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We prove that the Chow motives of twisted derived equivalent 
K3 surfaces are isomorphic, not only as Chow motives (due to 
Huybrechts), but also as Frobenius algebra objects. Combined 
with a recent result of Huybrechts, we conclude that two 
complex projective K3 surfaces are isogenous (i.e. their 
second rational cohomology groups are Hodge isometric) if 
and only if their Chow motives are isomorphic as Frobenius 
algebra objects; this can be regarded as a motivic Torelli-
type theorem. We ask whether, more generally, twisted 
derived equivalent hyper-Kähler varieties have isomorphic 
Chow motives as (Frobenius) algebra objects and in particular 
isomorphic graded rational cohomology algebras. In the 
appendix, we justify introducing the notion of “Frobenius 
algebra object” by showing the existence of an infinite 
family of K3 surfaces whose Chow motives are pairwise non-
isomorphic as Frobenius algebra objects but isomorphic as 
algebra objects. In particular, K3 surfaces in that family are 
pairwise non-isogenous but have isomorphic rational Hodge 
algebras.
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Introduction

Torelli theorems for K3 surfaces

A compact complex surface is called a K3 surface if it is simply connected and has 
trivial canonical bundle. The Hodge structure carried by the second singular cohomology 
contains essential information of the surface. Indeed, the global Torelli theorem says that 
the isomorphism class of a K3 surface S is determined by the Hodge structure H2(S, Z)
together with the intersection pairing on it [46,12].

The following more flexible notion due to Mukai [40] turns out to be crucial in the 
study of their derived categories: two complex projective K3 surfaces S and S′ are called 
isogenous if there exists a Hodge isometry ϕ : H2(S, Q) ∼−→ H2(S′, Q), i.e. an isomor-
phism of rational Hodge structures compatible with the intersection pairing on both 
sides. Recently, Buskin [13] proved that such an isometry ϕ is induced by an algebraic 
correspondence, as had previously been conjectured by Shafarevich [49] as a particularly 
interesting case of the Hodge conjecture. Let us call any such representative a Shafare-
vich cycle for this isogeny. Shortly afterwards, Huybrechts [31] gave another proof and 
showed that in fact ϕ is induced by a chain of exact linear equivalences between derived 
categories of twisted K3 surfaces, thereby establishing the twisted derived global Torelli 
theorem [31, Corollary 1.4]:

S and S′ are isogenous ⇐⇒ S and S′ are twisted derived equivalent. (1)

Here, following Huybrechts [31], we say that two K3 surfaces S and S′ are twisted derived 
equivalent if there exist K3 surfaces S = S0, S1, . . . , Sn = S′ and Brauer classes α = β0 ∈
Br(S), α1, β1 ∈ Br(S1), . . . , αn−1, βn−1 ∈ Br(Sn−1) and α′ = αn ∈ Br(S′) and exact 
linear equivalences between bounded derived categories of twisted coherent sheaves

Db(S, α) � Db(S1, α1),
Db(S1, β1) � Db(S2, α2),

...
Db(Sn−2, βn−2) � Db(Sn−1, αn−1),

Db(Sn−1, βn−1) � Db(S′, α′).

(2)

Note that by [15] any exact linear equivalence between bounded derived categories of 
twisted coherent sheaves on smooth projective varieties is of Fourier–Mukai type, so that 
in (2), each equivalence Db(Si, βi) 

∼−→ Db(Si+1, αi+1) is induced by a Fourier–Mukai 
kernel Ei ∈ Db(Si × Si+1, β

−1
i � αi+1) (unique up to isomorphism).

Combined with his previous work [30] generalized to the twisted case, Huybrechts 
deduced that isogenous complex projective K3 surfaces have isomorphic Chow motives.1

1 In this paper, Chow groups and motives are always with rational coefficients, except in Theorem 3.3.
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However, the converse does not hold in general: there are K3 surfaces having isomorphic 
Chow motives (hence isomorphic rational Hodge structures) without being isogenous. 
Examples of such K3 surfaces were constructed geometrically in [7]; see Remark A.3 of 
Appendix A. We provide in Theorem A.11 two further constructions of infinite families 
of pairwise non-isogenous K3 surfaces with isomorphic Chow motives. The motivation 
of the paper is to complete the picture by giving a motivic characterization of isogenous 
K3 surfaces (Corollary 2). Our main result is the following:

Theorem 1. Let S and S′ be two twisted derived equivalent K3 surfaces over a field k. 
Then the Chow motives of S and S′ are isomorphic as algebra objects, in fact even 
as Frobenius algebra objects (Definition 2.1), in the category of rational Chow motives 
over k.

In concrete terms, there exists a correspondence Γ ∈ CH2(S × S′) with Γ ◦ δS =
δS′ ◦ (Γ ⊗ Γ) (“algebra homomorphism”) and such that Γ is invertible as a morphism 
between the Chow motives of S and S′ with Γ−1 = tΓ (“orthogonality”), where tΓ de-
notes the transpose of Γ and where δS is the small diagonal in S × S × S viewed as 
a correspondence between S × S and S. Equivalently, Γ is an isomorphism such that 
(Γ ⊗ Γ)∗ΔS = ΔS′ and (Γ ⊗ Γ ⊗ Γ)∗δS = δS′ .
The notion of Frobenius algebra object provides a conceptual way to pack these con-
ditions. Roughly speaking, a Frobenius algebra object in a rigid tensor category is an 
algebra object together with an isomorphism to its dual object2 with some compatibility 
conditions. The Chow motive of a smooth projective variety carries a natural structure 
of Frobenius algebra object in the rigid tensor category of Chow motives. We refer to §2
for more details on Frobenius algebra objects.

