indicated in the following diagram:

G × X
pr2

²²

σ
// X
φ

²²

¶¶

X
φ

//

,,

Y
∃!

ÃÃ

∀Z
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We say a categorical quotient is universal, if it furthermore satisfies the con-
dition below:

• for any Y ′ → Y, the base change φ′ : X′ = X ×Y Y ′ → Y ′ is always a
categorical quotient,

If in the above condition, we only demand the base-change property is
satisfied by any flat base change Y ′ → Y, such categorical quotient is called
uniform.

Remark 1.10 (1) A categorical quotient does not always exist, but if it
exists, it is unique up to unique isomorphism by the universal property,
so we can call it ‘the’ categorical quotient is this case;

(2) The algebraic quotient defined in Definition-Proposition 1.8, is actually
the categorical quotient in the category of affine k-varieties. Indeed, for
any affine k-variety Z = Spec B, and any morphism X → Z invariant under
the action of G, that is, a morphism of k-algebra B → A whose image
is contained in the cofixed subring AG, we have of course the unique
factorization B → AG ↪→ A corresponding to the unique factorization
X → Y → Z.

Here is a useful result for recognizing categorical quotient.

Proposition 1.11 Let a linear algebraic group G act on an algebraic variety
X, and suppose we have the following commutative diagram:

G × X
pr2

²²

σ // X
φ

²²

X
φ

// Y

satisfying:

(i) OY is the subsheaf of invariants of φ∗(OX);

(ii) If W is an invariant closed subset of X, then φ(W) is closed in Y; if {Wi}i∈I

is a set of invariant closed subsets of X, then:

φ(∩i∈IWi) = ∩i∈Iφ(Wi).

Then φ : X → Y is the categorical quotient, and moreover, φ is submersive.

Proof. See [MFK94] Page 8, Remark (6). �

Mumford defined the following fundamental notion of geometric quotient,
c.f: [MFK94, Definition 0.6, Page 4].
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Definition 1.12 (Geometric quotients I) A pair (Y, φ) consisting of a va-
riety Y, and a morphism φ : X → Y is called a geometric quotient, and denoted
by Y = X/G, if we have the diagram (1):

G × X
pr2

²²

σ // X
φ

²²

X
φ

// Y

which satisfies the following properties:

(1) The diagram commutes;

(2) φ is surjective, and the image of Ψ : G × X
(σ,pr2)−−−−−→ X × X is X ×Y X;

(3) φ is a submersion, i.e. a subset U ⊂ Y is open, if and only if φ−1(U) is
open is X;

(4) the structure sheaf OY is the sub-sheaf of φ∗OX consisting of invariant
functions. It is equivalent to the exactness of the following sequence:
(denote ψ = φ ◦ σ = φ ◦ pr2)

0→ OY → φ∗OX
σ]−pr2

]

−−−−−→ ψ∗(OG×X) (2)

Remark 1.13 Here is a reformulation of the second condition above. By
the diagram (1), we have a natural factorization of Ψ through X ×Y X as the
following diagram shows:

G × X

pr2

""

σ

&&

Ψ
%%

X ×Y X

�
²²

// X
φ

²²

X
φ

// Y

thus this condition is equivalent to Ψ is surjective (in the sense of scheme).

We can also define the notion of universal geometric quotient and uniform
geometric quotient in the way of Definition 1.9.

Proposition 1.14 A geometric quotient is automatically a categorical quo-
tient. Hence the geometric quotient (if it exists) is unique up to unique iso-
morphism.

Proof. [MFK94] Chap 0, §2,Prop0.1, Page 4. �
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Proposition 1.15 (Faithfully Flat Descent) Let a linear algebraic group
G act on an algebraic variety X, and (Y, φ : X → Y) fitting into a diagram as
(1). Let α : Y ′ → Y be a morphism, and φ′ : X′ → Y ′ be the corresponding base
change of φ. Suppose that α is faithfully flat and quasi-compact, then (Y ′, φ′)
is a geometric quotient of X′ implies (Y, φ) is a geometric quotient of X. And
moreover, if the former one is a universal geometric quotient, then so is the
latter.

Proof. ([MFK94] Page 9, Remark 8) Firstly, we remark that in the definition
of geometric quotient, the condition 1, 2 is preserved by any base change and
have descent property for surjective (for example, faithfully flat) base change,
since, in general, surjectivity is stable by base change and have descent property
for surjective base change.
The third condition is not stable by base change in general. But it has the
descent property for faithfully flat (in fact, surjective and open suffice) base
change under the assumption of surjectivity of φ: let U be a subset of Y and
assume that V = φ−1(U) is open in X, we want to show that U is open. Indeed,
let U′ = α−1(U) be the pre-image of U in Y ′, and V ′ = φ′−1(U′) = α′−1(V) is
open in X, then by the condition 3 for φ′, U′ is open. Thus U = α(U′) is open,
since flat morphism is open.
The last condition is preserved by flat base change, since the base change of
the exact sequence (2)

0→ O′Y → φ∗O′X
σ′]−pr′2

]

−−−−−−→ ψ∗(OG×X′)

is just (2)⊗OYOY′ which is also exact by the flatness of Y ′ over Y.
And the last condition has descent property for faithfully flat and quasi-compact
base change, since the sequence (2)⊗OYOY′ is exact if and only if the sequence
(2) is. �

We give another equivalent (but sometimes more practical) definition of
geometric quotients, following [CTS07] Definition 2.7 :

Definition 1.16 (Geometric quotients II) Let X be an algebraic k-variety
equipped with an action of a linear algebraic group G. A geometric quotient
of X by G is a k-variety Y equipped with a k-morphism φ : X → Y such that:

(1’) φ is constant on G-orbits;

(2’) φ induces a bijection between X(k)/G(k) and Y(k);

(3’) φ is open;

(4’) For any open subset V ⊂ Y, the natural morphism OY(V)→ OX(φ−1(V))G

is an isomorphism.

To prove the equivalence of the two definitions of geometric quotients, we
need the following lemma [MFK94, Page 6, Remark(4)]:
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Lemma 1.17 If (Y, φ) is a geometric quotient 4 of X by G , then φ is univer-
sally open (hence universally submersive 5).

Proof. Consider the diagram (1):

G × X
pr2

²²

σ // X
φ

²²

X
φ

// Y

Firstly, one remarks that the action map σ : G × X → X is universally open.
Indeed, σ can be factorized as:

σ : G × X
id×σ−−−→ G × X

pr2−−→ X

where the first map is an isomorphism since in the point of view of functor of
points, the first map can be written as (g, x) 7→ (g, gx), which has an obvious
inverse (g, x) 7→ (g, g−1x), and the second projection map is universally open.

Now let U ⊂ X be an open subset of X. Then V = pr−1
2 (U) = G × U is

open. U′ := σ(V) is open since σ is. And U′ is moreover G-invariant. So
U′ = φ−1(φ(U′)), and φ is submersive by assumption, we get φ(U′) is open. It
is obvious that φ(U′) = φ(U), thus φ(U) is open. To complete the proof of the
lemma, it suffices to remark that the above argument is also valid for a base
change of the diagram, since we only used the facts that σ is open, and pr2 is
surjective, and U′ is G-invariant. �

Now we can prove the equivalence of the two definitions of geometric quo-
tients, the argument is due to B.Kahn.

Proof. (Equivalence of Definitions 1.12 and Definition 1.16)
In the following proof, we will use (1)(2)(3)(4) to refer to the conditions in
Definition 1.12, and (1’)(2’)(3’)(4’) for the conditions in Definition 1.16.

The equivalence between (1) and (1’), as well as that of (4) and (4’), are
clear. (2) is equivalent to the surjectivities of φ and Ψ by the Remark 1.13.
Recall that the theorem of Fogarty and Hashimoto [Has04] says that Y is of
finite type, therefore one can apply Nullstellensatz, to conclude that (2) is
equivalent to the surjectivities on the level of closed points:

Ψ(k̄) : G(k) × X(k)� X(k) ×Y(k) X(k);

and
φ(k̄) : X(k)� Y(k),

hence is equivalent to (2’).

4In the sense of Mumford, as in Definition 1.12, at present. We will prove that the two
definitions are equivalent.

5Surjective and open together imply submersive(c.f.[Gro66, 15.7.8])
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As for (3) and (3’), assuming first the conditions (1)(2)(3)(4) in Definition
1.12, then by Lemma 1.17, φ is universally open. Conversely, assuming the
conditions (1’)(2’)(3’)(4’) of Definition 1.16. Then we know that φ is surjective
and open, thus submersive (c.f.[Gro66, 15.7.8]). The proof is complete. �

Here is an important tool to verify geometric quotients:

Proposition 1.18 Let G be a linear algebraic group, and X an algebraic nor-
mal variety with an action σ : G × X → X. Let Y be an irreducible, normal
variety with the function field K(Y) of characteristic 0, and let φ : X → Y be a
dominant morphism fitting in to a commutative diagram (1):

G × X
pr2

²²

σ // X
φ

²²

X
φ

// Y

Suppose that for any geometric point y : Spec(k̄)→ Y, the geometric fibre of φ
over y, contains at most one orbit under the action of Gk̄ = G ×k k̄ 6. Then φ
is universally open, and (Y, φ) is a geometric quotient for σ.

Proof. [MFK94] Chapter0, §2, Proposition 0.2, Page 7. �

We remark that by Lemma 1.17, in the above proposition, the universal
openness is in fact a consequence of geometric quotient.

In many circumstances, the converse of Proposition 1.18 holds: we have
the following criterion of geometric quotient (c.f.[CTS07, Proposition 2.8]):

Proposition 1.19 (Criterion of geometric quotient) Suppose k is alge-
braically closed, and of characteristic 0. Let X be a normal algebraic variety
over k, equipped with an action of a linear algebraic group G over k. Then a k-
morphism φ : X → Y is a geometric quotient if and only if the three conditions
below hold:

1. φ is constant on G-orbits;

2. Y is the orbit space of the geometric points, that is, φ induces a bijection
X(k)/G(k)→ Y(k);

3. Y is normal.

Proof. Condition 1 is the same as to say the diagram (1) commutes. Condi-
tion 2 is equivalent to there is only one orbit in each geometric fibre. Therefore
by Proposition 1.18, φ : X → Y is the geometric quotient.

6Let y : Spec k̄ → Y be a geometric point, we have a natural action of G ×k k̄ on the

geometric fibre X ×Y Spec k̄: (G ×k k̄) ×k̄ (X ×Y k̄) = G ×k X ×Y Spec k̄
σ×id−−−→ X ×Y Spec k
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Conversely, let φ : X → Y be a geometric quotient. Condition 1 is trivial.
Condition 2 follows from Definition 1.16, (if one wants to see it from Mumford’s
definition, c.f. the remarks in [MFK94, Page 4 Definition 0.6 (ii)]). We only
need to show that Y is normal, under the assumption that X is normal.

The argument to prove the normality here is quite close to the reasoning
in the classical case that G is a finite group. Because of the condition (4’) in
Definition 1.16, we can restrict ourselves in the affine case that X = Spec A,
with A a normal domain, and Y = Spec B, where

B = AG = {a ∈ A|ρ(a) = 1 ⊗ a}

the subdomain of invariants (c.f. Definition 1.7), here we write ρ : A→ H ⊗ A
for the group action, where H is the commutative Hopf algebra representing G.
Set L = Frac(A) and K = Frac(B), a subfield of L. Suppose we have an element
b/b′ ∈ K (b′ , 0) which is integral over B. When viewed as an element in L, it
is a fortiori integral over A, therefore b/b′ = a ∈ A, by the assumption that A
is normal. We apply ρ to the equation b = ab′, to get

1 ⊗ b = ρ(a) · (1 ⊗ b′) ∈ H ⊗ A,

however, we have clearly

1 ⊗ b = (1 ⊗ a) · (1 ⊗ b′) ∈ H ⊗ A.

Remark that H ⊗ A is still a domain (G and X are both integral varieties, and
so is G×X, since k is algebraically closed), therefore by the above two displayed
equations, we get ρ(a) = 1 ⊗ a, that is, b/b′ = a ∈ B = AG, as wanted. �

Let us return to the affine case:

Theorem 1.20 (Algebraic quotients by reductive groups) Let X be an
affine scheme over k, G be a reductive algebraic group over k acting on X.
Then

(1) The uniform categorical quotient exists: φ : X → Y, where Y is affine, φ
is universally submersion;

(2) If X is moreover of finite type over k, then so is the categorical quotient
Y;

(3) If char(k) = 0, then the categorical quotient is in fact universal; Moreover,
if X is noetherian, then so is the categorical quotient Y;

(4) The categorical quotient φ : X → Y is a geometric quotient if and only if
the action of G on X is closed. Moreover, if char(k) = 0, it is actually a
universal geometric quotient.
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Proof. If X = Spec A, H is the Hopf algebra represents G, and the action
σ : G × X → X corresponds to ρ : A → A ⊗k H morphism of k-algebras which
gives A a comodule structure. Denote AG = {a ∈ A|ρ(a) = a⊗ 1} the sub-ring of
invariants of A under the action of G. Then in fact Y = Spec AG. The proof in
the case of characteristic 0 uses the Reynolds operator, Proposition 1.11, and
three key lemmas. See [MFK94, Page 27 Thm 1.1, Page 30 Amplification 1.3
and Page 194 Thm A.1.1] for details. �

1.3 G-Principal Bundles

Definition 1.21 (G-principal bundles) Let G be a linear algebraic group
over k, X be a k-variety equipped with a G-action σ, and a k-morphism φ :
X → Y fitting into a commutative diagram (1):

G × X
pr2

²²

σ // X
φ

²²

X
φ

// Y

We will say X
φ−→ Y is a G-principal bundle, or a G-torsor, if

1. φ is faithfully flat ;

2. the above diagram is cartesian, i.e. the induced natural map X × G →
X ×Y X is an isomorphism.

Proposition 1.22 If X
φ−→ Y is a G-principal bundle, then (Y, φ) is a geometric

quotient of X by G, and the action of G on X is (schematically) free. In
particular, the above diagram is cartesian and cocartesian.

Proof. Indeed, the freeness is immediate from the isomorphism G ×k X →
X ×Y X, and the closed immersion X ×Y X → X ×k X.
To check it is an geometric quotient, as in the definition 1.12,
condition 1 is trivial;
condition 2, φ is surjective by faithfully flatness and X ×k G → X ×Y X is an
isomorphism thus surjective;
condition 3, φ is submersive since it is faithfully flat thus open and surjective;
condition 4, the sequence (2) becomes the following, where ψ := φ ◦ σ

0→ OY → φ∗OX
pr1

]−pr2
]

−−−−−−→ ψ∗(OX ×Y X) ' ψ∗(OG×X)

which is exact since OX is faithfully flat over OY (strict epimorphism)7 �

7Let B be an faithfully flat A-algebra, then the following Amitsur complex is exact[KO74]
Page 30, Prop 2.1, where the morphism is the alternative sum of ’face-maps’ :

0→ A→ B→ B ⊗A B→ B ⊗A B ⊗A B→ · · ·
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The important thing is the converse:

Theorem 1.23 Given X an algebraic variety over k, and G is a linear alge-
braic group acting on X. If the action is (schematically) free, and X admits a
geometric quotient (Y, φ), then φ : X → Y is a G-principal bundle.

For the proof, we refer to [MFK94] Page 16, Proposition 0.9.

Example 1.24 Let G be an algebraic group over k, and H a closed subgroup
of G, then π1 : G → G/H is an H-principal bundle, for the right H-action on
G by right translation; similarly, π2 : G → H\G is an H-principal bundle, for
the left H-action on G by left translation.

Definition 1.25 One says that a G-principal bundle π : X → Y is trivial (or

more precisely trivializable), if there is a G-equivariant Y-isomorphism ϕ : X
'−→

G × Y:

G × X
id×ϕ
' //

σ

²²

G ×G × Y
µ×id

²²

X
ϕ

' //

π
##FFFFFFFFF G × Y

pr2
yytttttttttt

Y

It is worth mentioning the result that a G-principal bundle π : X → Y, is trivial
if and only if it admits a section s : Y → X, i.e. π ◦ s = idY .

Here are two useful tricks to ‘trivialize’ some principal bundles.

Example 1.26 Let π : X → X0 be a G-principal bundle, then the pull-back

π′ : X ×X0 X → X

is a trivial G-principal bundle.
Indeed, π is faithfully flat implies the same for the base change π′, and the
diagram (1) is cartesian implies the same for the base changed diagram for
X ×X0 X. Thus π′ is a G-principal bundle. And since it admits a canonical
section, namely the diagonal: ∆X/X0 : X → X ×X0 X, so it is trivial.

Before going into the second trick, let us say something about the natural
correspondence between left actions and right actions.

Remark 1.27 (Left and right actions) A left G-action corresponds natu-
rally to a right G-action, and vice versa. Precisely, given a variety X with a left
G-action, then we can define the associated right G-action on X by x·g := g−1 ·x,
for any x ∈ X and g ∈ G. Here we are using the functors of points, to be more
formal, we could define the associated right G-action as the composition:

X ×G
id×ι−−−→ X ×G

τ−→ G × X
σ−→ X,

where ι is the morphism of ‘taking the inverse’ of the algebraic group G, and τ
is simply interchanging the two factors, and σ is the left action as before. And
similarly for the construction from a right action to its associated left action.
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Example 1.28 Let X be an algebraic variety, G be a linear algebraic group
acting on X. Consider X ×G, it can be equipped with two natural G-actions,
we indicate them on the level of functor of points as below, and for the later
reference, we will also give the formulation corresponding to the naturally
associated right action of G on X, discussed in Remark 1.27.

On one hand, the G-action can be simply the left translation on the second
factor:

G × (X ×G) → X ×G
g1, (x, g2) 7→ (x, g1g2);

On the other hand, we have the diagonal action:

G × (X ×G) → X ×G
g1, (x, g2) 7→ (g1x, g1g2) = (xg−1

1 , g1g2).

In fact, X × G with the above two G-space structures are isomorphic, here is
the (G-equivariant) isomorphism as G-spaces:

X ×G
'−→ X ×G

(x, g) 7→ (gx, g) = (xg−1, g),

where the space on the left hand side is equipped with the action on the second
factor by left translation, and the space on the right hand side is equipped with
the diagonal action. Since X ×G with the second-factor action is obviously a
trivial G-principal bundle with the base space X and the bundle map given by
the first projection, in virtue of the isomorphism given above, X ×G with the
diagonal action is also a trivializable G-principal bundle, with the base space
X, and the bundle map is defined by

φ : X ×G → X
x, g 7→ g−1x = xg.

Finally, we want to give a proposition which creates new principal bundles
from old ones.

Proposition 1.29 Suppose that E is the total space of a G-principal bundle,
and X is another algebraic variety with a (left) G-action, Assume one of the
following conditions:

1. X is (quasi-)projective with a linearized G-action 8; or

2. G is connected and X is equivariantly embedded as a closed sub-scheme
of a normal variety with G-action; or

3. G is special 9,

8[MFK94, Chapter 1, §3]
9Definition: A group is special if every principal bundle is locally trivial in the Zariski

topology. Examples: GLn,SLn,Sp2n. Conterexamples: PGLn,SOn, finite groups
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then E × X, equipped with the diagonal G-action, is the total space of a G-
principal bundle, denoted by E × X → E ×G X.