A particular consequence of Theorem 1 is that the induced action Γ∗ : CH∗(S) →
CH∗(S′) on the Chow rings is an isomorphism of graded Q-algebras – this can in fact 
be deduced from the previous work of Huybrechts [30]; see Remark 3.2. The latter, 
combined with Manin’s identity principle, implies that the Chow motives of S and S′

are isomorphic. By de Cataldo–Migliorini [16], one deduces that the Chow motives of 
the Hilbert schemes of length-n subschemes Hilbn(S) and Hilbn(S′) are isomorphic. 
However, having an isomorphism of Frobenius algebra objects allows us to derive the 
following much stronger result:

Corollary 1 (Powers and Hilbert schemes). Let S and S′ be two twisted derived equivalent 
K3 surfaces defined over a field k. Then for any positive integers n1, . . . , nr, there is an 
isomorphism of Frobenius algebra objects

h (Hilbn1(S) × · · · × Hilbnr (S)) � h (Hilbn1(S′) × · · · × Hilbnr(S′)) .

2 Technically, one needs to further tensor the dual object by certain power of some tensor-invertible 
objects; this power is called the degree of this Frobenius structure.
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As a consequence, there is an algebraic correspondence inducing an isomorphism of
graded Q-algebras:

CH∗ (Hilbn1(S) × · · · × Hilbnr(S)) � CH∗ (Hilbn1(S′) × · · · × Hilbnr(S′)) .

Here Hilbn(S) denotes the Hilbert scheme of length-n subschemes on S.

Now let the base field be the field of complex numbers C. Combining Theorem 1
with Huybrechts’ twisted derived global Torelli theorem (1) mentioned above, we can 
establish:

Corollary 2 (Motivic global Torelli theorem for isogenous K3 surfaces). Let S and S′ be 
two complex projective K3 surfaces. The following statements are equivalent:

(i) S and S′ are isogenous;
(ii) S and S′ are twisted derived equivalent;
(iii) h(S) and h(S′) are isomorphic as Frobenius algebra objects.

In the appendix, we construct in Theorem A.11 an infinite family of pairwise non-
isogenous K3 surfaces whose motives are all isomorphic as algebra objects. This justifies 
introducing the Frobenius structure. In addition, Proposition A.12 gives some evidence 
that the isogeny class of a K3 surface cannot be determined solely by its Chow ring.

Finally, with integral coefficients, an algebra isomorphism between the motives of two 
K3 surfaces must respect the Frobenius structure. Therefore, the classical global Torelli 
theorem [46] can be upgraded to a motivic global Torelli theorem:

S and S′ are isomorphic ⇐⇒ their integral Chow motives are isomorphic

as algebra objects.

We refer to Theorem 3.3 for a proof.

Orlov conjecture and multiplicative structure

The proof of Theorem 1 relies on the Beauville–Voisin decomposition of the small di-
agonal of a K3 surface (see Theorem 3.1): given an exact linear equivalence Db(S, α) ∼−→
Db(S′, α′) between twisted K3 surfaces, we are reduced to exhibiting a correspondence 
Γ ∈ CH2(S×S′) such that Γ ◦tΓ = ΔS′ , tΓ ◦Γ = ΔS and Γ∗oS = oS′ , where oS = 1

24c2(S)
is the Beauville–Voisin 0-cycle [4]. The key point then consists in showing that if v2(E)
denotes the dimension-2 component of the Mukai vector of the Fourier–Mukai kernel of 
an exact linear equivalence ΦE : Db(S, α) ∼−→ Db(S′, α′) between twisted smooth projec-
tive surfaces, then v2(E) induces an isomorphism h2

tr(S) ∼−→ h2
tr(S′) of the transcendental 

motives of S and S′ with inverse given by v2(E∨ ⊗ p∗ωS), where E∨ denotes the derived 
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dual of E and p : S × S′ → S is the natural projection. (In the case of K3 surfaces, we 
have v2(E∨ ⊗ p∗ωS) = tv2(E).) This is achieved by exploiting known cases of Murre’s 
Conjecture 1.2(B), and we thereby give an alternative proof of Huybrechts’ [30, Theorem 
0.1], generalized to all surfaces: two twisted derived equivalent smooth projective surfaces 
have isomorphic Chow motives; see Theorem 1.1. This confirms the two-dimensional case 
of the following conjecture due to Orlov:

Conjecture 1 (Orlov [45]). Let X and Y be two derived equivalent smooth projective 
varieties. Then their Chow motives are isomorphic.

We illustrate also in §1.3 how the same techniques can be used to establish Orlov’s 
Conjecture 1 in some new cases in dimension 3 and 4; see Proposition 1.6.

In view of Theorem 1, we naturally ask under what circumstances one could expect a 
“multiplicative Orlov conjecture”, namely whether two derived equivalent smooth pro-
jective varieties have isomorphic Chow motives as algebra objects, or even as Frobenius 
algebra objects. According to the celebrated theorem of Bondal–Orlov [8], this holds 
true for varieties with ample or anti-ample canonical bundle, since any two such de-
rived equivalent varieties must be isomorphic. The situation gets more intriguing for 
varieties with trivial canonical bundle and we cannot expect in general that derived 
equivalent varieties have isomorphic Chow motives as Frobenius algebra objects: there 
exists counter-examples for Calabi–Yau threefolds and abelian varieties, where even the 
graded cohomology algebras of the two derived equivalent varieties are not isomorphic 
as Frobenius algebras (see Example 4.3 and Proposition 4.6 (ii)). We notice that, on the 
other hand, two derived equivalent abelian varieties are isogenous and have isomorphic 
Chow motives as algebra objects (see Proposition 4.6 (i)).

Although we do not provide much evidence beyond the case of K3 surfaces, we are 
tempted to ask, because of the (expected) similarities of the intersection product on 
hyper-Kähler varieties with that on abelian varieties (cf. Beauville’s seminal [5], and 
also [50,21]), the following

Question 1. Let X and Y be two twisted derived equivalent projective hyper-Kähler vari-
eties. Are their Chow motives isomorphic as algebra objects or even as Frobenius algebra 
objects? In particular, are their cohomology H∗(−, Q) isomorphic as graded Q-algebras 
or even as Frobenius algebras?