Proof. [EG98] Page 632, Prop 23. �

Here is the explanation for the notation E ×G X, appeared in the preceding
proposition. Under the natural correspondence of left and right action in
Remark 1.27, the diagonal action on E × X is given by:

G × (E × X) → E × X
g, (e, x) 7→ (ge, gx) = (eg−1, gx),

which explains the notation.

2 Equivariant Intersection Theory

We fix some notations throughout this section: let k be a field, G be a linear
algebraic group over k, X be a variety defined over k with a G-action, say
σ : G×X → X. And furthermore, we make the following technical assumption:

Assumption 2.1 As in Proposition 1.29, we assume that:

1. X is (quasi-)projective with a linearized G-action; or

2. G is connected and X is equivariantly embedded as a closed sub-scheme
of a normal variety with G-action; or

3. G is special.

In this section, we will write A j(X), A j(X) or A∗(X) for the usual Chow
groups, and the coefficient group(or ring) Λ will be suppressed, for example:
A j(X) means A j(X)⊗Λ. We write |X| for the dimension of X. All flat morphisms
are assumed to admit a relative dimension.

2.1 Equivariant Chow Groups

In algebraic topology, given a topological space X with a continuous action of
a topological group G, we can define the equivariant cohomology :

Hi
G(X; Z) = Hi(

X × EG
G

),

where EG is the universal cover of the classifying space BG, and G acts on the
product diagonally.

We intend to extend this notion in the setting of algebraic geometry, the
equivariant Chow group. To this end, we have to extend the notion of EG to
the algebraic setting. Here are three categorical substitutions of EG.

Recall that by a G-principal bundle, we mean an algebraic variety equipped
with a free G-action, such that the geometric quotient exists as a variety. We
write Rep(G) for the category of k-linear representations of G.
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Definition 2.2 (Categorical substitutions of EG) Let G be a linear al-
gebraic group over k, X be an algebraic variety over k with a G-action. We
define the following three categories:

1. The category EG:

Objects: G-invariant open sub-scheme U of a representation V ∈ Rep(G)
such that U is the total space of a G-principal bundle.

Morphisms: G-equivariant morphism of varieties.

We also write EGr for the full subcategory of EG consisting of the open
sub-schemes U ⊂ V such that the codimension of S = V − U in V is at
least r.

2. The category CEG:

Objects: the smooth total spaces of G-principal bundles;

Morphisms: G-equivariant morphisms.

3. The category FSEX G:

Strictly speaking, it is not a categorical substitution of the topological
EG in the algebraic context, but of the topological EG × X instead, In
particular, this is a category depending on X, as the notation suggests.

Objects: pE : E → X a G-equivariant smooth morphism with a relative
dimension nE, where E is the total space of a G-principal bundle 10;

Morphisms: G-equivariant morphisms compatible with the morphisms
to X.

We have the following natural functors:

EG
j−→ CEG

ιX−→ FSEX G (3)

where j takes an open sub-scheme (with free G-action admitting a geometric
quotient) of a representation to itself, and ιX takes any smooth variety U (with
free G-action admitting a geometric quotient) to p : U × X → X, where G
acts on U × X diagonally, by Assumption 2.1 we made in the beginning of this
section and applying Proposition 1.29, we find that U × X is indeed the total
space of a principal bundle, therefore ιX is well-defined. And finally we define
iX = ιX ◦ j : EG → FSEX G to be the composition of functors. We note that j
is fully-faithful, while ιX is only faithful.

Thanks to the principle that modifying a low dimensional subvariety does
not effect the higher dimensional Chow group, we intend to use the objects
in the above categories to ‘approximate’ the topological EG. But first of all,
we should check that they are non-vacuous, as explained in Totaro [Tot99]
Remark 1.4, or Colliot-Thélène and Sansuc [CTS07] Lemma 9.2:

10Attention: This G-principal bundle is not supposed to have X as its base. All we need
is the total space of a principal bundle.
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Proposition 2.3 (Algebraic approximations of EG) For any given non-
negative integer r, EGr, hence CEG and FSEX G are non-empty.

Proof. Take any faithful representation of G: G ⊂ GLn, there is a natural
embedding: G → GLN+n defined by:

g 7→
(

IN 0
0 g

)
(4)

where g ∈ G. We denote the image of (4) by G̃, a subgroup of GLN+n and
isomorphic to G.
Let U be the space of n × (N + n)-matrices of rank n, on which there is a
natural G action (by multiplication on the left through GLn). Consider also
the projection to the bottom n rows:

π : GLN+n → U

it is actually G-equivariant if we let G ' G̃ acts by left multiplication on GLN+n.
Define a subgroup of GLN+n:

H =

{(
GLN ∗

0 I

)}

It is easy to see that GLN+n /H ' U. Since the action of G on U is clearly free,
to prove that U is a principal G-bundle, it suffices to show that the geometric
quotient U/G exists, equivalently, GLN+n /Γ exists, where Γ is the subgroup of
GLN+n generated by H and the image of G̃. It is easy to verify that G̃ normalize
H, thus Γ = G̃ X H is the subgroup of GLn+N , consisting of all the matrices of
the form: (

GLN ∗
0 G

)

Γ is clearly a closed subgroup of GLN+n, hence the geometric quotient exists,
and U is a G-principal bundle. To complete the proof, we need to check the
codimension condition. Since U is an open sub-scheme of the representation
V consisting of all the n × (n + N)-matrices, with compliment S . The elements
in S are the matrices of rank< n, whose codimension is N + 1, which tends
to infinity with N, as wanted. As for the codimension calculation, see the
standard elementary lemma below, or one can just use the much more general
result [Ful98, lemme A.7.2]. �

Lemma 2.4 Let M, N, r be positive integers, such that r ≤ min{M,N}. Then
in the vector space of all M by N matrices, the subspace consisting of the
matrices of rank ≤ r is a closed subscheme of codimension (M − r)(N − r).

Proof. Write V for the vector space of all M by N matrices, and Xr for the
subspace consisting of the matrices of rank ≤ r. Since the rank is an upper
semi-continuous function on V, Xr is a closed subset of V. It is easy to see that
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the open subset Ur := Xr − Xr−1 of Xr, consisting of the matrices of rank r, is
homogenous under the action of GLM ×GLN . Indeed, let GLM act on the left
and GLN act on the right by:

GLM ×GLN ×Ur → Ur

(P,Q, x) 7→ PxQ−1.

The two actions are clearly commutative, thus define an action of GLM ×GLN

on Ur. It is elementary that this action is transitive over Ur since it is so on
the level of closed points, c.f. Remark 1.4. Therefore Ur is homogenous, hence
smooth, and to calculate the codimension of Xr in V, it is enough to calculate
the codimension of Ur in V (or in V − Xr−1) at any its (smooth) point, say, at

x0 =

(
Ir 0
0 0

)
, where Ir is the r × r identity matrix.

Now we deduce the local equations defining Ur (or equivalently Xr) at x0

by the following argument. Consider an M × N matrix x =

(
A B
C D

)
in V,

which is near x0 in the sense that x is in the Zariski open subset defined by
det(A) , 0. Here we have written x by blocs: A is of size r × r, and the sizes of
B, C, D follow correspondingly. After elementary operations the rank of x is
equals to the rank of

(
I 0

−CA−1 I

) (
A B
C D

)
=

(
A B
0 D −CA−1B

)
.

Therefore rank(x) ≤ r is equivalent to the system of equations

D = CA−1B

i.e. these (M − r)(N − r) equations are the local equations defining Ur. Since
every entry of D appears in this system of equations exactly once and linearly, it
follows that the Ur is locally a complete intersection in V−Xr−1, of codimension
(M − r)(N − r). �

We need an auxiliary equivariant Chow group defined for FSEX G.

Definition 2.5 (Auxiliary equivariant Chow groups for FSEX G ) Let
pE : E → X be an object in FSEX G, where E is a G-principal bundle, pE

is smooth of relative dimension nE. Define

A G
i (E) := Ai+nE−|G|(E/G)

where E/G is the geometric quotient as a variety.
We note here that given an object U of EG or CEG, in virtue of the natural

functors in (3), we have

A G
i (U × X) = Ai+|U |−|G|(X ×G U)

where X ×G U means the quotient of the free G-space X × U, see Proposition
1.29. We should remark that the ‘bizarre’ indexing is derived from the intuition
that an element in A G

i (X × EG) is morally an ‘i-equivariant cycle in X’.
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Proposition 2.6 (Functoriality of A G
j ) Given a morphism f in FSEX G:

E
f

//

pE
ÂÂ

??
??

??
? E′

pE′
~~~~

~~
~~

~~

X

it induces an l.c.i pull-back f ∗ = f !
G : A G

j (E′)→ A G
j (E), which makes A G

j into
a contravariant functor from FSEX G to the category of abelian groups Ab.

Before we embark for the proof, let us recall some basic facts about the l.c.i
pull-back in the classical (non-equivariant) case. We will loosely follow the
exposition in [Ful98].

Recall that a morphism of varieties (or more generally, schemes) is called
locally complete intersection(l.c.i), if it can be factorized into a regular em-
bedding followed by a smooth morphism, and the codimension of the l.c.i
morphism is the codimension of the regular embedding minus the relative di-
mension of the smooth map. In particular, it could be negative.

Now given an l.c.i morphism f : X → Y of codimension d, which admits a

factorization X
i−→ P

g−→ Y as above. Let s be the relative dimension of g, r be
the codimension of i, then d = r − s. We define the l.c.i pull-back (or refined
Gysin homomorphism in [Ful98, Chapter 6])

f ! = i! ◦ g∗ : A∗(Y)→ A∗−d(X)

where g∗ is the flat pull-back: A∗(Y)→ A∗+s(P), and i! : A∗(P)→ A∗−r(X) is the
Gysin map ([Ful98] Chapiter 6). Roughly speaking, the Gysin map associated
to a regular embedding is ‘intersecting with the zero-section of the normal
bundle’ 11, which is in turn the inverse of the isomorphic flat pull-back of the
vector bundle projection. The remarkable fact is that the l.c.i pull-back f ! is
independent of the choice of the factorization, see [Ful98] Proposition 6.6(a).

Proof of the Proposition. Given a morphism in FSEX G as in the state-
ment of the proposition, say,

E
f

//

pE
ÂÂ

??
??

??
? E′

pE′
~~~~

~~
~~

~~

X

To justify the name, we firstly exhibit a factorization of f into a regular em-
bedding followed by a smooth morphism, which means, by definition, f is l.c.i.

The construction is simply the usual ‘graph map’:

E
i=id× f−−−−−→ E ×X E′

pr2−−→ E′

11As for the idea that viewing a cycle of P as a cycle of the normal bundle appropriately,
see [Ful98], Chapter 5.
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where i is a closed embedding fitting into a diagram:

E

id
##HHHHHHHHHH

i=id× f
// E ×X E′

pr1

²²

E

One observes that pr1 is smooth since it is a base change of pE′ , and together
with the smoothness of id implies that i is a regular embedding. Similarly,
thanks to the smoothness of pE, pr2 is smooth. Thus f = pr2 ◦ i is l.c.i., of
codimension nE′ − nE.

Now consider the following square:

E
f

//

²²

E′

²²

E/G
fG

// E′/G

On one hand, E is a G-principal bundle implies that the square is cartesian.
on the other hand, the vertical arrows are faithfully flat since E′ is a principal
bundle. In virtue of the faithfully flat descent property of l.c.i morphisms, We
conclude that fG : E/G → E′/G is also an l.c.i morphism of codimension nE′−nE.
So we can apply the l.c.i. pull-back to fG, which is recalled before the proof, and
obtain: f !

G : A∗(E′/G) → A∗−nE′+nE (E/G). Rewriting the two groups according
to the indexing in Definition 2.5, we arrive at f ∗ = f !

G : A G
j (E′) → A G

j (E)
as wanted. In virtue of [Ful98] Proposition 6.6(c), the functorial property is
obvious by construction. The proof is complete. �

Remark 2.7 Note that if f itself is flat, then by faithfully flat descent prop-
erty of flatness, we know that fG is also flat, and that the Gysin map f ∗ := f !

G
coincides with the flat pull-back f ∗G by [Ful98] Proposition 6.6(b).

Now we are ready for the formal definition of equivariant Chow groups.

Definition 2.8 (Equivariant Chow groups I) Let G be a linear algebraic
group acting on a variety X, the j-th equivariant Chow group of X with respect
to the G-action (or G-equivariant Chow group, for short), denoted AG

j (X), is
defined by:

AG
j (X) := lim←−−

U∈EGop

A G
j (U × X) (5)

In fact, the above projective limit is ‘represented’, or more precisely, deter-
mined by a particular U, as long as the codimension of U is large enough. In
other words, we have a more concrete description for AG

j (X):

Proposition 2.9 (Equivariant Chow groups II) Fix a nonnegative inte-
ger j. Given U ∈ EGr with r > |X| − j. Then we have

AG
j (X)

'−→ A G
j (X × U) = A j+|U |−|G|(X ×G U)

In particular, A G
j (X × U) is independent of U ∈ EGr as long as r is large

enough.
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One notes that there is an evident difference between equivariant Chow
groups and usual ones, that is, the equivariant Chow groups can have non-
vanishing negative dimensional parts. See Appendix A for an easy example.

The proof relies on two basic observations, which will also be used some-
where else. For later reference, we sum them up into two lemmas:

Lemma 2.10 (Small complement) Given E ∈ FSEX G, and a G-invariant
open sub-scheme E′ ⊂ E, which is also in FSEX G, denote F = E − E′ the
complement. Suppose the codimension of (every irreducible component of) F
in E is larger than |X| − j. Then the natural pull-back

A G
j (E)

'−→ A G
j (E′)

is an isomorphism.
In particular, if U′ is a G-invariant open sub-scheme of U, with U,U′ ∈ EG

(or CEG), and (every irreducible component of)S = U − U′ has codimension

in U larger than |X| − j, then the natural pull-back A G
j (X × U)

'−→ A G
j (X × U′)

is an isomorphism.

Proof. It follows immediately from the short right exact sequence [Ful98]
Proposition 1.8. Explicitly, let n be the relative dimension of E → X (or
E′ → X), then E′/G is an open sub-scheme in E/G with complement F/G,
thus an exact sequence:

A j+n−|G|(F/G)→ A j+n−|G|(E/G)→ A j+n−|G|(E′/G)→ 0

Noting that |F/G| < |E| − (|X| − j) − |G| = n + j − |G|, we conclude that

A j+n−|G|(E/G)
'−→ A j+n−|G|(E′/G) is an isomorphism, i.e. A G

j (E)
'−→ A G

j (E′) as
wanted. Applying this to the case E = X × U,E′ = X × U′, F = X × S , then
n = |U |, codim(F, E) = codim(S ,U). This completes the proof. �

Lemma 2.11 (Vector bundles) Given E ∈ FSEX G, V ∈ Rep(G), then the
natural flat pull-back

A G
j (E)

'−→ A G
j (E × V)

is an isomorphism.

Proof. Apply the isomorphism in [Ful98] Theorem 3.3 to the vector bundle
E ×G V → E/G of rank dim(V), we obtain an isomorphism:

A j+n−|G|(E/G)
'−→ A j+n−|G|+dim V(E ×G V)

The left hand side is just A G
j (E) by definition, and noting that the relative

dimension of E×V over X is n+dim V, the right hand side is exactly A G
j (E×V).

�

Now we return to the proof of the proposition:
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Proof of the Proposition. By assumption, U ∈ EGr is an open sub-
scheme of V ∈ Rep(G) with S = V − U of codimension at least r, where
r > |X| − j. We will show that any element α ∈ A G

j (X × U) will determine an

element in A G
j (X × U′) for every U′ ∈ EG in a compatible way.

For a fixed U′, firstly, applying flat pull-back (Remark 2.7) to the morphism
X ×U ×U′ → X ×U, we get an element α̃ ∈ A G

j (X ×U ×U′). Then we consider

the morphism X×U×U′
j−→ X×V×U′

pr−→ X×U′. By Lemma 2.10, j induces an

isomorphism A G
j (X × V ×U′)

'−→ A G
j (X ×U ×U′), and by Lemma 2.11, pr also

induces an isomorphism A G
j (X×U′)

'−→ A G
j (X×V ×U′). Thus α̃ determines an

element in A G
j (X × U′). The compatibility can be verified formally. We have

defined a morphism

φ : A G
j (U × X)→ lim←−−

U∈EGop

A G
j (U × X)

and we have an obvious morphism in another direction, namely the projection
ψ.

ψ◦φ is clearly identity, to complete the proof of Proposition 2.9, we should
show that φ ◦ ψ is also identity. While it follows from the uniqueness of the
above construction of α̃ from α. �

For some purpose, the category EG is not large enough to manipulate the
usual geometric constructions/operations, so it is useful to express the equiv-
ariant Chow group in terms of larger categories CEG and FSEX G, which are
more adapted in some circumstance:

Proposition 2.12 (Equivariant Chow group III)

AG
j (X) := lim←−−

U∈EGop

A G
j (X × U) � lim←−−

U∈CEGop

A G
j (X × U) � lim←−−

E∈FSEX Gop

A G
j (E)

Proof. Since we have natural inclusions of categories (3), it suffices to verify
the following assertion:

For any compatible assignment {αU×X ∈ A G
j (U × X)}U∈EG, that is, for any

morphism U1
f−→ U2, we have f ∗(αU2×X) = αU1×X, there exists a unique extension

of compatible assignment {α̃E ∈ A G
j (E)}E∈FSEX G, i.e. α̃U×X = αU×X, and for any

morphism in FSEX G, say, E1
f−→ E2, we have f ∗(α̃E2) = α̃E1 .

The construction is similar to the one in the proof of Proposition 2.9, we
just sketch the proof. Fix the assignment αU×X, for a given E ∈ FSEX G,
we choose any U ∈ EGr,with r > |X| − j. Firstly we apply flat pull back to
the morphism U × E → U × X to get the element in A G

j (U × E), and then

use the isomorphism A G
j (E)

'−→ A G
j (V × E)

'−→ A G
j (U × E) to determine an

element in A G
j (E), where the two isomorphisms follow from Lemma 2.11 and

Lemma 2.10 respectively. The construction is clearly uniquely determined
by the compatibility requirement, and it is independent of the particular U
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chosen by Proposition 2.9. The compatibility can be verified by straightforward
computation. Finally, we should verify α̃U×X = αU×X. But by compatibility, we
know that α̃U×X and αU×X pull back to the same element in A G

j (U × U × X),
but the pull back is an isomorphism since r > |X| − j, thus α̃U×X = αU×X. �

Remark 2.13 In the sequel, we will use the three equivalent definitions (Def-
inition 2.8, Proposition 2.9 and Proposition 2.12) of equivariant Chow group
freely. In most cases, the more concrete description in Proposition 2.9 is suf-
ficient. While the various characterization by categorical projective limits are
sometimes more convenient to prove some formal properties, and allow more
constructions.

Remarks 2.14 (Ring structure on AG in the smooth case) In certain cir-
cumstances, the equivariant Chow groups AG

∗ (X) has more structures than just
abelian groups.

For example, when X is a smooth variety of dimension n with a G-action,
we write Ai,G(X) := AG

n−i(X). Then the graded group A∗,G(X) is in fact a graded
ring, we now turn to explain the multiplication structure.

In the proof of Lemma 2.3, we can check that the base space U/G of the G-
principal bundle U → U/G constructed there, is isomorphic to a homogenous
space, namely GLN+n /Γ, which is smooth. While the geometric fibres of the
flat morphism X×G U → U/G is isomorphic to Xk̄, which is smooth by assump-
tion. In conclusion, X ×G U is smooth. Therefore, when U has codimension
sufficiently large, we can define the multiplication

A j,G(X) × Al,G(X)→ A j+l,G(X)

to be the intersection product of the smooth variety X ×G U 12

A j(X ×G U) × Al(X ×G U)→ A j+l(X ×G U)

through the isomorphisms given in Proposition 2.9.