Corollary 1 gives an example in higher dimensions. See §4 for other examples, con-
jectures and rudiment discussions on this subject. In our accompanying work [22], we 
answer Question 1 in a non-commutative setting. Namely, we show that two cubic four-
folds with Fourier–Mukai equivalent Kuznetsov components (which can be considered as 
“non-commutative K3 surfaces”) have isomorphic rational Chow motives as Frobenius 
algebra objects.
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Canonicity of the Shafarevich cycle

In [31], Huybrechts shows that the restriction to the transcendental cohomology of 
an isogeny ϕ : H2(S, Q) ∼−→ H2(S′, Q) is induced by the cycle v2(En−1) ◦ · · · ◦ v2(E0) ∈
CH2(S × S′), where E0, . . . , En−1 are the Fourier–Mukai kernels in (2). This provides a 
Shafarevich cycle for the isogeny ϕ. In §5, we give some evidence for the above cycle 
to be canonical, that is, independent of the choice of a chain of twisted derived equiva-
lence inducing the isogeny. This depends on extending a result of Huybrechts and Voisin 
(Theorem 5.1) to twisted equivalences. We do however prove unconditionally in Theo-
rem 5.4 that the intersection of the second Chern classes of two objects E1 and E2 in 
Db(S × S′) inducing an equivalence Db(S) ∼−→ Db(S′) is proportional to c2(S) × c2(S′)
in CH2(S × S′). This suggests that the Mukai vectors of twisted derived equivalences 
between K3 surfaces can be added to the Beauville–Voisin ring; see §5.

Notation and conventions

We fix a base field k. By a derived equivalence between smooth projective k-varieties, 
we mean a k-linear exact equivalence of triangulated categories between their bounded 
derived categories of coherent sheaves. Chow groups will always be considered with 
rational coefficients. Concerning the category of Chow motives over k, we follow the 
notation and conventions of [3]. This category is a pseudo-abelian rigid tensor category, 
whose objects consist of triples (X, p, n), where X is a smooth projective variety of 
dimension dX over k, p ∈ CHdX (X ×k X) with p ◦ p = p, and n ∈ Z. Morphisms 
f : M = (X, p, n) → N = (Y, q, m) are elements γ ∈ CHdX+m−n(X ×k Y ) such that 
γ ◦ p = q ◦ γ = γ. The tensor product of two motives is defined in the obvious way, while 
the dual of M = (X, p, n) is M∨ = (X, tp, −n + dX), where tp denotes the transpose of 
p. The Chow motive of a smooth projective variety X is defined as h(X) := (X, ΔX , 0), 
where ΔX denotes the class of the diagonal inside X×X, and the unit motive is denoted 
1 := h(Spec(k)). In particular, we have CHl(X) = Hom(1(−l), h(X)). The Tate motive
of weight −2i is the motive 1(i) := (Spec(k), ΔSpec(k), i). A motive is said to be of Tate 
type if it is isomorphic to a direct sum of Tate motives.
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1. Derived equivalent surfaces

The aim of this section is to provide an alternative proof to the following result of 
Huybrechts [30,31]:

Theorem 1.1 (Huybrechts). Let S and S′ be two (twisted) derived equivalent smooth pro-
jective surfaces defined over a field k. Then S and S′ have isomorphic Chow motives.

The reason for including such a proof is threefold: first it provides anyway all the 
prerequisites and notation for the proof of Theorem 1 which will be given in §3.1; second 
by avoiding Manin’s identity principle3 (as is employed in [30]) we obtain an explicit 
inverse to the isomorphism v2(E) : h2

tr(S) ∼−→ h2
tr(S′) which will be essential to the proof 

of Theorem 1; and third it provides somehow a link between Orlov’s Conjecture 1 and 
Murre’s Conjecture 1.2 which itself is intricately linked to the conjectures of Bloch and 
Beilinson (see [34]).

1.1. Murre’s conjectures

We fix a base field k and a Weil cohomology theory H∗(−) for smooth projective 
varieties over k. Concretely, we think of H∗(−) as Betti cohomology in case k ⊆ C, or as 
�-adic cohomology when char(k) 
= �.

Conjecture 1.2 (Murre [42]). Let X be a smooth projective variety of dimension d over k.

(A) The Chow motive h(X) has a Chow–Künneth decomposition (also called weight 
decomposition) h(X) = h0(X) ⊕· · ·⊕h2d(X), meaning that H∗(hi(X)) = Hi(X) for 
all i.

(B) CHl(hi(X)) := Hom(1(−l), hi(X)) = 0 for all i > 2l and for all i < l.
(C) The filtration FkCHl(X) := CHl

(⊕
i≤2l−k h

i(X)
)

does not depend on the choice of 
a Chow–Künneth decomposition.

(D) F1CHl(X) = CHl(X)hom := ker(CHl(X) cl−→ H2l(X)).

The filtration defined in (C) is conjecturally the Bloch–Beilinson filtration [6] (see also 
[54, Chapter 11]). In fact, as shown by Jannsen [34], the conjecture of Murre holds for 
all smooth projective varieties if and only if the conjectures of Bloch–Beilinson hold. We 
refer to [34] for precise statements.

Proposition 1.3. Let X and Y be smooth projective varieties over k. Assume that h(X)
and h(Y ) admit a Chow–Künneth decomposition as in Conjecture 1.2(A). Then, with 
respect to the Chow–Künneth decomposition

3 Manin’s identity principle only establishes that v2(E∨⊗p∗ωS) ◦v2(E) acts as the identity on CH2(h2
tr(S))

which implies that it is unipotent as an endomorphism of h2
tr(S).
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hn(X × Y ) =
⊕

i+j=n

h2dX−i(X)∨(−dX) ⊗ hj(Y ),

the product X × Y satisfies Conjecture 1.2 (B) if and only if

Hom(hi(X), hj(Y )(k)) = 0 for all i < j − 2k and for all i > j + dX − k. (3)

Proof. This is formal: we have

Hom(1(−k − dX), hn(X × Y )) =
⊕

i−j=2dX−n

Hom(1(−k), hj(Y ) ⊗ hi(X)∨)

=
⊕

i−j=2dX−n

Hom(hi(X), hj(Y )(k)). �

In other words, Murre’s conjecture (B) implies that a motive of pure weight does not 
admit any non-trivial morphism to a motive of pure larger weight.

Theorem 1.4 (Murre [41]). Let X be a smooth projective irreducible variety of dimension 
dX over a field k.