2.2 Functorialities: Constructions and Formal Proper-
ties

In this subsection, we want to talk about some formal functorial properties of
equivariant Chow groups, some of which are analogous to the classical cases
explained in [Ful98], while others, like restrictions and transfers, are related to
the groups acting on the spaces. Here we still keep the technical assumption
2.1, and we will use the more concrete definition of equivariant Chow groups,
namely, AG

j (X) = A G
j (X × U) with codim U sufficiently large (Proposition 2.9),

which leads the constructions and proofs here more geometric, but the draw-
back is that we should check the independence of the choice of U each time.

We first mention the following preliminary result concerning faithfully flat
descent of properties of morphisms. It will be used in this and later subsections
repeatedly, and we will simply refer to this result as ‘by faithfully flat descent’.

12[Ful98] Chapter 8.
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Theorem 2.15 (Faithfully flat descent of properties of morphisms) Let
X, Y, X′, Y ′ be schemes, such that the diagram below is cartesian:

X′

�

g′
//

f ′

²²

X
f

²²

Y ′ g
// Y

Suppose that g is quasi-compact (which is easily satisfied in our setting) and
faithfully flat, then for any of the properties of morphism P listed below, f
has property P if and only if f ′ has property P. P can be:

• Separated;

• Isomorphic;

• Open immersion;

• Closed immersion;

• Proper;

• Affine;

• Quasi-affine;

• Flat;

• Flat of relative dimension d;

• Finite;

• Quasi-finite;

• Non-ramified;

• Étale;

• Smooth.

Proof. c.f.[Gro65, Page 29, Proposition 2.7.1]. �

2.2.1 Proper Push-forward and Flat Pull-back

Let X, Y be two G-varieties satisfying Assumption 2.1, and f : X → Y be a
G-equivariant morphism.

If f is proper, we construct a push-forward f∗ : AG
j (X) → AG

j (Y) in the
following way. For a fixed non-negative integer j, choose any U ∈ EGr of
dimension n, with r > max{|X|, |Y |} − j. By Proposition 1.29, X × U and Y × U
are G-principal bundles. The properness of f × idU : X × U → Y × U implies
that ( f × idU)G : X ×G U → Y ×G U is also proper by faithfully flat descent.
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In virtue of Proposition 2.9, we define the proper push-forward f∗ : AG
j (X)→

AG
j (Y) to be the (classical) proper push-forward ([Ful98] Theorem 1.4) associ-

ated to the morphism X×G U → Y×G U, that is, ( f × idU)G∗ : A j+n−|G|(X×G U)→
A j+n−|G|(Y ×G U)

If f is flat of relative dimension d, we want to construct a pull-back f ∗ :
AG

j (Y) → AG
j+d(X) in a similar way. For a fixed non-negative integer j, choose

any U ∈ EGr of dimension n, with r > |Y | − j = |X| − ( j + d). Again, by
Proposition 1.29, X × U and Y × U are G-principal bundles. The flatness of
f × idU : X × U → Y × U implies that X ×G U → Y ×G U is also flat with the
same relative dimension d by faithfully flat descent.

Similarly, now we can define the flat pull-back f ∗ : AG
j (Y) → AG

j+d(X) to be
the (classical) flat pull-back ([Ful98] Theorem 1.7) induced by the flat mor-
phism ( f × idU)G : X ×G U → Y ×G U, that is, ( f × idU)∗G : A j+n−|G|(Y ×G U) →
A j+d+n−|G|(X ×G U)

Lemma 2.16 The proper push-forward and the flat pull-back constructed above
are independent of the choice of U.

Proof. We will focus on the proper push-forward case, the proof for flat pull-
back is analogous. Fix j, for any two U, U′ in EGr, with r > max{|X|, |Y |} − j.
Consider the product to relate two constructions:

X × U
f×idU

// Y × U

X × U × U′

OO

f×idU × idU′//

²²

Y × U × U′

OO

²²

X × U′
f×idU′ // Y × U′

By Lemma2.10 and Lemma2.11, the vertical arrows induce isomorphisms
between A G

j , thus after passing to the quotients, the upper and bottom proper
push-forwards coincide through the middle one. �

From the construction, it is clear that the proper push-forwards and the
flat pull-backs have the usual functorial properties as one expected:

Proposition 2.17 (Functorialities of proper push-forward and flat pull-back)

Let X,Y,Z be G-varieties satisfying Assumption 2.1, X
f−→ Y

g−→ Z be G-equivariant
morphisms.

1. If f , g are proper, then

(g ◦ f )∗ = g∗ ◦ f∗ : AG
j (X)→ AG

j (Z)

2. If f , g are flat of relative dimension d and e respectively, then

(g ◦ f )∗ = f ∗ ◦ g∗ : AG
j (Z)→ AG

j+d+e(X)
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2.2.2 l.c.i. Pull-back

As the setting in [Ful98] Section 6.6, given a cartesian diagram:

X′

�h′
²²

f ′
// Y ′

h
²²

X f
// Y

(6)

where X′,Y ′, X,Y are G-varieties satisfying Assumption 2.1, and all the mor-
phisms are G-equivariant, and the morphism f is assumed to be l.c.i. of codi-
mension c (see the summary before the proof of Proposition 2.6). We want to
construct an equivariant pull-back f ! : AG

j (Y ′)→ AG
j−c(X

′).
As above, for a fixed non-negative integer j, choose any U ∈ EGr of dimen-

sion n, with r > |X| − j. Then we get a cartesian square:

X′ ×G U

²²

// Y ′ ×G U

²²

X ×G U // Y ×G U

(7)

where the lower horizontal arrow is still l.c.i. of codimension c, by faithfully
flat descent. Thanks to Proposition 2.9, we can define the l.c.i. pull-back
f ! : AG

j (Y ′)→ AG
j−c(X

′) to be the (classical) l.c.i. pull-back ([Ful98] section6.6 )

( f × idU)!
G : A j+n−|G|(Y ′ ×G U)→ A j−c+n−|G|(X′ ×G U).

Lemma 2.18 The above construction of l.c.i. pull-back is independent of the
choice of U.

Proof. As in the case of proper push-forward, for two U,U′ of sufficiently
large codimension, we consider the cartesian square (7) with U replaced by
U ×U′, and the morphisms of squares, which are all projections (in particular,
they are flat). By the functoriality in [Ful98] Proposition 6.6 (c), we have the
following commutative diagram:

A G
j (Y ′ × U′) //

²²

A G
j−c(X

′ × U′)

²²

A G
j (Y ′ × U × U′) // A G

j−c(X
′ × U′ × U)

A G
j (Y ′ × U)

OO

// A G
j−c(X

′ × U)

OO

where the vertical arrows are all flat pull-backs, and the horizontal ones are
classical l.c.i. pull-backs ([Ful98] Section 6.6). Applying Lemma 2.10 and
Lemma 2.11, we find that the vertical arrows are isomorphisms, which implies
that the higher and lower l.c.i.pull-backs coincide through the middle one. �
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As is expected, the equivariant l.c.i. pull-back constructed above satisfies
the same properties as the classical ones:

Proposition 2.19 (Formal properties of l.c.i. pull-back) We write only
the morphisms, while the spaces involved will be omitted. For the precise for-
mulations and diagrams, c.f. the non-equivariant versions in [Ful98], Chapter
6.

(a) If f is both l.c.i. and flat, then the l.c.i.pull-back coincides with the flat-
pull back constructed in the preceding subsubsection;

(b)(Functoriality) Let f , f ′ be l.c.i. morphisms, then ( f ′ ◦ f )! = f ! ◦ f ′! if
the compositions are defined;

(c)(Naturality) l.c.i. pull-backs commute with the proper push-forwards and
flat pull-backs;

(d)(Commutativity) l.c.i pull-backs commute with each other as long as
they make sense;

Proof. By choosing U ∈ EG of sufficiently large codimension, taking product
of the corresponding diagram with U, then passing to the quotients, all the
assumptions remain (being cartesian, properness, flatness, being l.c.i. all have
the property of faithfully flat descent) thus these assertions follow immediately
from the non-equivariant cases (see [Ful98] Chapter 6). �

2.2.3 Equivariant Chern Classes

Let X be a G-variety satisfying Assumption 2.1 as above. A G-equivariant
vector bundle π : E → X is by definition a vector bundle such that the bundle
space and the base space are equipped with G-actions, and the bundle map
p is G-equivariant. Given an equivariant vector bundle, we shall construct
the equivariant Chern classes cG

i (E) operating on the equivariant Chow group
AG

j (X) decreasing the degree by i.
Following the same pattern of the preceding subsections, for any fixed non-

negative integer j, take U ∈ EGr of dimension n, with r > |X| − j + i, then
E × U → X × U is also a G-equivariant vector bundle. By the argument in
[EG98] Lemma 2.4.1, E ×G U → X ×G U is a vector bundle. We define the
the operation of the ith G-equivariant Chern class of E on AG

j (X), denoted as

cG
i (E)∩ : AG

j (X)→ AG
j−i(E), to be the usual Chern class operation ci(E ×G U)∩ :

A j+n−|G|(X ×G U)→ A j−i+n−|G|(X ×G U).
As before, we have:

Lemma 2.20 The above construction is independent of the choice of U.

32



Proof. For two choices U and U′, consider the cartesian squares consisting
of G-principal bundles:

E × U

²²

E × U × U′oo

²²

// E × U′

²²

X × U X × U × U′oo // X × U′

When passing to the quotient, the two squares remain cartesian, that is, the
vector bundle E×U×U′/G → X×U×U′/G is the pull-back of E×G U → X×G U,
and the pull-back of E ×G U′ → X ×G U′, too. By the pull-back property of the
Chern classes operations ([Ful98] Theorem 3.2(d)), we conclude that the two
constructions using U and U′ coincide through the construction using U ×U′.

�

Now we extend the basic properties of Chern classes to the equivariant ver-
sion. Recall the definition of Chern polynomials, whose coefficients are in fact
operations on equivariant Chow groups:

cG
t (E) :=

∑

i

cG
i (E)ti.

Proposition 2.21 (Formal properties of equivariant Chern classes) Let
E, E′, E′′, F be G-equivariant vector bundles over X, then

(a)(Vanishing) For all i > rank(E) or i < 0, cG
i (E) = 0;

(b)(Commutativity) For any α ∈ AG
l (X), we have

cG
i (E) ∩ cG

j (F) ∩ α = cG
j (F) ∩ cG

i (E) ∩ α

(c)(Projection formula) If f : X′ → X is a G-equivariant proper morphism,
and f ∗E is the pull-back along f of E. Then for any α ∈ AG

j (X′),

f∗(cG
i ( f ∗E) ∩ α) = cG

i (E) ∩ f∗(α)

(d)(Pull-back) Let f : X′ → X be a G-equivariant flat (or more generally,
l.c.i) morphism, and f ∗E is the pull-back equivariant vector-bundle. Then
for any α ∈ AG

j (X),

cG
i ( f ∗E) ∩ f ∗(α) = f ∗(cG

i (E) ∩ α)

or just simply write: cG
i ( f ∗(E)) = f ∗(cG

i (E))

(e)(Whitney sum) For any exact sequence 0 → E′ → E → E′′ → 0 of
equivariant vector bundles over X, we have 13

cG
t (E) = cG

t (E′) · cG
t (E′′).

13Here the equality and product are understood as the equality and product of polynomials
in t, with the multiplications for coefficients given by compositions of equivariant Chern
classes as operations, in virtue of (b)commutativity, the product is well-defined. Of course,
in the case that X is smooth, the product is just the intersection product explained in Remark
2.14.
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Proof. By the same argument in the proof of Proposition 2.19, this propo-
sition is derived from the classical case ([Ful98]Theorem 3.2) immediately.
�

Now we turn to the useful equivariant version of the excess intersection
formula:

Theorem 2.22 (Excess intersection formula: equivariant version) Let
X, X′, X′′,Y,Y ′,Y ′′ be G-equivariant varieties, all the morphisms of the following
diagram are G-equivariant, and the two squares are both cartesian.

X′′

q
²²

// Y ′′

p
²²

X′

g
²²

i′ // Y ′

f
²²

X i // Y

where i and i′ are regular embeddings of codimension d and d′ respectively,
with normal bundles N = NX/Y and N′ = NX′/Y′ respectively. There is canonical
embedding of bundles N′ ↪→ g∗N, the excess normal bundle E = g∗N/N′ is a
vector bundle of rank e = d − d′. Then

i! = cG
e (q∗E) ∩ i′! : A∗(Y ′′)→ A∗−d(X′′)

where i!, i′! are equivariant l.c.i. pull-backs, and cG
e is the equivariant Chern

class. This theorem is also valid with i and i′ being l.c.i.

Proof. After a routine translation, it follows immediately from the classical
excess intersection formula [Ful98] Theorem 6.3, and Theorem 6.6(c). �

Remark 2.23 The excess intersection formula is also valid with i and i′ being
l.c.i.

Finally, let us calculate an example which will be used later:

Example 2.24 Let R be the standard representation of Z/p. 14 If we view R
as an Z/p-equivariant vector bundle of rank p − 1 over a point, then the top
equivariant Chern class

cZ/p
p−1(R) = −lp−1 =: η

in AZ/p
1−p(pt) = Fp·lp−1, ( see Appendix A for the calculation of the Z/p-equivariant

Chow groups of a point).

14That is, the quotient of the regular representation by the one-dimensional invariant sub-
representation generated by the sum of the base elements. Note that R is (p−1)-dimensional.
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(Indication of the proof: Fix a p-th root of unity ζ, the representation R
splits into one-dimensional representations as R = ⊕p−1

j=1 L j, where the action of

1 mod p ∈ Z/p on L j is multiplying by ζ j. Therefore

cZ/p
p−1(R) =

p−1∏

j=1

cZ/p
1 (L j)

=

p−1∏

j=1

cZ/p
1 (L⊗ j

1 )

=

p−1∏

j=1

jcZ/p
1 (L1)

= (p − 1)! · (cZ/p
1 (L1))p−1

= −lp−1

the last equality is by Wilson’s theorem and the fact that the (p− 1)-th power
of any element in (Z/p)∗ is 1.)

Now we turn to the constructions involving the change of the group.

2.2.4 Restrictions and Transfers

Let X be a variety with an action of a linear algebraic group G satisfying
Assumption 2.1 as above. Let H ↪→ G be a closed subgroup of codimension d.
Recall that G/H is always quasi-projective. In the context concerning transfers,
we will further assume that the quotient G/H is proper hence projective (of
dimension d), which means that the subgroup H is parabolic. The action of
H on X is always assumed to be the one induced from the action of G, i.e.

H × X ↪→ G × X
σ−→ X. We want to construct the morphisms analogous to the

restrictions and transfers for equivaraint cohomology:

ResG
H : AG

j (X)→ AH
j (X)

TrG
H : AH

j (X)→ AG
j+d(X)

First of all, we need a lemma which gives the fundamental fibrations relating
the G-principal bundles to H-principal bundles. To illustrate the idea, let us
compare the case of Lie groups: if G is a Lie group acting freely on a manifold
E, giving a G-principal bundle 15 E → E/G, then for any closed subgroup H,
H is also a Lie group acting on E freely, thus giving an H-principal bundle
E → E/H. Moreover, we have the fundamental fibration

G/H ↪→ E/H → E/G,

which means that E/H is a fibre bundle over E/G, with fibre type G/H. In
fact, E/H is the fibre bundle associated to the G-principal bundle E → E/G
with G/H the (non-linear) representation of G:

E/H = E ×G G/H.
15Here is the notion of principal bundles in differential geometry, c.f. [KN96]
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c.f. [KN96] Chapter 1, Section 5 for this standard procedure in differential
geometry.

Now we give the following lemma recovering certain part of the above as-
sertions in the setting of algebraic geometry.

Lemma 2.25 (Fundamental fibrations) Let π : E → B be a G-principal
bundle with base space B = E/G, H be a closed subgroup of G, acting on E via
G. Then

1. The geometric quotient E/H exists, and E/H = E ×G G/H;

2. φ : E → E/H is an H-principal bundle;

3. We have a canonical map φ : E/H → E/G, which is faithfully flat of
relative dimension |G/H| = |G| − |H| = d.

4. If H is a parabolic subgroup of G (i.e. G/H is projective), then φ is
proper.

Proof. The argument here is due to B.Kahn. Consider the right square of
the following diagram:

E ×G ' //

pr1

²²

E ×G

α

²²

γ
// E ×G/H

β

²²

E ' // E ×G G
π // E ×G G/H

In this diagram:

• The middle E × G is equipped with the diagonal G-action, and a right
H-action defined by right translation on the second factor G, note that
the two actions are commutative;

• Since p : G → G/H is an H-principal bundle (Example 1.24), so is
γ = id×p : E × G → E × G/H, and E × G/H has a diagonal G-action
inherited from E ×G;

• Using the trick of Example 1.28, we know that the geometric quotient
E×G

G = E ×G G exists, and α : E × G → E ×G G is a G-principal bundle.
Moreover, this G-principal bundle is isomorphic to the trivial G-principal
bundle pr1 : E ×G → E (Here E ×G has the G-action of left translation
on the second factor), hence the left square of the above diagram with
the isomorphisms as indicated;

• Since E is a G-principal bundle, and G/H is quasi-projective, whose G-
action can be lineared, then thanks to Proposition 1.29, E × G/H is
the total space of a G-principal bundle, i.e. the right vertical arrow,
β : E ×G/H → E ×G G/H is a G-principal bundle;
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• Since γ is G-equivariant map between two G-principal bundles, we get
a morphism between their base spaces: π : E ×G G → E ×G G/H, which
makes the right square of the diagram cartisian. Now by faithfully flat
descent (Proposition 1.15), and the fact that γ is an H-principal bundle,
we conclude that the bottom right arrow π is also an H-principal bundle.

• Taking the isomorphisms of the left square into account, we find that
the composition of the two morphisms of the bottom line, still denoted
π, is an H-principal bundle. While the transport of the H-action back
onto E is the natural right action of H on E associated to the natural left
H-action defined via G. Therefore, the geometric quotient E/H exists,
and E/H = E ×G G/H, this proves 1, and moreover, π : E → E/H is an
H-principal bundle, this proves 2.

As for the third and fourth assertions in the lemma, consider the natural map
(‘the fundamental fibration’):

φ : E/H = E ×G G/H
pr1−−→ E/G,

when pulling back to E by the bundle map E → E/G, the above displayed
morphism becomes:

φ̃ : E ×E/G E/H = (E ×E/G E) ×G G/H = E ×G ×G G/H = E ×G/H → E

which is simply the first projection, thus φ̃ is faithfully flat of relative dimen-
sion |G/H| = |G| − |H| = d, and when G/H is projective, hence proper, so is
φ̃. Now we can deduce for φ the properties wanted, because the bundle map
E → E/G is faithfully flat, and the properties of morphism considered, namely
faithfully flatness of a given relative dimension, properness, have the perma-
nence property with respect to faithfully flat morphisms that is, they can be
tested after any faithfully flat base change. �

From the above lemma, we deduce directly the following corollaries.

Corollary 2.26 1. There are natural functors EGr → EHr, CEG → CEH,
FSEX G → FSEX H, given by restricting the action of G to H.