(i) The Chow motive of X admits a decomposition

h(X) = h0(X) ⊕ h1(X) ⊕M ⊕ h2dX−1(X) ⊕ h2dX (X)

such that H∗(hi(X)) = Hi(X); in particular, Conjecture 1.2(A) holds for curves 
and surfaces. Moreover, such a decomposition can be chosen such that
• h2dX (X)(dX) = h0(X)∨ � h0(X) and h2dX−1(X)(dX) = h1(X)∨ � h1(X)(1);
• h0(X) is the unit motive 1 and h1(X) � h1(Pic0(X)red);
• Hom(1(−i), h1(X)) = 0 for i 
= 1, and Hom(1(−1), h1(X)) = Pic0(X)red(k) ⊗Q.

(ii) Equation (3) holds in case X and Y are varieties of dimension ≤ 2 endowed with 
a Chow–Künneth decomposition as in (i).

Proof. Item (i) in the case of surfaces is the main result of [41]. In fact, for any smooth 
projective variety X of any dimension, h1(X) can be constructed as a direct summand 
of the motive of a smooth projective curve. As for (ii), this was checked by Murre [43]
in the case one of X and Y has dimension ≤ 1. Thanks to item (i) and Proposition 1.3, 
it only remains to check that CHl(h2(X) ⊗ h2(Y )) = 0 for l = 0, 1 for smooth projective 
surfaces X and Y . For that purpose, we simply observe that for any choice of a Chow–
Künneth decomposition (if it exists) on the motive of a smooth projective variety Z we 
have CH0(Z) = CH0(h0(Z)) and CH1(Z) = CH1(h2(Z) ⊕h1(Z)). (Indeed, denote πi

Z the 
projectors corresponding to the Chow–Künneth decomposition of Z, then by definition 
π2i
Z acts as the identity on H2i(Z) and hence on im(CHi(Z) → H2i(Z)), and by Murre 

[41] π1
Z acts as the identity on ker(CH1(Z) → H2(Z)). Therefore π2

Z + π1
Z , which is a 

projector, acts as the identity on CH1(Z).) �
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The following terminology will be convenient for our purpose. We say that a Chow 
motive M is of curve type (or of pure weight 1 ) if it is isomorphic to a direct summand of 
a direct sum of motives of the form h1(C), where C is a smooth projective curve defined 
over k. Motives of curve type form a thick additive subcategory4 and enjoy the following 
property, which is also shared by Tate motives:

Proposition 1.5. The full subcategory of motives whose objects are of curve type is abelian 
semi-simple. Moreover, the realization functor M 
→ H∗(M) is conservative.5

Proof. The first statement follows from the fact that this full subcategory of motives 
of curve type is equivalent to the category of abelian varieties up to isogeny, via the 
Jacobian construction; see [3, Proposition 4.3.4.1]. The second statement follows from 
the first one together with the fact that H∗(h1(A)) is a 2g-dimensional vector space for 
an abelian variety A of dimension g. �
1.2. Proof of Theorem 1.1

First, recall that, given a twisted K3 surface (S, α), that is, a K3 surface S equipped 
with a Brauer class α ∈ Br(S), the Chern character of an α-twisted sheaf E is defined 
as follows: choose a positive integer n such that αn = 1 (hence E⊗n is untwisted), then

ch(E) := n
√

ch(E⊗n).

The definition is independent of the choice of n, can be extended naturally to the 
whole derived category of twisted sheaves Db(S, α), and satisfies the usual compati-
bilities with tensor operations (see [31, Section 2.1]). We then define the Mukai vector
v(E) := ch(E)

√
td(TS).

We can thus observe as in [31, Section 2] that for twisted equivalences the yoga of 
Fourier–Mukai kernels, their action on Chow groups induced by Mukai vectors, and how 
they behave under convolutions works as in the untwisted case, as long as we work 
with rational coefficients. Therefore, for ease of notation, we will only give a proof of 
Theorem 1.1 in the untwisted case.

1.2.1. Derived equivalences and motives, following Orlov
In general, let ΦE : Db(X) ∼−→ Db(Y ) be an exact equivalence with Fourier–Mukai 

kernel E ∈ Db(X×Y ) between the derived categories of two smooth projective k-varieties 
of dimension d. Its inverse can be described as Φ−1

E � ΦE∨⊗p∗ωX [d] � ΦE∨⊗q∗ωY [d], 

4 It is however not stable under tensor products and it does not contain any Tate motives. The tensor 
category generated by the Tate motives and the motives of curve type consists of the so-called motives of 
abelian type.
5 A functor F : C → D is said to be conservative if it is “isomorphism-reflecting”, that is, if f : C → C′

is a morphism in C such that F (f) is an isomorphism in D, then f is an isomorphism in C.
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where E∨ is the derived dual of E and p, q are the projections from X × Y to X and Y
respectively. As observed by Orlov [45], the Mukai vector

v(E) := ch(E) ·
√

td(X × Y ) ∈ CH∗(X × Y )

induces a split injective morphism of motives h(X) −→
⊕d

i=−d h(Y )(i) with left inverse 
given by v(E∨ ⊗ p∗ωX [d]), i.e.

id : h(X)
v(E)

�� ⊕d
i=−d h(Y )(i)

v(E∗⊗p∗ωX [d])
�� h(X).

In particular, v(E∨ ⊗ p∗ωX [d]) ◦ v(E) = ΔX . In fact, as observed by Orlov [45], the 
latter identity shows that v(E) seen as a morphism of ind-motives 

⊕
i∈Z h(X)(i) →⊕

i∈Z h(Y )(i) is an isomorphism with inverse given by v(E∨ ⊗ p∗ωX [d]).

1.2.2. The refined decomposition of the motive of surfaces, following 
Kahn–Murre–Pedrini

Let S be a smooth projective surface over k. The motive h(S) admits a Chow–Künneth 
decomposition as in Murre’s Theorem 1.4(i); in particular h0(S) = h4(S)(2)∨ is the unit 
motive 1 and h1(S) = h3(S)(2)∨ is of curve type. Following Kahn–Murre–Pedrini [35], 
the summand h2(S) admits a further decomposition

h2(S) = h2
alg(S) ⊕ h2

tr(S)

defined as follows. Let ks be a separable closure of k and let E1, . . . , Eρ be non-isotropic 
divisors in CH1(Sks) whose images in CH1(h2(Sks)) = NS(Xks)Q form an orthogonal ba-
sis. Up to replacing each Ei by (π2

S)∗Ei, we can assume that Ei belongs to CH1(h2(Sks))
for all i. Consider then the idempotent correspondence

π2
alg,S :=

ρ∑
i=1

1
deg(Ei · Ei)

Ei × Ei.

Since π2
alg,S is the intersection form on CH1(h2(Sks)) = NS(Sks)Q, it is Galois-invariant, 

and hence does define an idempotent in CH2(S × S). The motive (S, π2
alg,S , 0) is clearly 

isomorphic, after base-change to ks, to the direct sum of ρ copies of the Tate motive 
1(−1). Moreover, it is easy to check that π2

alg,S is orthogonal to πi
S for i 
= 2 (use 

(π1
S)∗Ei = 0). Equivalently, we have π2

alg,S ◦ π2
S = π2

S ◦ π2
alg,S , so that (S, π2

alg,S , 0) does 
define a direct summand of h2(S), denoted by h2

alg(S). We then define π2
tr,S := π2

S−π2
alg,S

and h2
tr(S) := (S, π2

tr,S , 0). It is then straightforward to check that such a decomposition 
satisfies Hom(1(−i), h2

tr(S)) = 0 for all i 
= 2. We note that tπ2
alg,S = π2

alg,S , and since 
tπ0

S = π4
S and tπ1

S = π3
S we also have tπ2

tr,S = π2
tr,S . Moreover, although this won’t be 

of any use to us, we mention for comparison to [30] that Hom(1(−2), h2
tr(S)) coincides 

with the Albanese kernel.
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More generally, the above refined decomposition can be performed for direct sum-
mand of motives of surfaces, i.e. for motives of the form (S, p, 0), where S is a smooth 
projective k-surface and p ∈ CH2(S × S) is an idempotent. This will be used in the 
proof of Proposition 1.6. Indeed, by the above together with Theorem 1.4(ii), we have a 
decomposition

h(S) = h0(S) ⊕ h1(S) ⊕ h2
alg(S) ⊕ h2

tr(S) ⊕ h3(S) ⊕ h4(S), (4)

where none of the direct summands admit a non-trivial morphism to another direct 
summand placed on its right. It follows that the morphism p, expressed with respect to 
the decomposition (4) is upper-triangular. By [51, Lemma 3.1], the motive M = (S, p, 0)
admits a weight decomposition M = M0⊕M1⊕M2

alg⊕M2
tr⊕M3⊕M4, where each factor 

is isomorphic to a direct summand of the corresponding factor in the decomposition (4). 
In particular, this decomposition of M inherits the properties of the decomposition (4), 
e.g. M0 and M4 are of Tate type, M2

alg becomes of Tate type after base-change to ks

and M1 and M3(1) are of curve type.

1.2.3. A weight argument
Thanks to Theorem 1.4(ii), v(E) maps h2

tr(S) possibly non-trivially only in summands 
of

2⊕
i=−2

(
h0(S′)(i) ⊕ h1(S′)(i) ⊕ h2

alg(S′)(i) ⊕ h2
tr(S′)(i) ⊕ h3(S′)(i) ⊕ h4(S′)(i)

)
(5)

of weight ≤ 2. Since Hom(h2
tr(S), 1(−1)) = Hom(1(1), h2

tr(S)∨) = Hom(1(−1), h2
tr(S)) =

0, we see that h2
tr(S′) is the only direct summand of weight 2 in (5) that admits a possibly 

non-trivial morphism from h2
tr(S). Likewise, the only direct summand of (5) of weight 

≤ 2 that maps possibly non-trivially in h2
tr(S) via v(E∨⊗p∗ωS) is h2

tr(S′). It follows that 
the restriction of v2(E) induces an isomorphism

π2
tr,S′ ◦ v2(E) ◦ π2

tr,S : h2
tr(S) ∼−→ h2

tr(S′)

with inverse π2
tr,S ◦v2(E∨⊗p∗ωS) ◦π2

tr,S′ ; this fact will be used in the proof of Theorem 1.
In a similar fashion, thanks to Theorem 1.4(ii) and having in mind that h1(S) �

h3(S)(1) is the direct summand of the motive of a curve (and similarly for S′), v(E)
induces isomorphisms

h0(S) ⊕ h2
alg(S)(1) ⊕ h4(S)(2) ∼−→ h0(S′) ⊕ h2

alg(S′)(1) ⊕ h4(S′)(2)

and

h1(S) ⊕ h3(S)(1) ∼−→ h1(S′) ⊕ h3(S′)(1).
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The first isomorphism yields an isomorphism h2
alg(S) � h2

alg(S′), while the second one 
yields, thanks to Theorem 1.4(i), together with the semi-simplicity statement of Propo-
sition 1.5, isomorphisms h1(S) � h1(S′) and h3(S) � h3(S′). This finishes the proof of 
Theorem 1.1. �
1.3. A slight generalization to Theorem 1.1

The content of this paragraph won’t be used in the proof of Theorem 1. Recall that 
Theorem 1.1 fits more generally into the Orlov Conjecture 1.

The method of proof of Theorem 1.1 can be pushed through to establish the following:

Proposition 1.6. Let X and Y be two smooth projective varieties of dimension 3 or 4 
over a field k. Assume either of the following:

• dimX = 3 and CH0(X) is representable;
• dimX = 4, CH0(X) and CH0(Y ) are both representable, and X and Y have same 

Picard rank.

Then Db(X) � Db(Y ) implies that h(X) � h(Y ).

Here, we say that a smooth projective k-variety X of dimension d has representable
CH0 if for a choice of universal domain (i.e., algebraically closed field of infinite transcen-
dence degree over its prime subfield) Ω containing k, there exists a smooth projective Ω-
curve C and a correspondence γ ∈ Hom(h(XΩ), h(C)) such that γ∗CH0(C) = CH0(XΩ). 
Examples of such varieties include varieties with maximally rationally connected quotient 
of dimension ≤ 1, and in particular rationally connected varieties.