2. For any E ∈ FSEX G, the natural morphism φ : E/H → E/G is faithfully
flat of relative dimension |G/H| = |G| − |H| = d;

3. If H is a parabolic subgroup of G, then for any E ∈ FSEX G, the natural
morphism φ : E/H → E/G is proper.

Now we are ready for the constructions of restrictions and transfers.
Take any U ∈ EGr of dimension n, with r large enough. By Corollary

2.26 (1), we can also view U as an object in EHr. Apply Corollary 2.26(2)

to E = X × U ∈ FSEX G, we find that the natural map X ×H U
φ−→ X ×G U is
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faithfully flat of relative dimension |G/H| = |G| − |H| = d. So we can define the
restriction map

ResG
H : AG

j (X)→ AH
j (X)

to be the flat pull-back φ∗ : A j+n−|G|(X ×G U)→ A j+n−|H|(X ×H U).
If moreover H is a parabolic subgroup of G, by Corollary 2.26(3), the natural

map X ×H U
φ−→ X ×G U is proper. Therefore we can define the transfer map

TrG
H : AH

j (X)→ AG
j+d(X)

to be the proper push-forward φ∗ : A j+n−|H|(X ×H U)→ A j+n−|H|(X ×G U), noting
that j + n − |H| = j + d + n − |G|.

By exactly the same method as before, we have:

Lemma 2.27 The above constructions are independent of the choice of U.

Here we have the expected properties as in the equivariant cohomology case:

Proposition 2.28 (Formal properties of restriction and transfer) Let G
be an algebraic group, H be a (closed) subgroup of G of codimension d, and L
be a (closed) subgroup of H of codimension e. Let X, X′,Y,Y ′ be G-varieties as
above, with the G-equivariant cartesian square below:

X′

�

f ′
//

h′
²²

Y ′

h
²²

X
f

// Y

We assume that f : X → Y is l.c.i. of codimension c.

(a)(Functoriality)

ResH
L ◦ResG

H = ResG
L : AG

j (X)→ AL
j (X);

If furthermore H is a parabolic subgroup of G, and L is a parabolic sub-
group of H, then:

TrG
H ◦TrH

L = TrG
L : AL

j (X)→ AG
j+d+e(X).

(b)(Degree map) If we assume further that G/H is (constant) finite of de-
gree N, i.e. [G : H] = N, then TrG

H ◦ResG
H is the map of multiply by N on

AG
j (X)

(c)(l.c.i. Pull-backs)

f !
H ◦ ResG

H = ResG
H ◦ f !

G : AG
j (Y ′)→ AH

j−c(X
′);

If furthermore H is a parabolic subgroup of G, then:

f !
G ◦ TrG

H = TrG
H ◦ f !

H : AH
j (Y ′)→ AG

j−c+d(X′)

where the subscripts of f is used to indicate the group involved when we
do equivaraint l.c.i. pull-backs.
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(d)(Restriction and transfer of Chern classes) If E is a G-equivariant
vector bundle over X, then

ResG
H ◦cG

i (E)∩ = cH
i (E) ∩ ◦ResG

H : AG
j (X)→ AH

j−i(X);

If furthermore H is a parabolic subgroup of G, then:

TrG
H ◦cH

i (E)∩ = cG
i (E) ∩ ◦TrG

H : AH
j (X)→ AG

k−i+d(X)

Proof. Fix a U ∈ EGr of dimension n, with r sufficiently large.
The two equalities in (a) follow from the functoriality of flat pull-back

and proper push-forward respectively, applied to the composition of the two
‘fundamental fibrations’:

X × U
L
→ X × U

H
→ X × U

G

For (b), by Corollary 2.26(2)(3), with E = X × U, we have 16: X ×H U
φ−→

X ×G U is faithfully flat, finite of degree [G : H] = N, which implies φ∗ ◦ φ∗ is
the map of multiply by N by [Ful98] Example 1.7.4. This concludes (b) by the
constructions of ResG

H and TrG
H.

For the first assertion of (c), we need the following cartesian diagram:

X′×U
H

//

φX′
²²

Y′×U
H

φY′
²²

X′×U
G

//

²²

Y′×U
G

²²
X×U

G fG
// Y×U

G

where the upper vertical arrows are the natural maps, the ‘fundamental fibra-
tions’, explained in Lemma 2.25 and Corollary 2.26, and the lower horizontal
arrow fG is l.c.i. since f is. And [Ful98] Theorem 6.2(b)(or rather Proposition
6.6(c)) tells us that:

φ∗X′ ◦ f !
G = f !

G ◦ φ∗Y′ : A∗(Y ′ ×G U)→ A∗(X′ ×H U)

By the definition of ResG
H, we only need to show in the following diagram that

f !
G = f !

H : A∗(Y ′ ×H U)→ A∗(X′ ×H U)

X′×U
H

//

²²

Y′×U
H

²²
X×U

H
fH

//

²²

Y×U
H

²²
X×U

G fG
// Y×U

G

16In fact, to get the following information of the degree, we need to trace back to the last
steps of the proof of Lemma 2.25.
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But this follows from [Ful98] Theorem 6.2(c) (or rather Proposition 6.6(c)).
The proof of the second assertion of (c) is the same, replacing [Ful98] Propo-
sition6.2(b) by 6.2(c) applied to proper push-forward instead of flat pull-back.

For the first assertion of (d), we consider the following cartesian diagram:

E ×H U //

²²

E ×G U

²²

X ×H U
φ

// X ×G U

i.e. it is a pull-back of vector bundle: φ∗(E ×G U) = E ×H U. By the pull-back
property of Chern classes [Ful98]Theorem 3.2(d), we have

φ∗ ◦ ci(E ×G U)∩ = ci(E ×H U) ∩ ◦φ∗

which is exactly what we want by the definition of equivariant Chern classes
and restriction map. For the second assertion of (d), we use the projection for-
mula of Chern classes [Ful98] Theorem 3.2(c) instead of the pull-back property
above, we get

φ∗ ◦ ci(E ×H U)∩ = ci(E ×G U) ∩ ◦φ∗
as wanted. �

2.3 Equivariant Cycle Class Map

We write Zi(X) for the group consisting of i-dimensional cycles of X. In the
usual (non-equivariant) case, we have the cycle class map

Zi(X)
cl−→ Ai(X)

In this section, we want to define the equivariant analogy, Zi(X)G clG−−→ AG
i (X),

in certain circumstances.
Throughout this subsection, X is an algebraic variety, G is a constant finite

group acting on X satisfying Assumption 2.1. Define the group of G-invariant
cycles :

Zi(X)G := {z ∈ Zi(X)|g · z = z,∀g ∈ G}
Now we turn to the construction, fix a non-negative integer i.

Construction 2.29 (Cycle class map) As usual, we choose U ∈ EGr of
dimension n, with r large enough. Then by Proposition 1.29, X × U is a G-
principal bundle, and AG

i (X) ' Ai+n(X ×G U). We define the (equivariant)cycle
class map clG : Zi(X)G → AG

i (X) to be the composition:

Zi(X)G clG //

²²

AG
i (X) = Ai+n(X ×G U)

Zi+n(X × U)G ' // Zi+n(X ×G U)

OO
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where for any α ∈ Zi(X)G, a G-invariant cycle of X, the left vertical arrow takes it
to a G-invariant cycle of X×U, namely α×[U]; and then the bottom horizontal
arrow, which is the inverse of the isomorphic pull-back Zi+n−|G|(X ×G U) →
Zi+n(X × U)G , takes it to a cycle of X ×G U, which gives rise to an element of
AG

i (X), i.e. an equivariant cycle of X. If there is no risk of confusion, we will
write cl instead of clG.

It is obvious that the cycle class map such defined is a homomorphism, and
we have the following routine lemma:

Lemma 2.30 The above construction is independent of the choice of U.

To illustrate the meaning of the equivariant cycle class map and for later
reference, we prove the following proposition.

Proposition 2.31 Let X be a G-space, where G is a constant finite group.
then for every α ∈ Zi(X), we have TrG

1 (cl(α)) = clG(
∑

g∈G g · α). In other words,
the following diagram commutes:

Zi(X) cl //

∑
g∈G g·

²²

Ai(X)

TrG
1

²²

Zi(X)G clG // AG
i (X)

Proof. Choose U ∈ EGr of dimension n with r sufficiently large, fix α ∈ Zi(X).

Consider the covering space (fiber bundle with discrete fiber) X×U
φ−→ X×G U.

Since
∑

g∈G(g · α) × [U] =
∑

g∈G g · (α × [U]) = φ∗φ∗(α × [U]), by the definition of
clG,

clG(
∑

g∈G
g · α) = φ∗(α × [U])

which is TrG
1 (cl(α)) by the definition of transfer. The proof is complete. �

3 Steenrod Operations on Smooth Varieties

In this section, we begin to talk about the Steenrod operations over cohomology
groups and Chow groups, with the coefficient field being Fp.

In the first subsection, the Steenrod operations in the context of algebraic
topology are discussed, the Steenrod algebra is defined. And then in the sec-
ond subsection, we introduce the reduced Steenrod algebra, which is better
adapted to the current setting. In the third subsection, the formal properties
of Steenrod operations on Chow groups for smooth varieties are summarized.
Finally, in the fourth subsection, we give the explicit construction of Steenrod
operations and also the proofs of the results in the third subsection.

Throughout the rest of the note, all the Chow groups and cohomology
groups unless otherwise stated are assumed to be with coefficients Fp.
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3.1 Steenrod Operations in Algebraic Topology

We will talk about the origin of our construction in algebraic topology, which
is developed by N.E.Steenrod [Ste62].

First of all, let us give some general ideas of cohomological operations:

Definition 3.1 (Cohomological Operations) Let F, F′ be abelian groups.
Consider the cohomology functors H∗(−; F), H∗(−; F′). A cohomological oper-
ation is a natural transformation of functors Hi(−; F)→ H j(−; F′)

Lemma 3.2 The group of all cohomological operations from Hi(−; F) to H j(−; F′)
is isomorphic to the group H j(K(F, i); F′), i.e.

Hom f ct(Hi(−; F),H j(−; F′)) � H j(K(F, i); F′)

where K(F, i) is the Eilenberg-Maclane space.

Proof. Recall that the cohomology functor is representable by the spectrum
of Eilenberg-Maclane space, that is, Hi(−, F) = [−,K(F, i)], where [ , ] denotes
the Hom (bi-)functor in the pointed homotopy category. So we deduce the
result formally as following:

Hom(Hi(−; F),H j(−; F′)) = Hom([−,K(F, i)], [−,K(F′, j)]) (Representability)

= [K(F, i),K(F′, j)] (Yoneda Lemma)

= H j(K(F, i); F′) (Representability)

�

Remark 3.3 We can extend the preceding definition and lemma to any gen-
eralized cohomological theory, replacing the Eilenberg-Maclane spectrum by
another one.

Let us focus on the singular cohomolgy case. We notice that the Eilenberg-
Maclane space K(F, i) can be constructed with cells of dimension at least i, so
H j(K(F, i); F′) = 0 for 0 < j < i 17, which means that any nontrivial cohomo-
logical operations cannot decrease the degree.

Here are some examples:

Example 3.4 (a)(Change of coefficients) If F → F′ is a homomorphism
of abelian groups, we have Hi(X, F)→ Hi(X, F′), the change of coefficients
map, which is obviously a cohomological operation;

(b)(Multiplication) If the coefficient group F is moreover a ring, then thanks
to the ring structure of the cohomology, we have that Hi(X, F)→ H2i(X, F)
which takes any element to its square, is a cohomological operation;

17This can also be derived from the theorem of Hurewicz.
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(c)(Bockstein homomorphism) If the coefficient group F is taken to be
Z/p, where p is prime, we have the Bockstein homomorphism Hi(X; Z/p)→
Hi+1(X; Z/p) which is the connecting map in the long exact sequence asso-

ciated to the short exact sequence of the coefficient groups: 0→ Z/p
·p−→

Z/p2 → Z/p→ 0;

(d)(Steenrod squares) If the coefficient ring F = Z/2, then Steenrod has de-
fined a series of cohomological operations: Sqi : Hq(X,Z/2)→ Hq+i(X,Z/2),
called Steenrod squares, see the discussion below for the details;

(e)(Steenrod’s reduced powers) If the coefficient ring F = Z/p, where p is
an odd prime number, then Steenrod has defined a series of cohomological
operations: Pi : Hq(X,Z/p) → Hq+2i(p−1)(X,Z/p), called reduced powers,
see the discussion below for the details;

We are mainly interested in the last three operations in the above collection
of examples. There are several reasons for this, one is that we want to take
account of compositions and relations of such operations, the convenient way
is to make it into an algebra of ’operations’ acting on the same cohomology
ring, so we want the coefficient group to be fixed, so (a) is excluded. Another
reason is that we want our operations to be stable, which means ’commuting
with suspension’, while (b) does not satisfy such property. On the other hand,
the Steenrod squares when in coefficient Z/2 and the reduced powers when in
coefficient Z/p are stable, and the Bockstein homomorphism is ’anti-stable’.
(See the three theorems below).

Now we sum up the basic properties of the three cohomological operations
into three theorems, for the proofs we refer to the book of Steenrod[Ste62].

Theorem 3.5 (Bockstein homomorphisms) Fix a prime number p. For
any pair of topological spaces (X, A), we have β : Hq(X, A; Z/p)→ Hq+1(X, A; Z/p)
for any non-negative integer q, satisfying:

(a)(Functoriality) β is functorial with respect to the pair of spaces, more
precisely, for any morphism f between pairs of topological spaces, write
f ∗ for the induced morphism on cohomological rings, then

f ∗β = β f ∗

thus β is a cohomological operation;

(b) β2 = 0;

(c) β anti-commutes with the connecting morphism δ in the long exact se-
quence associated to a pair of spaces:

βδ = −δβ

(d)(Anti-stable) We denote the suspension isomorphism as Σ : Hq(X; Z/p)→
Hq+1(Σ X; Z/p), then we have

Σ β = −βΣ
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(e)(Cartan formula) For any x ∈ Hq(X, A; Z/p) and y ∈ Hr(X, B; Z/p),

β(x ∪ y) = β(x) ∪ y + (−1)qx ∪ β(y)

Theorem 3.6 (Z/2 coefficient, Steenrod Squares) For any pair of topo-
logical spaces (X, A), and for any integer i, we have an operation

Sqi : Hq(X, A; Z/2)→ Hq+i(X, A; Z/2)

for any non-negative integer q, satisfying:

(a)(Functoriality) Sqi is functorial with respect to the pair of spaces, more
precisely, for any morphism f between pairs of topological spaces, write
f ∗ for the induced morphism on cohomological rings, then

f ∗ Sqi = Sqi f ∗

i.e. Sqi is a cohomological operation;

(b)(Naturality) Sqi commutes with the connecting morphism in the long ex-
act sequence associated to a pair of spaces;

(c)(Range) Sqi : Hq(X, A; Z/2)→ Hq+i(X, A; Z/2) is zero when i > q or i < 0;

(d)(Square) Sqi : Hi(X, A; Z/2) → H2i(X, A; Z/2) is the square map, i.e. it
takes any element x to x2 = x ∪ x;

(e) Sq0 = id; Sq1 = β the Bockstein homomorphism;

(f)(Cartan formula) For any element x ∈ Hq(X, A; Z/2) and y ∈ Hr(X, B; Z/2),
we have

Sqk(x ∪ y) =

k∑

i=0

Sqi(x) ∪ Sqk−i(y)

in Hq+r+k(X, A ∪ B; Z/2);

(g)(Stability) We write the suspension isomorphism as Σ : Hq(X; Z/2) →
Hq+1(Σ X; Z/2), then we have

Σ Sqi = Sqi
Σ

(h)(Adem’s relation) For any 0 < a < 2b, we have

Sqa Sqb =

ba/2c∑

j=0

(
b−1− j
a−2 j

)
Sqa+b− j Sq j (8)

Theorem 3.7 (Z/p coefficient, Steenrod reduced powers) For any pair
of topological spaces (X, A), and for any integer i, we have

Pi : Hq(X, A; Z/p)→ Hq+2i(p−1)(X, A; Z/p)

for any non-negative integer q, satisfying:

44



(a)(Functoriality) Pi is functorial with respect to the pair of spaces, more
precisely, for any morphism f between pairs of topological spaces, write
f ∗ for the induced morphism on cohomological rings, then

f ∗ Pi = Pi f ∗

i.e. Pi is a cohomological operation;

(b)(Naturality) Pi commutes with the connecting morphism in the long exact
sequence associated to a pair of spaces;

(c)(Range) Pi : Hq(X, A; Z/p) → Hq+2i(p−1)(X, A; Z/p) is zero when 2i > q or
i < 0;

(d)(pth-power) Pq : H2q(X, A; Z/p) → H2pq(X, A; Z/p) is the pth-power map,
i.e. it takes any element x to xp;

(e) P0 = id;

(f)(Cartan formula) For any elements x ∈ Hq(X, A; Z/p) and y ∈ Hr(X, B; Z/p),
we have

Pk(x ∪ y) =

k∑

i=0

Pi(x) ∪ Pk−i(y)

in Hq+r+2k(p−1)(X, A ∪ B; Z/p);

(g)(Stability) We write the suspension isomorphism as Σ : Hq(X; Z/p) →
Hq+1(Σ X; Z/p), then we have

Σ Pi = Pi
Σ

(h)(Adem’s relations) For any 0 < a < pb, we have

Pa Pb =

ba/pc∑

j=0

(−1)a+ j
(

(p−1)(b− j)−1
a−p j

)
Pa+b− j P j (9)

For any a ≤ b we have

Pa βPb =

ba/pc∑

j=0

(−1)a+ j
(

(p−1)(b− j)
a−p j

)
βPa+b− j P j +

b(a−1)/pc∑

j=0

(−1)a+ j−1
(

(p−1)(b− j)−1
a−p j−1

)
Pa+b− j βP j

(10)

Notice: If one takes p = 2 in (9), one gets (8), in other words, they are the
same.

To better summarize the above constructions by Steenrod, we introduce
the notion of Steenrod algebra:

Definition 3.8 (Steenrod algebra A) For any prime number, we define a
Steenrod algebra.
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A(2): The Steenrod algebra for the prime 2, denoted A(2), is by definition the
graded associative algebra of generators {Sqi}i≥0 and β, subject to the
Adem relations (8):

Sqa Sqb =

ba/2c∑

j=0

(
b−1− j
a−2 j

)
Sqa+b− j Sq j

and
Sq1 = β; Sq0 = 1

The grading of A(2) is determined by deg(Sqi) = i;

A(p): The Steenrod algebra for the odd prime p, denotedA(p), is by definition
the graded associative algebra of generators {Pi}i≥0 and β, and subject to
the Adem relations (9) and (10):

Pa Pb =

ba/pc∑

j=0

(−1)a+ j
(

(p−1)(b− j)−1
a−p j

)
Pa+b− j P j

Pa βPb =

ba/pc∑

j=0

(−1)a+ j
(

(p−1)(b− j)
a−p j

)
βPa+b− j P j +

b(a−1)/pc∑

j=0

(−1)a+ j−1
(

(p−1)(b− j)−1
a−p j−1

)
Pa+b− j βP j

and

P0 = 1

The grading of A(p) is determined by deg(β) = 1 and deg(Pi) = 2i(p− 1).