Proof. We start with the case of threefolds. By [23], X admits a Chow–Künneth de-
composition, where the even-degree summands are of Tate type, while the odd-degree 
summands are Tate twists of motives of curve type. The arguments of §1.2.1 show 
that h(Y ) is a direct summand of 

⊕3
i=−3 h(X)(i); in particular, by Kimura finite-

dimensionality (or by Theorem 1.4(ii) together with [51, Lemma 3.1] as used in §1.2.2), 
h(Y ) has a Chow–Künneth decomposition with a similar property to that of X (and 
hence has representable CH0). The arguments of §1.2.3 provide isomorphisms

h0(X) ⊕ h2(X)(1) ⊕ h4(X)(2) ⊕ h6(X)(3) � h0(Y ) ⊕ h2(Y )(1) ⊕ h4(Y )(2) ⊕ h6(Y )(3)

and

h1(X) ⊕ h3(X)(1) ⊕ h5(X)(2) � h1(Y ) ⊕ h3(Y )(1) ⊕ h5(Y )(2). (6)

Since the even-degree summands are of Tate type, and since dimH2i(X) = dim H6−2i(X)
by Poincaré duality (and similarly for Y ), we conclude that h2i(X) � h2i(Y ) for all i. 
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Now, a theorem of Popa–Schnell [47] says that two derived equivalent complex varieties 
have isogenous reduced Picard scheme (see [26, Appendix] for the case of k-varieties). 
It follows from Theorem 1.4(i) that h1(X) � h1(Y ), and then by duality that h5(X) �
h5(Y ). Since all terms of (6) are of curve type, we deduce from the semi-simplicity 
statement of Proposition 1.5 that h3(X) � h3(Y ). Alternately, from [2], two derived 
equivalent threefolds have degree-wise isomorphic cohomology groups (the isomorphisms 
being induced by some algebraic correspondences); it then follows from the description 
of the motives of X and Y together with Proposition 1.5 that X and Y have isomorphic 
motives.

In the case of fourfolds, we first note by [52, Theorem 3.11] that the motive of a 
fourfold X with representable CH0 admits a decomposition of the form

h(X) � (C, p, 0) ⊕ (S, q, 1) ⊕ (C, tp, 3),

for some curve C and some surface S. It follows from the arguments of §1.2.2 that h(X)
admits a Chow–Künneth decomposition such that h2i+1(X)(i) is of curve type for all 
i, h2i(X) is of Tate type for all i 
= 2, and h4(X) further decomposes as h4

alg(X) ⊕
h4
tr(X), with the property that h4

alg(X) becomes, after base-change to ks, a direct sum of 
Tate motives 1(−2) and h4

tr(X)(1) is a direct summand of the motive of a surface with 
Hom(h4

tr(X), 1(−i)) = 0 for i 
= 3. The arguments of §1.2.3 then provide isomorphisms

h0(X)⊕h2(X)(1)⊕h4
alg(X)(2)⊕h6(X)(3)⊕h8(X)(4) � h0(Y )⊕h2(Y )(1)⊕h4

alg(Y )(2)⊕h6(Y )(3)⊕h8(Y )(4),

h1(X) ⊕ h3(X)(1) ⊕ h5(X)(2) ⊕ h7(X)(3) � h1(Y ) ⊕ h3(Y )(1) ⊕ h5(Y )(2) ⊕ h7(Y )(3)

and h4
tr(X) � h4

tr(Y ).

As in the case of threefolds, since the Picard numbers of X and Y agree, we conclude 
that h2i(X) � h2i(Y ) for all i 
= 2 and that h4

alg(X) � h4
alg(Y ), while by utilizing the 

Theorem of Popa–Schnell [47], we conclude from Theorem 1.4(i) that h1(X) � h1(Y )
and then by duality that h7(X) � h7(Y ). It follows by cancellation (Proposition 1.5) 
that h3(X) ⊕ h5(X)(1) � h3(Y ) ⊕ h5(Y )(1). Since there is a Lefschetz isomorphism 
H3(X) � H5(X)(1) and similarly for Y , we conclude (again from Proposition 1.5) that 
h3(X) � h3(Y ) and h5(X) � h5(Y ). �
2. Motives of varieties as Frobenius algebra objects

2.1. Algebras and Frobenius algebras

Let C be a symmetric monoidal category with tensor unit 1. An algebra object in C is 
an object M together with a unit morphism η : 1 → M and a multiplication morphism 
μ : M ⊗ M → M satisfying the unit axiom μ ◦ (id ⊗ η) = id = μ ◦ (η ⊗ id) and the 
associativity axiom μ ◦ (μ ⊗ id) = μ ◦ (id ⊗ μ). It is called commutative if moreover 
μ = μ ◦ cM,M is satisfied, where cM,M is the commutativity constraint of the category C. 



14 L. Fu, C. Vial / Advances in Mathematics 383 (2021) 107674
A morphism of algebra objects between two algebra objects M and N is a morphism 
φ : M → N in C that preserves the multiplication μ and the unit η. We note that an 
algebra structure on an object M of C induces naturally an algebra structure on the n-th 
tensor powers M⊗n of M , and that a morphism φ : M → N of algebra objects induces 
naturally a morphism of algebra objects φ⊗n : M⊗n → N⊗n which is an isomorphism if 
φ is.