Now we get a neat formulation of part of the preceding theorems:

Theorem 3.9 (A(p)-modules) Fix a prime number p. For any pair of topo-
logical spaces (X, A), the graded ring of cohomology H∗(X, A; Z/p) is an A(p)-
module, and the operation of A(p) on H∗(X, A; Z/p) is functorial with respect
to the pair. In a more formal language: H∗(−; Z/p) is a contravariant functor
from the category of pairs of topological spaces to Rings∩A(p)Mod, the category
of rings with a structure of A(p) module.

The above theorem provides us a lot of algebraic constraints on the mor-
phisms between topological spaces other than the ones provided by the ring
structure.

Remark 3.10 In fact, A(p) is moreover a cocommutative graded Hopf alge-
bra. For the discussions on the Hopf algebra structure, preferable basis, and
the structure of its dual Hopf algebra, we refer to the original paper of Milnor
[Mil58], and the book of Steenrod [Ste62].
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3.2 Reduced Steenrod Algebra

We now intend to extend the notion of Steenrod operations to the algebraic-
geometric setting, that is, analogous operations on Chow groups. Historically,
the question is posed by Fulton in [Ful98] Example 19.1.18, where he gives
a short proof of a theorem of Kawai that the topological Steenrod operation
preserves algebraic classes. Voevodsky constructed reduced power operations
on motivic cohomology (which is isomorphic to higher Chow groups) in [Voe03]
to prove the Milnor Conjecture, while the construction given there is very
different from the methods used by Steenrod. Following the idea in the book
of Steenrod [Ste62], Brosnan made a construction of Steenrod operations for
the (usual) Chow groups in [Bro03]. But there is no proof at the moment that
these coincide with Voevodsky’s constructions. The content of this note is to
present Brosnan’s way of construct the Steenrod operations.

Suppose that we have an algebraic variety of dimension n defined over C,
if we have found such an operation S : A∗(X) → A∗(X), then a reasonable
requirement is that S should commute with the cycle map:

A∗(X) S //

cl
²²

A∗(X)

cl
²²

H∗(X; Z/p) S // H∗(X; Z/p)

where the operation S on the bottom arrow is the corresponding topological
Steenrod operation. Recall that the cycle map is, c.f. [Ful98, Chapter 19]:

cl : Ak(X)→ HBM
2k (X; Z/p) ' H2(n−k)(X; Z/p)

can only maps to the even-dimensional part, so the Bockstein homomorphism
and the Steenrod squares (when p = 2) of odd-degree do not extend to the al-
gebraic setting 18. Such consideration leads us to the notion of reduced Steenrod
algebra.

To begin with, we introduce an affine group scheme G, or equivalently a
Hopf algebra H, whose dual will be the reduced Steenrod algebra we want.
The treatment here follows [Mer03].

The construction can be divided into two steps, define the algebra struc-
ture on H and set G = Spec(H), and then define the coalgebra structure by
specifying the group law of G. But anyway, we will give the explicit formula
for the comultiplication of H.

Construction 3.11 (Group scheme G and Hopf algebra H) Consider the
polynomial ring H = Fp[b] = Fp[b1, b2, ...] in infinitely many variables as a
graded Fp-algebra with deg(bi) = pi − 1. Set the affine scheme G = Spec(H).

To define the coalgebra structure of H, we define the group scheme structure
on G as below. For any commutative Fp-algebra A, the set of A-points of G,
namely G(A) = HomFp−alg(H, A), can be identified with the set of sequences in

18However, they do have generalizations for higher Chow groups, c.f. [Voe03]
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A, which can be further identified with the set of all formal power series of the
following form, i.e. with degrees powers of p and coefficients in A,

t + a1tp + a2tp2
+ · · · ∈ A[[t]]

The multiplication of G(A) is the composition of two formal power series, i.e.
for two f ′, f ′′ ∈ A[[t]] of the above form, we define the product ∗ as

( f ′ ∗ f ′′)(t) = f ′′( f ′(t))

the result is clearly of the above type. We set the unit element of G(A) to be
f (t) = t, then it is easy to see that every element has an inverse. In short, G(A)
is a group.

It is easy to verify the functorial properties of this construction, that is,
given any morphism of Fp-algebras, say A → B, then the map it induces by
composition G(A)→ G(B), is a homomorphism of groups.

In conclusion, this gives G a affine group scheme structure, or equivalently,
a Hopf algebra structure on H.

Remarks 3.12 (a)(Comultiplication of H) It is useful to write down the
comultiplication of H explicitly. For this, we identify Fp[b] ⊗ Fp[b] with
Fp[b′,b′′], by sending bi ⊗ 1 to b′i , 1 ⊗ bi to b′′i . Now by rephrasing the
definition of G, we get the formula of the comultiplication of H:

∆ : Fp[b] → Fp[b′,b′′]

bk 7→
∑

i+ j=k
i, j≥0

(b′i)
p j

b′′j

where b0 = 1

(b)(Grading) Recall that the degree of bi is by definition pi − 1, one notes
that the comultiplication of H preserves the degree: every term of ∆(bk)
has degree (pi − 1) · p j + (p j − 1) = pi+ j − 1 = pk − 1, which is the degree
of bk itself. Thus H is a graded Hopf algebra.

Let us write the grading of H as: H = ⊕m≥0Hm, where Hm is the ho-
mogenous part of H of degree m. For any multi-index of finite support19

I = (i1, i2, · · · ), we denote λIbI := λIb
i1
1 bi2

2 · · · , and we define the norm of
I = (i1, i2, · · · ) to be

|I| :=
∑

k

(pk − 1)ik (11)

by assumption, the sum is finite. Then

Hm =


∑

|I|=m

λIbI |λI ∈ Fp



And moreover, it is elementary that Hm is finite dimensional, since there
are only finitely many multi-indices I of a fixed norm.

19i.e. only finitely many of them are non-zero
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Before we define the reduced Steenrod algebra, let us recall the notion of
the dual of a graded Hopf algebra. A priori, the dual vector space H∗ of an
infinitely dimensional Hoph algebra H only has the structure of an algebra,
but not a coalgebra in general. The reason is that the multiplication of H does
not necessarily give rise to a comultiplication for H∗ because the inclusion
H∗ ⊗ H∗ ( (H ⊗ H)∗ is strict when H is infinitely dimensional.

However, in the case of a graded Hopf algebra with finitely dimensional
graded pieces, like the H constructed above, the graded dual can be well de-
fined.

Definition 3.13 (Dual of graded Hopf algebra) Let H = ⊕m≥0Hm be a
graded Hopf algebra with finitely dimensional graded pieces (like the Hopf
algebra constructed above, so we abuse the notation). We can define the dual
of H, denoted by H∨, to be H∨ = ⊕m≥0H∗m, where H∗m is the dual vector space of
Hm. The multiplication and comultiplication of H∨ are defined by restricting
to the homogenous parts, which is finite dimensional. More precisely, take the
multiplication of H∨ as example, we write a homogenous part of the comulti-
plication of H:

Hk
∆−→

⊕

i+ j=k

Hi ⊗ H j

taking the vector space dual (noting that they are all finite dimensional),

⊕

i+ j=k

H∗i ⊗ H∗j
∆∗−→ H∗k

which gives the good multiplication for two homogenous elements of total de-
gree k. The comultiplication of H∨ is defined analogously.

We now turn to the notion of reduced Steenrod algebra.

Definition 3.14 (Reduced Steenrod algebra) Let H be the graded Hopf
algebra defined in Construction 3.11 (for the grading, see Remarks 3.12(b)).
Define the reduced Steenrod algebra S to be its graded dual Hopf algebra in
the sense of Definition 3.13, i.e. S = H∨. In case we want to specify the
prime number p that we fixed in the beginning, we would write S (p) to avoid
possible confusions.

We write
H =

⊕

m≥0

⊕

|I|=m

Fp · bI

i.e. {bI}I forms a basis of H, where I ranges over all multi-indices. By definition,
the reduced Steenrod algebra

S =
⊕

m≥0

⊕

|I|=m

Fp · sI

where {sI} is the basis of S dual to {bI}.
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The multiplication of S , denoted by ◦, is determined by the comultiplica-
tion ∆ : H → H ⊗ H, in the way of Definition 3.13. More precisely, let I, J
be two multi-indices, and recall the definition of the norm of a multi-index in
(11), then

sI ◦ sJ =
∑

|K|=|I|+|J|
aK sK

where the sum is taken over all such multi-indices K (only finitely many),
and the coefficient aK equals to the coefficient of b′Ib′′J in ∆(bK), which is
determined by the formula in Remarks 3.12(a).

Now we give a theorem to justify the name of S . This theorem is due to
Milnor [Mil58]. The essential ingredients of the proof can be found in the book
of Switzer [Swi75] Chapter 18., which are purely algebraic and elementary, but
somehow tedious.

Theorem 3.15 (Generators and relations of S ) Set s(i,0,0··· ) =: si in S ,
then s0 = 1 and

(a)(Generators) {si}i≥1 is a system of generators of S ;

(b)(Relations) The relations of the system {si}i≥1 is generated by the Adem
relations (9) 20:

sa ◦ sb =

ba/pc∑

j=0

(−1)a+ j
(

(p−1)(b− j)−1
a−p j

)
sa+b− j ◦ s j (12)

Corollary 3.16 (Reduced Steenrod algebra) The reduced Steenrod alge-
bra is the Steenrod algebra modulo the two-sided ideal generated by the Bock-
stein element:

S (p) = A(p)/ < β >

The isomorphism is given by si 7→ Sq2i in the Z/2 case, and si 7→ Pi in the Z/p
case (p > 2).

Proof. It is trivial from the theorem and the definition of Steenrod algebras,
Definition 3.8. �

Remark 3.17 (S (p)-modules) In the sequel, we will encounter some S (p)-
modules, that is, representations of the associative algebra S (p). Recall that in
Definition 3.14, we have a basis for S , namely sI, where I ranges over all multi-
indices. We will view these elements as ‘operations’ over the modules, and the
two kinds of notations sI and si will be used freely, with the identification
S i = S (i,0,...).

20When p = 2, it is (8), see the notice following Theorem 3.7.
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3.3 Steenrod Operations on Chow Groups: Smooth Case

From now on, all the Chow groups (usual or equivariant) are assumed to be
of coefficient Fp, that is: A∗(X) = CH∗(X) ⊗ Z/p, where p is a prime number.
And the characteristic of the base field is assumed to be different from p. As
explained in the beginning of the preceding subsection, the ‘best’ thing we can
expect to generalize is a S (p)-module structure on A∗(X), where S (p) is the
reduced Steenrod algebra defined in the preceding subsection.

Fortunately, the ‘best’ thing happens, Brosnan [Bro03] constructed the
operations S i, and proved Adem’s relations. Through his constructions, he also
showed that some formal properties can also be generalized to the algebraic
setting.

In this subsection, we want to state the results of Brosnan, take them as
axioms, and give some simple applications, while the detailed construction and
the verification of the properties will be worked out in the next section.

Now here comes the main theorem:

Theorem 3.18 (Formal properties of Steenrod operations: smooth case)
Let X be a smooth n-dimensional algebraic variety over k with char(k) , p,
A∗(X) be the Fp-coefficient Chow group of X, set A∗(X) = An−∗(X). For any
integer i, we have an operation constructed in the next subsection Definition
3.26:

S i : Aq(X)→ Aq+i(p−1)(X)

for any non-negative integers q, satisfying:

(a)(Additivity) Each S i is additive, i.e. a homomorphism of abelian groups;

(b)(Functoriality) For any morphism between smooth varieties f : X → Y,
and any integers i, q, the operation S i commutes with the l.c.i.21 pull-
back f !.

f !S i = S i f ! : Aq(Y)→ Aq+i(p−1)(X)

(c)(Range) S i : Aq(X)→ Aq+i(p−1)(X) is the zero map if i > q or i < 0;

(d)(p-th power) S q : Aq(X)→ Apq(X) is the p-th power map, that is, x 7→ xp,
the intersection product 22;

(e) S 0 = id;

(f) S 0([X]) = [X] and S i([X]) = 0 for any i , 0;

(g)(Cycle map) If the base field k = C, then S i is compatible with the topo-
logical Steenrod operations in the following sense:

21 f is l.c.i., see the argument before the proof of Proposition 2.6
22[Ful98] Chapter 8

51



If p = 2, then cl ◦S i = Sq2i ◦ cl:

Aq(X) S i
//

cl
²²

Aq+i(X)

cl
²²

H2q(X; Z/2)
Sq2i

// H2q+2i(X; Z/2)

where Sq2i is the Steenrod square, c.f. Theorem 3.6.

If p is an odd prime number, then cl ◦S i = Pi ◦ cl:

Aq(X) S i
//

cl
²²

Aq+i(p−1)(X)

cl
²²

H2q(X; Z/p) Pi
// H2q+2i(p−1)(X; Z/p)

where Pi is the reduced Steenrod power, c.f. Theorem 3.7.

(h)(Cartan formula) For any x ∈ Aq(X), y ∈ Ar(X), we have

S k(x · y) =

k∑

i=0

S i(x) · S k−i(y)

in Aq+r+k(p−1)(X), or more neatly, S •(x ·y) = S •(x) ·S •(y) where the product
· is the intersection product 23,

(i)(Adem relations) For any 0 < a < pb, we have (12):

S a ◦ S b =

ba/pc∑

j=0

(−1)a+ j
(

(p−1)(b− j)−1
a−p j

)
S a+b− j ◦ S j

Proof. The explicit construction is the content of the next subsection, and
the detailed proof is also given at the end of it. However, we give the reference
of the proofs here. All the proofs in the next subsection are reproduced from
Brosnan [Bro03]: (a):Theorem 8.2; (b): Remark 8.12; (c): Corollary 9.6; (d):
Proposition 9.4(iv); (e): Corollary 9.6; (f):Proposition 9.4(ii); (g): Corollary
9.12; (h): Theorem 9.3; (i):Theorem 11.3. �

Combining (a),(b),(c),(e),(i) of the above theorem, we get a partial gener-
alization of Theorem 3.9:

Theorem 3.19 (S (p)-module structure I: smooth case) Fix a prime num-
ber p. Denote A∗(−) the functor of the Fp-coefficient Chow ring. For any
smooth variety X over k with char(k) , p, the Chow ring A∗(X) is a graded
S (p)-module, and the operation of S (p) on A∗(X) is natural with respect to
the functorial pull-backs.
In a more formal language: A∗(−) : Smop

k → Rings∩S (p)Mod is a contravari-
ant functor from the category of smooth varieties to the category of rings with
a structure of S (p)-module.

23[Ful98] Chapter 8
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Remark 3.20 In the rest of the note, we will also consider the the action of
other basis elements of S over the Chow ring of a smooth variety, denoted as

S I : A j(X)→ A j+|I|(X)

for any multi-index I. We have S i = S (i,0,...), see Remark 3.17.

3.4 The Construction and Proofs: Smooth Case

In this subsection, we will give the detailed construction of the Steenrod op-
erations on Chow groups of a smooth variety, as promised in the preceding
subsection. The proofs of the ‘axioms’ listed in Theorem 3.18 will be given at
the end of this subsection.

3.4.1 p-th Power Map

In this subsubsection, let X be a (not necessarily smooth) variety, p be a
positive integer. We will write Xp for X × X × · · · × X︸              ︷︷              ︸

p

, the product of p copies

of X. Let G be any subgroup of Sp, the symmetric group of p letters. We will
define a morphism P : Ai(X)→ AG

pi(X
p), roughly speaking, it sends a cycle of X

to the ‘quotient’ by the group of its p-th exterior power. Now we turn to the
details:

The p-th exterior power defines a map:

×p : Zi(X)→ Zpi(Xp)
α 7→ α × · · · × α︸       ︷︷       ︸

p

The image is obviously G-invariant, by abuse of notation, we have the mor-
phism ×p : Zi(X) → Zpi(Xp)G. And then we recall the equivariant cycle class
map defined in Subsection 2.3 (Construction 2.29): clG : Zpi(Xp)G → AG

pi(X
p)

Proposition 3.21 (p-th power) The composition

Zi(X)
×p

−→ Zpi(Xp)G clG−−→ AG
pi(X

p)

passes to rational equivalence, i.e. it factors through Ai(X), thus define the
required morphism P below:

Zi(X)

cl
²²

×p
// Zpi(Xp)G

clG
²²

Ai(X) P // AG
pi(X

p)

We call the bottom arrow P : Ai(X)→ AG
pi(X

p) the p-th power map24.

24In Brosnan[Bro03], he called this map the fundamental operation.
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Proof. Let Zi(X|P1) denote the group consisting of the families of i-dimensional
cycles parameterized by P1, that is, (i + 1)-dimensional cycles of X × P1 with
components dominating P1. Consider the map

Zi(X|P1)→ Zi(X)
α 7→ α(0) − α(∞)

where α is an (i + 1)-dimensional cycle of X ×P1 dominating P1, and α(t) is the
fiber over t ∈ P1: α(t) = i∗t (α) (See [Ful98] Chapter 1). Therefore, the first row
of the diagram below is exact:

Zi(X|P1) //

×
P1 p

²²

Zi(X) cl //

×p

²²

Ai(X) //

P
²²
Â
Â
Â 0

Zpi(Xp|P1)G // Zpi(Xp)G clG // AG
pi(X

p)

The left vertical arrow is the fiber-wise p-th exterior power, as indicated by
the fiber product notation. It is also obvious that the second row is a complex,
i.e. the composition is 0. By a routine diagram chasing, we find the dashed
vertical arrow is well-defined, which is exactly the morphism we are looking
for. �

Here are some formal functorial properties of the p-th power map:

Proposition 3.22 (Functoriality of the p-th power) The p-th power map
commutes with proper push-forwards, l.c.i pull-backs, and Chern classes.

More precisely, let f : X → Y be a morphism of varieties, G a subgroup of
Sp. Write f p := f × f × · · · × f︸             ︷︷             ︸

p

: Xp → Y p the morphism induced by f . We

write a subscript under P to indicate the space involved in the p-th power map.
Then:

(a)(Push-forward) If f is proper, then the following diagram commutes:

Ai(X) PX //

f∗
²²

AG
pi(X

p)

f p
∗

²²

Ai(Y) PY // AG
pi(Y

p)

where the left vertical arrow is the usual proper push-forward, while the
right one is the equivariant proper push-forward.

(b)(Pull-back) If f is l.c.i. of codimension c, then the following diagram
commutes:

Ai(Y) PY //

f !

²²

AG
pi(Y

p)

f p!

²²

Ai−c(X) PX // AG
p(i−c)(X

p)
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where the left vertical arrow is the usual l.c.i. pull-back, while the right
one is the equivariant l.c.i. pull-back.

(c)(Chern classes) If E → X is a vector bundle of rank r, Ep → Xp is the
G-equivariant vector bundle. Then the following diagram commutes:

Ai(X) P //

c j(E)∩
²²

AG
pi(X

p)

cG
p j(E

p)∩
²²

Ai− j(X) P // AG
p(i− j)(X

p)

where the left vertical arrow is the usual Chern class action, while the
right one is the equivariant Chern class action.

Proof. The proofs are just straightforward verifications, which we will omit
here. �

3.4.2 Basic Construction and Proofs

In this subsubsection, let X be a smooth variety of dimension n over k, p be
a fixed prime number, with char(k) , p. To define an S (p)-module structure
on A∗(X), by the description of the reduced Steenrod algebra Theorem 3.15,
it suffices to construct a series of operations S i satisfying the Adem relations
(12).