If C is moreover rigid6 and possesses a ⊗-invertible object (that is an object L such 
that L ⊗ L∨ � 1), then we can speak of Frobenius algebra objects in C:

Definition 2.1 (Frobenius algebra objects). Let (C, ⊗, ∨, 1) be a rigid symmetric monoidal 
category admitting a ⊗-invertible object denoted by 1(1). Let d be an integer. A degree-d
Frobenius algebra object in C is the data of an object M ∈ C endowed with

• η : 1 → M , a unit morphism;
• μ : M ⊗M → M , a multiplication morphism;
• λ : M∨ ∼−→ M(d), an isomorphism, called the Frobenius structure;

satisfying the following axioms:

(i) (Unit) μ ◦ (id ⊗ η) = id = μ ◦ (η ⊗ id);
(ii) (Associativity) μ ◦ (μ ⊗ id) = μ ◦ (id ⊗ μ);
(iii) (Frobenius condition) (id ⊗ μ) ◦ (δ ⊗ id) = δ ◦ μ = (μ ⊗ id) ◦ (id ⊗ δ),

where the comultiplication morphism δ : M → M ⊗M(d) is defined by dualizing μ via 
the following commutative diagram:

M∨
tμ ��

λ �
��

M∨ ⊗M∨

λ⊗λ �
��

M(d)
δ(d)

�� M(d) ⊗M(d)

We define also the counit morphism ε : M → 1(−d) by dualizing η via the following 
diagram:

M∨
tη ��

λ�
��

1

M(d)
ε(d)

����������

6 A symmetric monoidal category C is called rigid if each object M admits a dual M∨, together with 
morphisms 1 → M ⊗ M∨ and M∨ ⊗ M → 1 satisfying natural axioms; see e.g. [3, Section 2.2].
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We remark that ε and δ satisfy automatically the counit and coassociativity axioms.
A Frobenius algebra object M is called commutative if the underlying algebra object 

is commutative: μ ◦ cM,M = μ. Commutativity is equivalent to the cocommutativity of 
δ. The morphism β = ε ◦ μ : M ⊗ M → 1(−d), called the Frobenius pairing, is also 
sometimes used. It is a symmetric pairing if M is commutative.

Remark 2.2. In the case of Frobenius algebra objects of degree 0, the ⊗-invertible object 
1(1) is not needed in the definition, and it is reduced to the usual notion of Frobenius 
algebra object in the literature (see for example [1], [36]). In this sense, Definition 2.1
generalizes the existing definition of Frobenius structure by allowing non-zero twists. We 
believe that our more flexible notion is necessary and adequate for more sophisticated 
tensor categories than that of vector spaces, such as the categories of Hodge structures, 
Galois representations, motives, etc.

Remark 2.3 (Morphisms). Morphisms of Frobenius algebra objects are defined in the 
natural way, that is, as morphisms φ : M → N such that all the natural diagrams 
involving the structural morphisms are commutative. In particular, in order to admit 
non-trivial morphisms, the degrees of the Frobenius algebra objects M and N must 
coincide and the following diagram is then commutative:

N∨
tφ ��

�λN

��

M∨

� λM

��
N(d) M(d)

φ(d)
��

As a result, all morphisms between Frobenius algebra objects are in fact invertible. It 
is an exercise to show that an isomorphism φ : M → N between two Frobenius algebra 
objects respects the Frobenius algebra structures if and only if it is compatible with the 
algebra structure (i.e. with μ) and the Frobenius structure (i.e. with λ). This is proved in 
Proposition 2.11 in the case of Chow motives of smooth projective varieties. In addition, 
φ⊗n : M⊗n → N⊗n is naturally an isomorphism of Frobenius algebra objects, as is the 
dual tφ : N∨ → M∨.

We summarize the above discussion in the following

Lemma 2.4. Let M, N be two Frobenius algebra objects of degree d. A morphism of algebra 
objects φ : M → N is a morphism of Frobenius algebra objects if and only if it is an 
isomorphism and it is orthogonal in the sense that φ(d)−1 = λM ◦ tφ ◦ λ−1

N , or more 
succinctly, φ−1 = tφ.

Proof. The “if” part follows from the definition. The “only if” part is explained in Re-
mark 2.3. �
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Now let us turn to important examples of Frobenius algebra objects.

Example 2.5 (Cohomology as a graded vector space). Let X be a connected compact 
orientable (real) manifold of dimension d. Then its cohomology group H∗(X, Q) is natu-
rally a Frobenius algebra object of degree d in the category of Z-graded Q-vector spaces 
(where morphisms are degree-preserving linear maps and the ⊗-invertible object is cho-
sen to be Q[1], the 1-dimensional vector space sitting in degree −1). The unit morphism 
η : Q → H∗(X, Q) is given by the fundamental class [X]; the multiplication morphism 
μ : H∗(X, Q) ⊗H∗(X, Q) → H∗(X, Q) is the cup-product; the Frobenius structure comes 
from the Poincaré duality

λ : H∗(X,Q)∨ ∼−→ H∗(X,Q)[d] = H∗(X,Q) ⊗Q[d].

The induced comultiplication morphism δ : H∗(X, Q) → H∗(X, Q) ⊗ H∗(X, Q)[d] is 
the Gysin map for the diagonal embedding X ↪→ X × X; the counit morphism 
ε : H∗(X, Q) → Q[−d] is the integration 

∫
X

. The Frobenius condition is a classical 
exercise. Note that H∗(X, Q) is commutative, because the commutativity constraint in 
the category of graded vector spaces is the super one.

If instead we consider the cohomology group as merely an ungraded vector space, then 
it becomes a Frobenius algebra object of degree 0 (i.e. in the usual sense); this is one of 
the main examples in the literature.

Example 2.6 (Hodge structures). A pure (rational) Hodge structure is a finite-dimensional 
Z-graded Q-vector space H = ⊕n∈ZH

(n) such that each H(n) is given a Hodge structure 
of weight n. A morphism between two Hodge structures is required to preserve the 
weights. The category of pure Hodge structures is naturally a rigid symmetric monoidal 
category. The ⊗-invertible object is chosen to be Q(1), which is the 1-dimensional vector 
space (2πi) ·Q with Hodge structure purely of type (−1, −1).

Let X be a compact Kähler manifold of (complex) dimension d. Then H∗(X, Q) is 
naturally a commutative Frobenius algebra object of degree d in the category of pure 
Q-Hodge structures. The structural morphisms are the same as in Example 2.5 up to 
replacing [d] by (d). For instance, λ : H∗(X, Q)∨ ∼−→ H∗(X, Q)(d).

2.2. Frobenius algebra structure on the motives of varieties

The category of rational Chow motives over a field k is rigid and symmetric monoidal. 
We choose the ⊗-invertible object to be the Tate motive 1(1). Then for any smooth 
projective k-variety X of dimension d, its Chow motive h(X) is naturally a commutative 
Frobenius algebra object of degree d in the category of Chow motives. Let us explain the 
structural morphisms in detail.