Definition 3.23 (Construction of DX) Firstly, applying the p-th power map
of the preceding subsection to the case G = Z/p, we have:

P : Ai(X)→ AZ/p
pi (Xp)

Secondly, consider the diagonal inclusion δ : X ↪→ Xp, since X is smooth, δ
is a regular embedding of codimension n(p − 1), where n is the dimension of
X. Let the finite group Z/p act on X trivially, and on Xp by permutation, we
find that δ is indeed equivariant. Applying the construction of equivariant l.c.i
pull-back in 2.2.2, we get:

δ! : AZ/p
pi (Xp)→ AZ/p

pi−(p−1)n(X)

And finally, according to the result in Appendix A, Theorem A.2, we write

AZ/p
pi−(p−1)n(X) =

⊕

j≥0

Api−(p−1)n+ j(X) · l j

We denote the composition of the three maps

DX : Ai(X)→ AZ/p
pi−(p−1)n(X) =

⊕

j≥0

Api−(p−1)n+ j(X) · l j

Sometimes when we are dealing with only one space, the subscript could be
omitted.
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There are two basic lemmas:

Lemma 3.24 (Additivity) The DX constructed above is additive, i.e. a ho-
momorphism of groups.

Proof. Let us keep the above notation. Given x, y ∈ Ai(X) two cycles of X.
Then

DX(x + y) = δ!(P(x + y))
= δ! ◦ clZ/p((x + y)×p)

= δ! ◦ clZ/p(x×p + y×p) + δ! ◦ clZ/p(
∑

g∈Z/p

g · z)

where z is a cycle in Xp. The reason for the last equality is that apart from
x×p +y×p, the rest terms can be regrouped into the form

∑
g∈Z/p g ·z ∈ Zpi(Xp)Z/p,

but Proposition 2.31 implies that clZ/p(
∑

g∈Z/p g · z) = TrZ/p
1 ◦ cl(z) in AZ/p

pi (Xp).
Thus

DX(x + y) = δ! ◦ clZ/p(x×p + y×p) + δ! ◦ TrZ/p
1 ◦ cl(z)

= DX(x) + DX(y) + δ! ◦ TrZ/p
1 ◦ cl(z)

= DX(x) + DX(y) + TrZ/p
1 ◦δ! ◦ cl(z)

The last equality follows from Proposition 2.28(c)25. So it remains to show that
TrZ/p

1 = 0 : A j(X)→ AZ/p
j (X). To this end, recall that (Proposition 2.28(b)) the

composition AZ/p
j (X)

ResZ/p
1−−−−→ A j(X)

TrZ/p
1−−−→ AZ/p

i (X) is multiplication by p, i.e. 0.
However, since the Z/p-action on X is trivial, so the restriction map can be
read as the push-forward of the projection map:

pr1∗ : A j+|B|(X × B)→ A j(X),

where B = E
Z/p is the quotient of E ∈ E(Z/p)r with r sufficiently large. The

above displayed morphism is clearly surjective, hence TrZ/p
1 = 0 : A j(X) →

AZ/p
j (X). �

Lemma 3.25 We keep the notation: DX : Ai(X) → ⊕
j≥0 Api−(p−1)n+ j(X) · l j.

Then for any x ∈ Ai(X), DX(x) has its j-th component 0, for every j not divisible
by (p − 1).

In other words, we can write

DX : Ai(X)→
⊕

j≥0

Api−(p−1)(n− j)(X) · l j(p−1)

25The two δ!’s are different, the first one is Z/p-equivariant l.c.i.pull-back, the second one
is usual l.c.i pull-back
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Proof. Let N be the normalizer of Z/p inSp, then N ' Z/poAut(Z/p), while
Aut(Z/p) ' (Z/p)∗ ' Z/(p− 1), Consider the action of Aut(Z/p) ' Z/(p− 1) on
AZ/p

pi−(p−1)n(X) =
⊕

j≥0 Api−(p−1)n+ j(X) · l j. Examining the calculation in Appendix
A, we find the action is just

Aut(Z/p) ' (Z/p)∗ × Fp[l]→ Fp[l]
(k, l j) 7→ k jl j

The action on l j is trivial if and only if (p − 1) divides j.
On the other hand, since the restriction map commutes with l.c.i. pull-back,

we have the following diagram:

Ai(X)

P
²²

P

''OOOOOOOOOOOO

AN
pi(X

p)
ResN

Z/p
//

δ!

²²

AZ/p
pi (Xp)

δ!

²²

AN
pi−(p−1)n(X)

ResN
Z/p

// AZ/p
pi−(p−1)n(X)

The action of Aut(Z/p) ' Z/(p − 1) on AZ/p
pi−(p−1)n(X) is determined by the re-

striction map. By a general argument in [Bro03, Theorem 8.3] using [Bro03,
Proposition 3.4]: ‘Inner automorphisms act trivially on equivariant cohomol-
ogy’, this action must be trivial. Therefore all the coefficient of DX(x) in front
of l j with j not divisible by (p − 1), is zero. For the details, see [Bro03]. �

Now we turn to the definition of the Steenrod operations:

Definition 3.26 (Steenrod operations (smooth)) Given a smooth alge-
braic variety X over k with char(k) , p. Keep the notation as above, and
denote η := −lp−1 as in Example 2.24. Thanks to Lemma 3.25, we can write

DX : Ai(X)→
⊕

j≥0

Api−(p−1)(n− j)(X) · η

For a x ∈ Ai(X), write DX(x) =
∑

j≥0(−1) jb j · l j(p−1) =
∑

j≥0 b jη
j, where b j ∈

Api−(p−1)(n− j)(X). We define the Steenrod operations S j : Ai(X)→ Ai−(p−1) j(X), by
a reindexing as following:

S j(x) := bn−i− j ∈ Ai−(p−1) j(X) (13)

Remark 3.27 To better keep track of degrees, we also introduce the power
series notation following Brosnan[Bro03]8.4 and Definition 8.5: set η = −lp−1,
for x ∈ Ai(X), let DX(x, t) ∈ A∗(X)[[t]] be the power series such that DX(x, η) =

DX(x). And then, define S (x)(t) = tn−iDX(x, 1/t). So by definition,

S (x)(t) =
∑

j≥0

S j · t j
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Now we turn to the verification of the various properties of the Steenrod
operations listed in §3.3 Theorem 3.18.

Proof. (of Theorem 3.18)

(a) follows immediately from Lemma 3.24;
(b) is trivial from the construction: since every step of the construction

of D is functorial, and the reindexing (13) only concerns the codimension of
cycles, which is preserved by the l.c.i. pull-backs, every S j is functorial with
respect to the pull-backs;

For (d), set i = n − q, fix x ∈ Aq(X) = Ai(X), then S q(x) is the constant
coefficient of DX(x, t), which turns out to be the image of DX(x) ∈ AZ/p

∗ X under
the map ResZ/p

1 : AZ/p
∗ (X) → A∗(X). Thanks to Proposition 2.28(c), the right

square of the following diagram is commutative:

Ai(X) P // AZ/p
pi (Xp)

ResZ/p
1

²²

δ!
Z/p

// AZ/p
pi−n(p−1)(X)

ResZ/p
1

²²

Ai(X)
×p

// Api(Xp)
δ!

1 // Api−n(p−1)(X)

the left square is obviously commutative, and the composition of the top line
is just the map DX. Consequently,

S q(x) = ResZ/p
1 ◦DX(x)

= ResZ/p
1 ◦δ!

Z/p ◦ P(x)

= δ!
1(x×p)

= xp

For (f), we plunge into the above construction, recalling the definition of
equivariant Chow group, we arrive at a regular embedding:

X × U
Z/p

= X × U
Z/p

↪→ X × · · · × X × U
Z/p

where U ∈ E(Z/p)r with r large enough. And the p-th power of the cycle [X]
is the whole ambient space of the right hand side, thus its pull-back is the
whole space of the left hand side, namely X × U

Z/p , according to the fact that
the Gysin map of a regular embedding sends the cycle of the ambient space to
the cycle of the subspace. Then the result follows.

We prove (c) and (e) together, it is trivial from the reindex (13) that S i is
zero for i > q. As for the i ≤ 0 case, by the linearity (a), we can suppose x = [Y],
where Y is a subvariety of X. Denote Z = Ysing the singular part of Y, and set
U = X − Z, the open immersion being j : U ↪→ X. Applying the functoriality
to the open immersion j : U ↪→ X, we get S i

U([Y − Z]) = j∗(S i
X([Y])) 26. Noting

that for dimension greater than |Z|, j∗ is an isomorphism, so if we can prove

26the spaces on which we do Steenrod operations are indicated by the subscripts.
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(c) and (e) for U and Y − Z, then we can prove them for X and Y, since for
i ≤ 0, S i([Y]) has dimension at least |Y |, which is larger than |Z|.
Therefore, we can assume that X and Y are both smooth, hence the embedding
is regular. Here we want to use the Step 1 of Theorem 4.5, whose proof will be
independent of (c) and (e) of Theorem 3.18 here, we have U•Y([Y]) = U•X([Y]),
by the definition of U•, that is:

S •Y([Y], t) ∩ w(TY , t)−1 = S •X([Y], t) ∩ w(TX, t)−1

for the definition and several elementary properties used of the characteristic
class w, see the beginning of the next section. Since S •Y([Y]) = [Y] by (f), and
w(TY , t)−1 ·w(TX |Y , t) = w(NX/Y , t) by Whitney sum formula (c.f.Remarks 4.2(4)),
it is equivalent to

[Y] ∩ w(NX/Y , t) = S •X([Y], t)

from which we conclude S 0([Y]) = [Y] and S j([Y]) = 0 for any j < 0, hence (c)
and (e).

For (g), we just mention that the construction in the algebraic context
given above is parallel to the construction in [Ste62] Chapter VII, every step
has corresponding cycle map to bridge two constructions.

For (h), we consider the following version of Cartan formula (h’):
(h’)(Cartan formula’) For any x ∈ Aq(X), y ∈ Ar(Y), we have

S k(x × y) =

k∑

i=0

S i(x) × S k−i(y)

in Aq+r+k(p−1)(X×Y), or more neatly, S •(x×y) = S •(x)×S •(y), where the product
is the exterior product;

(h) is an immediate consequence of (h’) and the functoriality (b) applying
to the diagonal map δ : X ↪→ X × X:

S k(x · y) = S k(δ!(x× y)) = δ!(S k(x× y)) = δ!(
k∑

i=0

S i(x)×S k−i(y)) =

k∑

i=0

S i(x) ·S k−i(y)

As for (h’), note that S •(x× y) = S •(x)×S •(y) is equivalent to DX×Y(x× y) =

DX(x) × DY(y), which can be proved using the formal properties of P and l.c.i.
pull-backs:

DX×Y(x × y) = (δX × δY)!(PX×Y(x × y))
= δ!

X(PX(x)) × δ!
Y(PY(y))

= DX(x) × DY(y)

Finally, for (i), we refer to the book of Steenrod [Ste62] Chapter VIII, or
Brosnan’s paper [Bro03]§11. �
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4 Twisted Steenrod Operations on Arbitrary

Varieties

In this section we intend to extend the Steenrod operations to arbitrary va-
rieties. However, the operations defined for smooth varieties in the preceding
section (Theorem 3.19) do not generalize naturally. The reason is that they do
not behave well enough under push-forwards (see the details below), while our
basic strategy is to use a birational push-forward method. Therefore, we will
introduce in the first subsection another slightly different S -module structure
on the Chow groups of smooth varieties, namely the twisted Steenrod operations
U, which commute with projective push-forward, and we will show that this
kind of twisted operations extends in to arbitrary varieties by two methods:
in the second subsection, we present the approach using resolution of singular-
ities, while in the third subsection, we will use a smooth embedding. Recall
that we always assume that the characteristic of the base field is different from
p, and all the Chow groups A∗(−) are of coefficient Fp.

4.1 Twisted Steenrod Operations: Smooth case

First of all, one should notice an important fact: the Steenrod operations do
not commute with projective (or proper) push-forwards. Fortunately, as in
the case of Grothendieck-Riemann-Roch theorem, the failure is measured by
certain characteristic class of the ‘difference’ of the tangent bundles.

We introduce this characteristic class first, by an abuse of the splitting
principle:

Definition 4.1 (Characteristic class w) Let E be a vector bundle of rank
r over a variety X, λ1, λ2, . . . , λr be the Chern roots of E. We define the char-
acteristic class w by

w(E, t) =

r∏

i=1

(1 + λ
p−1
i t).

As usual, the indeterminate t is to better keep track of the degree, and we
index the classes such that w(E, t) =

∑r
j=0 w j(E)t j. Clearly, the degree of w j

is (p − 1) j, that is, viewing the characteristic classes as operations on the Fp

coefficient Chow groups, as in the language of [Ful98], then we have:

w j(E) : A∗(X)→ A∗−(p−1) j(X)

We sometimes use the total w class : w(E) = w(E, 1) =
∏r

i=1(1 + λ
p−1
i )

Remarks 4.2 We have:

1. w j has degree (p − 1) j, i.e. viewed as an operation, it will decrease the
dimension of cycles by (p − 1) j;

2. w0(E) = 1;
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3. (Whitney sum) For a exact sequence of vector bundles 0→ E′ → E →
E′′ → 0, we have w(E, t) = w(E′, t) · w(E′′, t);

4. wr(E) = cr(E)p−1, where cr is the top Chern class, and the product is
the composition of characteristic class operations, and in particular for
smooth base varieties, it is just the intersection product.

For later reference, we compute an example where characteristic class w
appears naturally.

Example 4.3 Let E be a vector bundle of rank r on a variety X, both equipped
with trivial Z/p actions. Recall some notation in Example 2.24, R is the
standard representation of Z/p, and denote RX = R ⊗k OX to be the trivial
vector bundle on X of fiber R, equipped with the natural Z/p-action. Then
the Z/p-equivariant top Chern class of RX ⊗ E is

cZ/p
r(p−1)(RX ⊗ E) = ηrw(E, 1/η)

where η is by definition (Example 2.24) the top equivariant Chern class of R
viewed as a vector bundle on a point, cZ/p

p−1(R) =: η = −lp−1.
(Indication of the proof: the Chern roots of RX are given in Example 2.24:

l, 2l, . . . , (p − 1)l, where l = cZ/p
1 (L jX), for some 1 ≤ j ≤ p − 1; the Chern roots

of E are λ1, λ2, . . . , λr, then the Chern roots of RX ⊗ E are { jl + λi}1≤ j≤p−1,1≤i≤r.
One deduces that

cZ/p
r(p−1)(RX ⊗ E) =

p−1∏

j=1

r∏

i=1

( jl + λi)

=

r∏

i=1

(λp−1
i − lp−1)

=

r∏

i=1

(λp−1
i + η)

= ηrw(E, 1/η)

as wanted.)

Now we show that the difference of the w-classes of the tangent bundles
measures the non-commutativity of the push-forward and the Steenrod oper-
ations.

Definition 4.4 (Twisted Steenrod operations I: smooth case) Let X be
a smooth variety over k, with char(k) , p, we define another kind of operations
by

U•(t) := w(TX, t)−1 ◦ S •(t)

where U•(t) =
∑

j U jt j, S •(t) =
∑

j S jt j, and w(TX, t)−1 is the inverse power
series27 of the w-class of the tangent bundle of X. Then by the first point

27Since w0 = 1, it is always invertible as power series.
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of Remarks 4.2, the operation U j, like S j and w j, decreases the dimension
by j(p − 1). We sometimes write a subscript under U to indicate the space
on which we do these new operations. We call this operation U, the twisted
Steenrod operation.

Theorem 4.5 (Push-forwards and twisted Steenrod operations I) Let
f : X → Y be a morphism between smooth varieties over k with char(k) , p,
and we suppose that f is projective in the strong sense, that is, f admits a
factorization f : X ↪→ Y × Pr → Y, where the first map is a closed immersion,
and the second one is a trivial projective bundle. Then the twisted Steenrod
operations U j commutes with the proper push-forward f∗:

f∗ ◦ U j = U j ◦ f∗ : Ai(X)→ Ai−(p−1) j(Y)

i.e. the following diagram is commutative:

Ai(X)

f∗
²²

U j
// Ai− j(p−1)(X)

f∗
²²

Ai(Y) U j
// Ai− j(p−1)(Y)

Proof. Suppose the dimension of X and Y are n and m respectively. Since f
admits a factorization as stated in the theorem, we can prove the theorem in
two separate cases: f is a closed immersion, or f is the projection Y × P→ Y.

Step 1. The case when f is a closed immersion of smooth varieties.
In this case, n < m, the codimension is d = m− n. Moreover, since X and Y are
smooth, f is a regular embedding. We have the cartesian diagram:

X
f

²²

δX // Xp

f p

²²

Y
δY // Y p

where all morphisms are viewed as Z/p morphisms, the excess normal bundle
is E = f ∗(TY ⊗ RY)/(TX ⊗ RX) = ( f ∗TY/TX) ⊗ RX = NX/Y ⊗ RX, as Z/p-equivariant
vector bundle, which is of rank e = (p − 1)d. Then by the equivariant excess
intersection formula, Theorem 2.22,

δ!
Y = cZ/p

e (E) ∩ ◦δ!
X : AZ/p

∗ (Xp)→ AZ/p
∗−(p−1)m(X) (14)

On the other hand, we have the following commutative diagram, in virtue of
the naturality of l.c.i pull-backs (Proposition 2.19(c))

Ai(X)

f∗
²²

PX // AZ/p
pi (Xp)

f p
∗

²²

δ!
Y // AZ/p

pi−(p−1)m(X)

f∗
²²

Ai(Y) PY // AZ/p
pi (Y p)

δ!
Y // AZ/p

pi−(p−1)m(Y)

62



where the operation P is the pth power map defined in Subsection 3.4.1.
Now in the above diagram, by the construction in the beginning of Subsec-

tion 3.4.2, the composition of the bottom line is just DY , and the composition
of the top line is cZ/p

e (E) ◦ DX by (14), Therefore,

DY ◦ f∗ = f∗ ◦ cZ/p
e (E) ◦ DX

By the calculation in the above Example 4.3,

cZ/p
e (E) = cZ/p

e (NX/Y ⊗ RX)
= ηdw(NX/Y , 1/η)

For any given x ∈ Ai(X), to prove the theorem f∗ ◦ U•(x, t) = U•( f∗(x), t), we
only need to show it with t = 1/η. By the explicit construction of S X from DX

in Definition 3.26, we recall that DX(x, η) = DX(x), S X(x, t) = tn−iDX(x, 1/t), and
U•(t) := w(TX, t)−1 ◦ S •(t), we deduce:

f∗ ◦ U•(x, t)|t=1/η = f∗(w(TX, t)−1 · S •X(x, t))|t=1/η

= f∗(w( f ∗TY , t)−1 · w(NX/Y , t)) · tn−iDX(x, 1/t)|t=1/η

= w(TY , t)−1 · f∗(w(NX/Y , t)) · tn−iDX(x, 1/t))|t=1/η

= w(TY , t)−1|t=1/η · f∗(w(NX/Y , 1/η) · ηi−nDX(x))
= w(TY , t)−1|t=1/η · f∗(cZ/p

e (E) · ηi−mDX(x))
= w(TY , t)−1|t=1/η · DY( f∗(x)) · ηi−m

= w(TY , t)−1 · DY( f∗(x), 1/t)tm−i|t=1/η

= w(TY , t)−1 · S •Y( f∗(x), t)|t=1/η

= U•( f∗(x), t)|t=1/η

The closed immersion case is proved.

Step 2. The case when X = Y × Pr f =pr1−−−−→ Y is a trivial projective bundle
over a smooth variety.
In this case n−m = r. We will use the following version of Cartan formula (h’):

(h’)(Cartan formula’) For any x ∈ Aq(X), y ∈ Ar(Y), we have

S k(x × y) =

k∑

i=0

S i(x) × S k−i(y)

in Aq+r+k(p−1)(X×Y), or more neatly, S •(x×y) = S •(x)×S •(y), where the product
is the exterior product;

(h’) follows immediately from the Cartan formula in the main theorem
3.18(h) by considering the product space and using the simple fact that

(x × [Y]) · ([X] × y) = x × y

in A(X × Y).
For a given α ∈ Ai(Y × Pr) = ⊕ jA j(Y) ⊗ Ai− j(Pr), write

α =
∑

j

β j × [Pi− j]
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according to the decomposition. Then f∗(α) = βi. On the other hand,

f∗U•(α, t) = f∗(
∑

j

U•(β j × [Pi− j], t))

=
∑

j

f∗(U•Y(β j, t) × U•Pr ([Pi− j], t))

=
∑

j

f∗(U•Y(β j, t) × (U•Pr ([Pi− j], t))0)

(15)

by the Cartan formula. However, (U•Pr ([Pa], t))0 = (U•Pa([Pa], t))0 by the closed
immersion case, and

U•Pa([Pa], t) = w(TPa , t)−1 · S •([Pa], t)

=
w(OPa , t)

w(OPa(1), t)a+1 · S •([Pa], t)

= (1 + thp−1)−(a+1) · [Pa]

the first equality is by the definition of the operation U; the second equality
follows from the Euler sequence of projective spaces; while the third one is
Theorem 3.18(f). Consequently, (U•Pr ([Pa], t))0 does not vanish only if a is
divisible by (p − 1), say a = (p − 1)q, then

(U•Pr ([Pa], t))0 =

(−q(p − 1) − 1
q

)
· [P0] = (−1)q

(
pq
q

)
[P0] =

{0 mod p, if q , 0
1 mod p, if q = 0

Combine this with (15), we get

f∗U•(α, t) = f∗(U•Y(βi, t) × [P0] = U•(βi, t) = U•( f∗(α), t)

which completes the proof for the trivial projective bundle case, hence the
theorem. �

Remark 4.6 Note that the assumption in the preceding theorem is satisfied in
a quite common situation: when f : X → Y is a projective morphism between
smooth quasi-projective varieties. Here projective is in the usual sense: namely,
f is proper (of finite type), and X admits an f -ample line bundle. We remark
that if f is projective and Y is quasi-projective, then X is automatically quasi-
projective. In fact it is well-known that the pull-back of a sufficient large
multiple of an ample line bundle on Y tensors with an relative ample line
bundle will get an ample line bundle on X.

4.2 Extending the Twisted Steenrod Operations to Ar-
bitrary Varieties I: via Resolution of Singularities

Theorem 4.5 in the preceding subsection permits us to extend the operations
U to varieties which are not necessarily smooth. In this subsection we will
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invoke the resolution of singularities in this construction, therefore we have to
restrict ourselves in characteristic 0, while in the next subsection we will give
another approach without using the resolution of singularities to overcome this
defect to extend the operations to any characteristic except p.

Construction 4.7 (Twisted Steenrod operations II: general case) Given
a variety X (not necessarily smooth) defined over a field k of characteristic 0,
we want to define the operations U j : Ai(X) → Ai−(p−1) j(X), such that they
coincide the ones constructed above for smooth varieties, c.f. Definition 4.4.
By linearity, it suffices to define U•([V]) for every i-dimensional subvariety
V of X. To this end, for a fixed i-dimensional subvariety V of X, take the
resolution of singularities µ : W → V, then W is smooth, µ is birational, pro-
jective in the strong sense, consisting of successive blow-up of smooth center
in the singular locus of X. We abuse the notation to write µ : W → X. Then
by the preceding construction for smooth varieties, we have the operations
U j

W : Ai(W) → Ai−(p−1) j(W). We define U j
X([V]) to be the image of U j

W([W])
under the proper push-forward µ∗ : Ai−(p−1) j(W)→ Ai−(p−1) j(X), i.e.

U•X([V], t) = µ∗(U•W([W], t)) = µ∗([W] ∩ w(TW , t)−1)

We need to check that such construction is well-defined, see the following two
lemmas.

Lemma 4.8 The above construction is independent of the resolution of sin-
gularities chosen.

Proof. Suppose we are given two resolutions of singularities µ′ : W ′ → V
and µ : W → V, then they are dominated by a third one µ′′ : W ′′ → V

W ′′
p

}}{{
{{

{{
{{

µ′′

²²

q

""DD
DD

DD
DD

W

µ
!!CC

CC
CC

CC
W ′

µ′
||zz

zz
zz

zz

V

In fact, we can get W ′′ as the resolution of singularities of the fiber product
W ×V W ′, thus we can assume that p, q are projective in the strong sense,
birational. Thanks to Theorem 4.5, p∗(U j([W ′′])) = U j(p∗[W ′′]) = U j([W]) and
similarly q∗(U j([W ′′])) = U j([W ′]), hence

µ∗(U j([W])) = µ∗p∗(U j([W ′′])) = µ′∗q∗(U
j([W ′′])) = µ′∗(U

j([W ′]))

i.e. the two definitions coincide. �

Lemma 4.9 The construction 4.7 above passes to the rational equivalence
classes.
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Proof. Keep the notations of Construction 4.7: let X be an algebraic variety
over k of characteristic 0, which is not necessarily smooth. Since the subgroup
Zi(X)rat consisting of the cycles rational equivalent to 0 is generated by the
cycles of the form [ f −1(0)] − [ f −1(1)], in the following kind of diagram with W
an (i+1) dimensional subvariety of X×P1, and f flat (or equivalently, dominant)
28:

W Â Ä ι //

f
ÂÂ

@@
@@

@@
@@

X × P1

pr2
{{xx

xx
xx

xx
x

P1

therefore it is enough to show that U j([ f −1(0)])−U j([ f −1(1)]) is rational equiv-
alent to 0 for any fixed W as above.

Consider the two fibres involved: f −1(0) and f −1(1), they are Cartier divisors
of W. In general, f −1(0), f −1(1) and W are not necessarily smooth. To reduce
to the smooth case, we will make use of the theorem of (log-)resolution of
singularities, see for example [Laz04, Page 241, Theorem 4.1.3] for a version
enough for our purpose. Apply the theorem of (log-)resolution of singularities
to (W, f −1(0), f −1(1)), we get a projective and birational morphism µ : W ′ → W
via a sequence of blow-ups along smooth centers supported in the singular loci
of f −1(0), f −1(1) and W, such that W ′ is smooth, and except(µ) the exceptional
locus of µ, together with µ∗( f −1(0)) + µ∗( f −1(1)) the pull-backs (as divisors) of
the two fibres is a divisor with SNC support, in particular, the preimage in
W ′ of any of these two fibres consists of a resolution of singularities and some
exceptional components.

Now consider the following diagram:

W ′

f ′ ÃÃ
AA

AA
AA

AA
µ

// W

f
²²

Â Ä ι // X × P1

pr2
{{xx

xx
xx

xx
x

pr1
// X

P1

For s = 0 or 1 in P1, by the construction above, the fibre f ′−1(s) over s of
the composition f ′ = f ◦ µ consists of two parts: one part is a resolution of
singularities of the fibre f −1(s), which is a smooth variety birational to f −1(s);
and the other part consists of some smooth exceptional components (with
simple normal crossings). We denote the first part by f −1(s)∼, since that is the
birational transform of f −1(s) via µ−1, and we denote the second part by Es.
We remark that with Theorem 4.5 applied to the inclusion α : f −1(s)∼ ↪→ W ′,
we find that, for s = 0 or 1,

U j
X([ f −1(s)]) = pr1∗ι∗µ∗α∗U

j
f −1(s)∼([ f −1(s)∼]) (by the above construction)

= pr1∗ι∗µ∗U
j
W′([ f −1(s)∼]) (by Theorem 4.5)

28c.f. [Ful98, Propostion 1.6]
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thus,

U j
X([ f −1(0)]) = pr1∗ι∗µ∗U

j
W′([ f −1(0)∼]) (the preceding remark)

= pr1∗ι∗µ∗(U
j
W′([ f −1(0)∼]) + E0) (the push-forward of exceptional cycles are 0)

= pr1∗ι∗µ∗(U
j
W′([ f ′−1(0)])) (since [ f ′−1(0)] = [ f −1(0)∼] + E0)

And we have a similar formula for U j
X([ f −1(1)]). Note that U j

W′([ f ′−1(0)]) =

U j
W′([ f ′−1(1)]), since W ′ is smooth and the twisted Steenrod operations on W ′

preserve rational equivalence by definition, and that pr1∗, ι∗, µ∗ also preserve
rational equivalence. Therefore we have U j

X([ f −1(0)]) = U j
X([ f −1(1)]), as wanted.

�

Now we prove that the twisted Steenrod operations commute with proper
push-forwards.

Theorem 4.10 (Push-forwards and twisted Steenrod operations II) Let
f : X → Y be a proper morphism between varieties over k of characteristic 0 29,
let UX, UY be the twisted Steenrod operations on the Fp coefficient Chow groups
of X, Y respectively. Then the following diagram commutes:

Ai(X)
U j

X //

f∗
²²

Ai−(p−1) j(X)

f∗
²²

Ai(Y)
U j

Y // Ai−(p−1) j(Y)

It is a generalization of Theorem 4.5 to any proper morphism between two
arbitrary varieties.

Proof. We view the proof as the continuation of the proof of Theorem 4.5.
Step 3. The case when f : X ↪→ Y is a closed immersion, without assuming

the smoothness of X and Y. In fact, it is obvious by the definition of the twisted
Steenrod operation 4.7.

Step 4. The case when f : X = Y × Pr → Y is a trivial projective bundle,
without the assumption that X and Y are smooth.
For this case, we first notice that A∗(X) = A∗(Y) ⊗ A∗(Pr), thus by linearity, we
can focus on a element in A∗(X) of the form [V]×[P j], where V is a subvariety of
Y, and [P j] is a sub-linear space of Pr. Now take any resolution of singularities
of V, say µ : V ′ → V, we can assume that µ is birational and projective in the
strong sense. Make the base change:

W ′ = V ′ × Pr

f ′

²²

id×µ
// X = Y × Pr

f
²²

V ′ µ
// Y

29This assumption can be replaced by char(k) , p, see the next subsection.
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Now the result follows from the defintion in 4.7.
Step 5. The case when f : X → Y is projective in the strong sense, i.e.

admits a factorization:
X ↪→ Y × Pr � Y

In this case, we conclude immediately from Step 3 and Step 4.
Step 6. The case when f : X → Y is projective ( in the usual sense

of Grothendieck 30), with Y quasi-projective31. We will see this implies f is
projective in the strong sense.
In this case, since f is projective, f can be factorized as:

f : X ↪→ P(E)→ Y

where the first map is a closed immersion, and the second one is a projective
bundle, E is a vector bundle over Y. Since twisting E with a line bundle on
Y does not change the associated projective bundle P(E), we can replace E by
E ⊗ A⊗N , where A is an ample line bundle on Y, and choose N sufficiently large
to make E generated by its global sections:

H0(Y, E) ⊗k OY → E → 0

Taking the associated projective bundle, we obtain

P(E) ↪→ Y × P(V)� Y

where V is the vector space H0(Y, E). We note that in the above displayed line,
the first map is a closed immersion, while the second one is a trivial projective
bundle. Composed with X ↪→ P(E), we find f is projective in the strong sense:

X ↪→ Y × P(V)� Y

Therefore, we arrive at the situation of Step 5 above.
Step 7. The case when f : X → Y is proper, and Y quasi-projective.

In this case, we apply Chow’s lemma to have the following diagram:

X′
µ

//

f ′
ÃÃ

@@
@@

@@
@@

X

f
ÄÄÄÄ

ÄÄ
ÄÄ

Ä

Y

where f ′ is projective, hence also µ, and µ : X′ → X is a Chow envelope, which
is birational surjective and projective in the strong sense. Apply Step 3 and
Step 6 to µ and f ′ respectively, we know the push-forwards and the Steenrod
operations commute for µ and for f ′, hence commute also for f since µ∗ is
surjective.

30That is, f is proper of finite type and X admits an f -ample line bundle, see Remark 4.6.
31Then X is automatically quasi-projective, see Remark 4.6.
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Step 8. The general case when f : X → Y is proper in general.
In this case, we apply the Chow’ Lemma to Y to get the following diagram:

X′
µ′

//

f ′

²²

X
f

²²

Y ′ µ
// Y

where µ, µ′ are Chow envelopes which are birational, projective in the strong
sense, Y ′ is quasi-projective, and f ′ is still proper. Since µ′∗ is surjective ,
therefore applying Step 5 and Step 7, we know that the push-forwards and
the Steenrod operations commute for µ, µ′ and for f ′, which implies they also
commute for f . This completes the proof. �

In fact, like the Steenrod operations S • provides an S -module structure
on A∗(X) for any smooth variety X, the twisted Steenrod operations U• also
give an S -module structure on A∗(X) for any variety X 32, for this, we need to
verify the Adem relations:

Theorem 4.11 (Adem relations for U•: characteristic 0) Let X be any
variety over k of characteristic 0 33, U• be the operations on A∗(X) defined
above. Then they satisfy Adem’s relations (12): For any 0 < a < pb,

Ua ◦ Ub =

ba/pc∑

j=0

(−1)a+ j
(

(p−1)(b− j)−1
a−p j

)
Ua+b− j ◦ U j

Proof. In [Mer03], Merkurjev gives a conceptual proof for this fact. He ex-
tends the notion of Steenrod operations such that for every finite support
multi-index I, there is a corresponding operation S I, where S (i,0,0,··· ) = S i.
He also extends the Chern classes to multi-indexed Chern classes such that
C(i,0,0,··· )(E) = w(E, t), and we set U• := C• · S •. Then U (i,0,0,··· ) = U i. He gives an
easy criterion to check when a series of actions sI on an abelian group gives an
S -module structure. Through this, he can easily prove that: as long as {S I}I
gives an S -module structure, which is equivalent to the Adem relation for the
S i’s, we have {U I}I also gives an S -module structure, which is equivalent to
the Adem relation for the U i’s. For the details, see [Mer03]. �

Consequently, combining the above two theorems, we have the following:

Theorem 4.12 (S -module structure II: general case) Let X be any va-
riety over k of characteristic 0 34, U• be the twisted Steenrod operations on
A∗(X). Then the graded Chow group A∗(X) is a graded S -module, defined by

32Of course, the two S -module structures are different when X is smooth, they differ by
a twist of the w class of the tangent bundle.

33This assumption can be replaced by char(k) , p, see the next subsection.
34This assumption can be replaced by char(k) , p, see the next subsection.
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U, and the operations of S on A∗(X) commute with the functorial proper push-
forwards.
In a more formal language: A∗(−) : (Vark, proper morphisms) → SModN is a
(covariant) functor from the category of varieties over k with proper morphisms
to the category of graded (left) S -module.

Remark 4.13 We will also consider the the action of other basis elements of
S over the graded Chow group of a variety, denoted as, for any multi-index I:

U I : A j(X)→ A j−|I|(X)

with U i = U (i,0,...). See Remark 3.17. By the preceding theorem, these opera-
tions commute with proper push-forwards.

4.3 Extending the Twisted Steenrod Operations to Ar-
bitrary Varieties II: via Embeddings

In the preceding subsection, we have constructed the twisted Steenrod oper-
ations on the Fp coefficient Chow groups of an arbitrary variety over a field
of characteristic 0. There are two main ingredients in that approach, namely
Theorem 4.5 and resolution of singularities.

In this subsection, we want to sketch another approach to the construction
of the twisted Steenrod operations, in which Theorem 4.5, or rather the excess
intersection formula, remains an important ingredient, while resolution of sin-
gularities is no longer needed, hence our construction and properties are valid
in any characteristic not equal to p. We will follow the line in Brosnan [Bro03].
We will assume that char(k) , p in this subsection.

The strategy here is to do everything we have done in subsection 3.4.2 in
a more general way. Explicitly, we proceed in several steps as follows:

Step 1.

We first deal with the varieties which admit embeddings into smooth varieties,
say X is a variety over k of dimension n, and X ↪→ W is a closed immersion
with W smooth of dimension m. We have the following cartesian diagram:

X Â Ä δX //
Ä _

²²

Xp
Ä _

²²

W Â Ä δW // W p

Since W is smooth, the bottom arrow is a regular closed embedding. Similar
to the construction in subsection 3.4.2, we take the Z/p-equivariant Gysin
pull-back:

δ!
W : AZ/p

pi (Xp)→ AZ/p
pi−(p−1)m(X)

composed with the p-th power map defined in subsection 3.4.1:

P : Ai(X)→ AZ/p
pi (Xp)
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we get

DW
X : Ai(X)→ AZ/p

pi−(p−1)m(X) =
⊕

j≥0

Api−(p−1)m+ j(X) · l j

where the equality is from Appendix A.
We can prove the analogies of Lemma 3.24 (additivity) and Lemma 3.25

for DW
X :

Lemma 4.14 (=Theorem 8.2 in [Bro03]) DW
X is a group homomorphism.

Lemma 4.15 (=Theorem 8.3 in [Bro03]) All terms of DW
X (α) with degree

not divisible by (p − 1) are 0.

We refer to the paper for the proofs.
By the preceding lemmas, we can define the following operation as in Def-

inition 3.26 (or rather the remark after it): for any α ∈ Ai(X)

S W,•(α)(t) := tm−iDW
X (α, 1/t)

By the same argument, we can prove the following ‘main’ theorem as in
Theorem 3.18:

Theorem 4.16 (Analogous to the main theorem 3.18) Let X be an al-
gebraic variety over k with char(k) , p, of dimension n, X ↪→ W is a closed
embedding into a smooth variety of dimension m. A∗ be the Fp-coefficient Chow
group. The operation S W,• constructed above satisfy: for any i,

S W,i : A j(X)→ A j−i(p−1)(X)

for any non-negative integers j, and:

(a)(Additivity) Each S W,i is additive, i.e. a homomorphism of groups;

(b)(Functoriality) For any inclusion of subvarieties of W, f : X ↪→ Y, and
any i, q, the operation S i commutes with the restriction map:

f !S W,i = S W,i f ! : A j(Y)→ A j−i(p−1)(X)

(c)(Range) S W,i : A j(X)→ A j−i(p−1)(X) is the zero map if i > m − j or i < 0;

(d) S W,0 = id;

(e) S W,•([X]) = [X] ∩ w(NX/W) if X is smooth too.

(f)(Cartan formula) For any x ∈ A∗(X), y ∈ A∗(Y), and two embeddings
X ↪→ W, Y ↪→ U, then we have

S W×U,•(x × y) = S W,•(x) × S U,•(y)

where the product is the exterior product;

(g)(Adem relations) For any 0 < a < pb, we have (12):

S W,a ◦ S W,b =

ba/pc∑

j=0

(−1)a+ j
(

(p−1)(b− j)−1
a−p j

)
S W,a+b− j ◦ S W, j
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Step 2.

To rule out the dependence of the construction on the choice of the embedding
space W, we can prove the following lemma, which is essentially in the same
spirit of Theorem 4.5, and their proofs rely on the same basic fact, namely the
excess intersection formula Theorem 2.22. More precisely:

Lemma 4.17 (=Proposition 6.3 in [Bro03]) Let ji : X → Wi be two em-
beddings of X into two smooth varieties. Then

cZ/p
top (R ⊗ TW2 |X) ∩ δ!

W1
= cZ/p

top (R ⊗ TW1 |X) ∩ δ!
W2

where ctop means ‘ top Chern class’, and R is the standard representation of
Z/p.

For the proof of the lemma, see Brosnan [Bro03].

Corollary 4.18 (=Proposition 8.10 in [Bro03]) If W1 and W2 are two smooth
varieties containing X, then

S W1,•(α) ∩ w(TW2) = S W2,•(α) ∩ w(TW1)

Proof. It follows immediately from the proceding lemma and the calculation
of the equivariant top Chern classes of the form cZ/p

top (R ⊗ E) with E a vector
bundle over X, see Example 4.3. �

Now we have the definition:

Definition 4.19 (=Definition 8.13 in [Bro03]) For a variety X embedded
in any smooth variety W, we define the twisted Steenrod operation:

U•X(α, t) = S W,•(α, t) ∩ w(TW , t)−1

From the preceding corollary, it is a well-defined operation, i.e. independent
of the choice of embedding.

Step 3.

Extend the operations U to arbitrary varieties.
By Step 2, we can deal with all quasi-projective varieties, for an arbitrary
variety X, by Chow’s lemma, we can take its Chow envelope:

µ : X′ → X

where X′ is quasi-projective, and µ is birational, projective. Then we can define
the twisted Steenrod operations on X by:

U•X(α) = µ∗U•X′(α
′)

where α′ is a cycle of X′ such that µ∗(α′) = α.
We should verify that the above definition is independent of the choice of

α′ and X′, we refer to the paper [Bro03] §10.

72



Step 4.

To see such defined operations coincide with the ones constructed in Construc-
tion 4.7 in characteristic 0, it suffices to verify that the operations constructed
above also commute with the proper push-forward.

Theorem 4.20 (=Proposition 10.3 in [Bro03]= Theorem 4.10) If f :
X → Y is a proper morphism, then f∗U• = U• f∗

For the proof, we refer to [Bro03], Proposition 10.3.

Step 5.

The Adem relations Theorem 4.11 can be extended to any characteristic dif-
ferent from p:

Theorem 4.21 (Adem relations for U•: any characteristic) Let X be any
algebraic variety over k with char(k) , p, U• be the operations on A∗(X) defined
above. Then they satisfy Adem’s relations (12): For any 0 < a < pb,

Ua ◦ Ub =

ba/pc∑

j=0

(−1)a+ j
(

(p−1)(b− j)−1
a−p j

)
Ua+b− j ◦ U j

And consequently, Theorem 4.12 can be formulated with the characteristic 0
assumption replaced by char(k) , p.
For the proof of the above theorem, see [Bro03] §11.

5 An Application: the Degree Formula

In this section, we want to give an example where we use the Steenrod oper-
ations to solve some geometric problems. More concretely, we will talk about
the degree formula and some of its interesting properties. The exposition here
will more or less follow the article [Mer03].

We fix the notations and settings first. Let X be a variety over a field k,
of dimension d, with the structure morphism q : X → Spec k. We also fix a
prime number p , char(k), and write Ai(X) = CHi(X) ⊗ Z/p, where CH∗ is the
Z-coefficient Chow group. Recall that for a closed point x ∈ X, its degree is
defined to be the integer:

deg(x) := [κ(x) : k]

where κ(x) is the residual field of x, finite dimensional over k.
First of all, we introduce an integer associated to a variety, concerning the

degrees of its rational points:

Definition 5.1 Given a variety X over k, we set

nX := gcd deg(x)
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where the greatest common divisor is taken over all closed points of X. It is
easy to see another equivalent definition of this number:

nX = gcd[L : k]

where L is taken over all finite field extensions of k such that X(L) , ∅.

Now we will make a definition through the following argument.
The proper push-forward property of twisted Steenrod operations in The-

orem 4.10 (or Remark 4.13) yields the commutative diagram: for any multi-
index I with |I| = d

Ad(X) U I
//

q∗
²²

A0(X)

q∗
²²

Ad(Spec k) = 0
U I

// A0(Spec k) = Z/p

For the action of the Steenrod operations of the form U I, see Remark 3.17,
and Remark 4.13. Consider U I([X]) ∈ A0(X), take one of its representatives
in CH0(X), that is, an element uI

X ∈ CH0(X) whose modulo-p class in A0(X) is
U I([X]). However, Ad(Spec k) = 0 implies that q∗(U I([X])) = 0, which means
deg(uI

X) is an integer divisible by p, thanks to the following commutative dia-
gram:

CH0(X) //

q∗=deg
²²

A0(X)

q∗
²²

CH0(Spec k) = Z // A0(Spec k) = Z/p

If we change the representative uI
X, then it differs by a zero-cycle with

coefficients divisible by p, consequently its degree differs by a multiple of pnX,
by Definition 5.1. As a result, the integer 1

p deg(uI
X) is independent of the choice

of the representative up to a multiple of nX. Thus the following congruence
class is well-defined:

Definition 5.2 Keep the notations as above, we define a class in Z/nXZ, for
any multi-index I with |I| = dim X:

I p(X) :=
1
p

deg(uI
X) mod nX

Since deg(uI
X) is always a multiple of nX, it is clear that

p · I p(X) = 0 ∈ Z/nXZ

Theorem 5.3 (Degree formula) Let X, Y be varieties over k with char(k) ,
p, f : X → Y be a k-morphism. Denote d = dim(X), nX and nY as in Definition
5.1. Then:
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• nY divides nX:
nY |nX

• For any multi-index I of norm |I| = d, and any prime p , char(k), we
have the degree formula:

I p(X) = deg( f ) · I p(Y) ∈ Z/nYZ

In the second point, the left hand side is understood to pass from Z/nXZ to
Z/nYZ thanks to the first point.

Proof. For the first assertion, since nY divides the degree of every closed
point of Y, thus for any closed point of X, say x, denoting y = f (x), we have

deg(x) = [κ(x) : k] = [κ(x) : κ(y)] · [κ(y) : k]

is divisible by nY . Consequently, nY divides the greatest common divisor of the
degrees of the closed points of X, which is, by definition, nX.

For the second assertion, the degree formula, we apply Theorem 4.10 or
rather Remark 4.13 to obtain the commutative diagram:

Ad(X)
U I

X //

f∗
²²

A0(X)

f∗
²²

Ad(Y)
U I

Y

// A0(Y)

which yields:
f∗(U I([X])) = U I( f∗([X])) = deg( f ) · U I([Y])

Take uI
X ∈ CH0(X) and uI

Y ∈ CH0(Y) representatives of U I
X ∈ A0(X) and U I

Y ∈
A0(Y) respectively as in Definition 5.2, then the last displayed equality implies:

f∗(uI
X) ∈ deg( f )uI

Y + p CH0(Y) (16)

Let qX, qY be the structure morphisms of X and Y to Spec k respectively. Then
we have the commutative diagram.

CH0(X)
f∗

//

qX∗=deg
((QQQQQQQQQQQQ CH0(Y)

qY∗=deg
vvmmmmmmmmmmmm

CH0(Spec k) = Z

Applying qY∗ to (16), we find

deg(uI
X) = qX∗(uI

X) = qY∗ f∗(uI
X) ∈ deg( f ) deg(uI

Y) + pnYZ

then dividing by p, we get:

1
p

deg(uI
X) ∈ deg( f ) · 1

p
deg(uI

Y) + nYZ

i.e. I p(X) = deg( f )I p(Y) mod nY as wanted. �
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Now we turn to some applications of the degree formula.

Definition 5.4 (I p-rigidity) Let X be a variety over k of dimension d. Fix a
prime number p , char(k). For a multi-index I with |I| = d. We say that X is
I p-rigid, if I p(X) , 0 in Z/nXZ.

Proposition 5.5 Given X a d-dimensional variety over k, p , char(k), I a
multi-index with norm |I| = d. Let vp be the p-adic valuation. Then:

1. vp(nX) ≤ vp(deg(uI
X));

2. X is I p-rigid if and only if vp(nX) = vp(deg(uI
X)), and in this case, they are

strictly positive.

Proof. The first assertion is obvious, since nX divides the degree of any
0-cycle. The second assertion also follows readily from the definition: since
X is I p-rigid, 1

p deg(uI
X) is not divisible by nX, while as in the first assertion,

deg(uI
X) is divisible by nX. These imply that nX is a multiple of p, and deg(uI

X),
as a multiple of nX, has no more p-powers than nX, in other words, vp(nX) =

vp(deg(uI
X)) > 0 as wanted; the converse is obvious. �

The following theorem is the main result of this section, recall that for a
correspondence α : X ` Y, the multiplicity of α is defined to be the degree of α
when projects to X.

Theorem 5.6 Let X and Y be varieties over a field k. Fix a prime p , char(k).
Let I be a multi-index such that |I| = d := dim(X) > 0. Suppose that:

1. there is a correspondence α : X ` Y of multiplicity not divisible by p;

2. X is I p-rigid;

3. vp(nX) ≤ vp(nY).

Then:

1. dim(X) ≤ dim(Y);

2. if dim(X) = dim(Y), then

• there is a correspondence β : Y ` X of multiplicity not divisible by
p;

• Y is I p-rigid;

• vp(nX) = vp(nY).
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Proof. We can assume that α is a prime correspondence, that is, an irre-
ducible subvariety Z of X×Y. Denote the projections to two factors π1 : Z → X,
π2 : Z → Y.

If dim(X) ≥ dim(Y), set m := dim(X) − dim(Y). Consider Y ′ := Y × Pm
k , and

embeds Y into Y ′ by Y ' Y × {pt} ⊂ Y ′, where pt is a rational point of Pm
k , then

nY = nY′ . Now Z can be viewed as a subvariety of X × Y ′. We also denote the
two projections π1 : Z → X, π′2 : Z → Y ′.

By the degree formula (Theorem 5.3),

I p(Z) = deg(π1)I p(X) ∈ Z/nXZ

By assumption 2, X is I p-rigid, we have I p(X) , 0 ∈ Z/nX, but pI p(X) = 0 ∈
Z/nX, i.e. I p(X) lacks exactly one power of p to be divisible by nX, however,
deg(π1) is not divisible by p by assumption 1, which implies that

I p(Z) , 0 ∈ Z/nXZ (17)

still lacking one power of p.
Applying again the degree formula to the projection π′2 : Z → Y ′, we obtain:

I p(Z) = deg(π′2)I p(Y ′) ∈ Z/n′Y = Z/nY (18)

(17) combined with the third assumption vp(nX) ≤ vp(nY), implies that

I p(Z) , 0 ∈ Z/nYZ

lacking at least one power of p. Combining this with (18) we find that

I p(Y ′) , 0 ∈ Z/nY (19)

However pI p(Y ′) = 0 in Z/nY implies that deg(π′2) is not divisible by p, in
particular, it is non-zero, i.e. π′2 is dominating. As a consequence, m = 0 (i.e.
dim(X) = dim(Y)) and Y = Y ′, π′2 = π2. Thus (19) means exactly that Y is
I p-rigid as wanted. We just take the correspondence β : Y ` X to be defined
by Z, the fact that p does not divide deg(π2) means the multiplicity of β is not
divisible by p as wanted. Finally, pI p(Y ′) = 0 in Z/nY implies that I p(Y ′) and
hence I p(Z) lacks exactly one power of p to be divisible by nY , as the same
situation for nX in (17), as a result, vp(nX) = vp(nY). This completes the proof.

�

By the preceding theorem, the I p-rigidity relates to the p-compressibility :

Definition 5.7 (p-compressibility) Given a variety X over a field k is called
p-compressible, if there is a rational map X d Y to another variety over k such
that dim(Y) < dim(X) and vp(nY) ≥ vp(nX).

Since a rational map can be viewed as correspondence of multiplicity 1, the
theorem implies the following:
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Corollary 5.8 (Rigidity to incompressibility) Let X be a variety of di-
mension d over a field k, p be a prime which not equals to the characteristic
of k, I be a multi-index of norm |I| = d. Suppose that X is I p-rigid, then X is
not p-compressible.

Finally, as a complement, we give the birational invariance of nX and I p(X)
for smooth projective varieties.

Remark 5.9 (Birational nature of nX and I p(X)) Let k be a field, and p
be a prime not equals to the characteristic of k. Let I be a multi-index with
norm |I| = d. Then:

1. the integer nX is a birational invariant for smooth projective varieties X
over k of dimension d;

2. the congruence class I p(X) ∈ Z/nXZ is birational invariant for smooth
projective varieties X over k of dimension d.

Proof. For the first point, we define an integer nL for any finite generated
field extension L ⊃ k as following: let Ω be the set of all valuations v of
L such that v|k = 0, and that the residue field κ(v) is finite over k. Define
nL := gcdv∈Ω[κ(v) : k]. Now let L = k(X) be the function field of X. On one
hand, since X is smooth, a classical argument gives a valuation v ∈ Ω, with
the same residue field as κ(x). Therefore nX is the greatest common divisor
taken over a smaller rang than nL does, thus nL divides nX. Now we recall the
‘classical’ argument: since the local ring Ox of every (closed) point x ∈ X is
regular, thus the maximal ideal mx is generated by a regular sequence, which
gives a chain of d places, now by [ZS75, Theorem 37, Page 106], we have a
composition of d discrete valuation of rank 1, which is a valuation with the
residue field κ(x).

On the other hand, for a fixed valuation v ∈ Ω, we have the valuation ring
O = {a|v(a) ≥ 0} ⊂ L and its maximal ideal m = {a|v(a) > 0} ⊂ O, by the
valuative criterion of properness, the natural morphism Spec L→ X factorizes
uniquely through certain SpecO → X since X is assumed to be projective. This
map gives a closed point x ∈ X by the image of the closed point defined by m
in SpecO. Therefore, we have a tower of finite extensions: k ⊂ κ(x) ⊂ κ(v), thus
[κ(x) : k] divides [κ(v) : k], hence nX divides [κ(v) : k]. Therefore nX divides nL.
In conclusion, nL = nX for smooth variety X, which implies nX is a birational
invariant for smooth varieties.

For the second point, let X, Y be birational equivalent smooth varieties, with
function field L. The birational map gives a correspondence of degree 1 between
them, which is a subvariety of X×Y, called Z. Then Z has birational morphisms
to X and to Y given by the projections. Applying the degree formula to the
two projections, we find that I p(Z) = I p(X) in Z/nX = Z/nL and I p(Z) = I p(Y)
in Z/nY = Z/nL. As a result, I p(X) = I p(Y) in Z/nL, as wanted. �
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Appendix

A Chow Theory of Cyclic Groups

In this appendix, we want to calculate AZ/p
i (pt), the Z/p-equivariant Chow

groups of a point35, a result which has already been used in our construction.
We will constrained in the case that k contains the pth roots of unity, in par-
ticular, when char(k) , p. For the general case, see the treatment of Brosnan
[Bro03] §7.

Write G = Z/p, by the definition of the equivariant Chow groups, we take
a U ∈ EGr of dimension n, with r sufficiently large, then:

AZ/p
i (pt) = Ai+n(

U
Z/p

)

from which we find that only for i ≤ 0, it is non-zero. In spirit, recall that U is
an approximation of the EG in algebraic topology, thus U

Z/p is an approximation
of the BG, the classifying space of G, in algebraic topology. So the issue is to
calculate the Chow theory of the classifying space of Z/p.

To this end, we need the following construction of approximations of EG
and BG. Fix a primitive p-th root of unity ζ ∈ k. Write An

k to be the affine
n-space, with a Z/p-action being multiply by the roots of unity:

Z/p × An
k → An

k

( j (mod p), z) 7→ ζ j · z
From now on, we will use Z/p and µp(k) interchangeably.

For the approximation of EG, it is quite natural to take U ∈ EGr+1 to be

Ar+1
k −{0}. It is obvious that U is a Z/p-principal bundle. And then we get the

’approximation’ of BG: set B = U
Z/p . Now by Proposition 2.9,

AZ/p
i (pt) = Ai+r+1(B)

for any i ≥ −r.
To compute A∗(B), we note that there is a fundamental fibration (c.f.

Lemma 2.25) over the projective space:

Gm(k)
µp(k)

↪→ B =
Ar+1

k −{0}
µp(k)

→ Pr
k =

Ar+1
k −{0}
Gm(k)

(20)

where Gm(k)
µp(k) = k∗

Z/p denotes the fibre type. Thanks to the isomorphism

k∗

Z/p
'−→ k∗ (21)

which takes z to zp, we can view the fiber bundle (20) as a k∗-bundle, and
let (21) determine the coordinate on the fibers. Now let us figure out the

35By a point, denoted pt, we means Spec(k)
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’transition functions’. Note that Ar+1
k −{0} is the complement of the zero section

of Serre’s tautological line bundle OPr (−1). We cover the projective space Pr
k

by (r + 1) standard charts, the transition functions of the k∗-bundle Ar+1
k −{0}

are of the form
(

zi
z j

)
, the transition functions for the k∗

Z/p -bundle B→ Pr in (20)

is in the same form. Then when one uses the coordinate of fiber as (21), the

transition functions of B→ Pr as a k∗-bundle is of the form
(

zi
z j

)p
, which is the

transition functions of the line bundle OPr (−p). So we conclude that B→ Pr is
the complement of the zero section of the line bundle OPr (−p) on Pr.

By the exact sequence in [Ful98] Proposition 1.8, we have the short exact
sequence:

A∗(Pr)
i∗−→ A∗(OPr (−p))→ A∗(B)→ 0

where we write the zero section simple as Pr, and the inclusion is denoted
i : Pr ↪→ OPr (−p). We know that the flat pull-back of a vector bundle projection
is an isomorphism: A∗−1(Pr−1) → A∗(OPr (−p)), the inverse isomorphism is the
Gysin map: i∗ : A∗(OPr (−p)) → A∗−1(Pr−1). Through this identification, we
have:

A∗(Pr) i∗ //

c1(O(−p))∩
&&NNNNNNNNNNN A∗(OPr (−p))

i∗'
ªª

// A∗(B) // 0

A∗−1(Pr)

π∗
II

Since we are in the mod p case, the morphism c1(O(−p))∩ is 0, from which we
get that A∗(B) = Z, and the generator is the hyperplane section, which implies
AZ/p

i (pt) = Ai+r+1(B) = Z for i ≥ −r, thus AZ/p
i (pt) = Z for any i ≤ 0.

Taking the multiplication relation into account, and changing into codi-
mensional notation, we conclude the following theorem:

Theorem A.1 (Chow groups of the classifying space of a cyclic group)

AZ/p,∗(pt) = Fp[l]

where l is of degree 1 (i.e. codimension 1), which is the hyperplane section
generator.

Similarly, we have:

Theorem A.2 Let X be a variety with trivial Z/p action, then its equivariant
Chow groups are:

AZ/p
∗ (X) = A∗(X) ⊗Fp Fp[l]

where l is of degree 1, i.e. of codimension 1.
In particular, AZ/p

i (X) = ⊕ j≥0Ai+ j(X)l j.

Proof. We keep the notation in the preceding argument. Since the action on
X is trivial, we have X×U

Z/p = X×B. One notes that B admits a cell-decomposition,

thus A∗(X × B) = A∗(X) ⊗ A∗(B), by [Ful98] Example 1.10.2. Combining these
with the preceding theorem, we have the required result. �
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