Let δX denote the class of the small diagonal {(x, x, x) : x ∈ X} in CHd(X ×X ×X). 
Note that for α and β in CH∗(X), we have (δX)∗(α× β) = α · β, so that δX seen as an 
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element of Hom(h(X) ⊗ h(X), h(X)) describes the intersection theory on the Chow ring 
of X, as well as the cup product of its cohomology ring. So it is natural to define the 
multiplication morphism

μ : h(X) ⊗ h(X) −→ h(X)

to be the one given by the small diagonal δX ∈ CH2d(X × X × X) = Hom(h(X) ⊗
h(X), h(X)); it can be checked to be commutative and associative. The unit morphism 
η : 1 → h(X) is again given by the fundamental class of X. The unit axiom is very easy 
to check.

The Frobenius structure is defined as the following canonical isomorphism, called 
the motivic Poincaré duality, given by the class of diagonal ΔX ∈ CHd(X × X) =
Hom(h(X)∨, h(X)(d)):

λ : h(X)∨ ∼−→ h(X)(d).

One readily checks that the induced comultiplication morphism

δ : h(X) → h(X) ⊗ h(X)(d)

is given by the small diagonal δX ∈ CH2d(X ×X ×X) = Hom(h(X), h(X) ⊗ h(X)(d)), 
while the counit morphism

ε : h(X) → 1(−d)

is given by the fundamental class. The following lemma proves that, endowed with these 
structural morphisms, h(X) is indeed a Frobenius algebra object.

Lemma 2.7 (Frobenius condition). Notation is as above. We have an equality of endo-
morphisms of h(X) ⊗ h(X):

(id ⊗ μ) ◦ (δ ⊗ id) = δ ◦ μ = (μ⊗ id) ◦ (id ⊗ δ).

Proof. We only show δ ◦μ = (μ ⊗ id) ◦ (id⊗ δ), the other equality being similar. We have 
a commutative cartesian diagram without excess intersection:

X
Δ ��

Δ
��

X ×X

Δ×id
��

X ×X
id×Δ

�� X ×X ×X,

where Δ : X → X×X denotes the diagonal embedding. The base-change formula yields
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(Δ × id)∗ ◦ (id × Δ)∗ = Δ∗ ◦ Δ∗

on Chow groups, hence also for Chow motives by Manin’s identity principle [3, §4.3.1]. 
Now it suffices to notice that Δ∗ is the comultiplication δ and Δ∗ is the multiplication 
μ. �
Remark 2.8. In general, a tensor functor F : C → C′ between two rigid symmetric 
monoidal categories sends a Frobenius algebra object in C to such an object in C′. Exam-
ple 2.6 is obtained by applying the Betti realization functor from the category of Chow 
motives to that of pure Hodge structures; Example 2.5 (for Kähler manifolds) is obtained 
by further applying the forgetful functor (Q(1) is sent to Q[2]).

2.3. (Iso)morphisms of Chow motives as Frobenius algebra objects

The notion of morphisms between two algebra objects is the natural one. Let us spell 
it out for motives of varieties. A non-zero morphism Γ : h(X) → h(Y ) between the 
motives of two smooth projective varieties over a field k is said to preserve the algebra 
structures if the following diagram commutes7

h(X) ⊗ h(X)
δX ��

Γ⊗Γ
��

h(X)

Γ
��

h(Y ) ⊗ h(Y )
δY �� h(Y ).

(7)

For example, if f : Y → X is a k-morphism, then f∗ : h(X) → h(Y ) is a morphism 
of algebra objects. Note that if Γ : h(X) → h(Y ) preserves the algebra structures, then 
Γ∗ : CH∗(X) → CH∗(Y ) is a Q-algebra homomorphism. In fact, since in that case Γ⊗n :
h(Xn) → h(Y n) also preserves the algebra structures for all n > 0, (Γ⊗n)∗ : CH∗(Xn) →
CH∗(Y n) is also a Q-algebra homomorphism. We say that the Chow motives of X and 
Y are isomorphic as algebra objects if there exists an isomorphism Γ : h(X) → h(Y )
that preserve the algebra structures. The following lemma is a formal consequence of the 
definition.

Lemma 2.9 (Algebra morphisms). Let X and Y be connected smooth projective varieties 
and let Γ : h(X) → h(Y ) be a non-zero morphism that preserves the algebra structures.

(i) Γ preserves the units: if [X] is the fundamental class of X in CH0(X) and similarly 
for Y , then

7 As explained in Lemma 2.9, a non-zero morphism between algebra objects that preserves the multipli-
cation morphisms must also preserve the unit morphisms, and hence is a morphism of algebra objects in 
the sense of §2.1.
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Γ∗[X] = [Y ].

(ii) Suppose X and Y have same dimension and define c to be the rational number such 
that Γ∗[Y ] = c [X]; then

(Γ ⊗ Γ)∗ΔY = cΔX .

In particular, Γ is an isomorphism if and only if c 
= 0, and in this case, due to 
Lieberman’s formula,8 the inverse of Γ is equal to 1

c

tΓ.

Proof. (i) This is the analogue of the basic fact that a non-trivial homomorphism of 
unital algebras preserves the units. Concretely, the fundamental class of X provides a 
morphism 1X : 1 → h(X), and similarly for Y , and we need to show that Γ ◦ 1X = 1Y . 
First, for dimension reasons we have Γ ◦ 1X = λ · 1Y for some λ ∈ Q. Compose then 
the diagram (7) with the morphism 1X ⊗ 1X ; one obtains λ2 = λ. If λ = 0, then by 
composing diagram (7) with the morphism 1X ⊗ idX , we find that Γ = 0. Hence λ = 1
and we are done.

(ii) The commutativity of (7) provides the identity Γ ◦ δX = δY ◦ (Γ ⊗Γ). Letting the 
latter act contravariantly on [Y ] yields

cΔX = (Γ ⊗ Γ)∗ΔY = tΓ ◦ Γ,

where c is the rational number such that Γ∗[Y ] = c [X] and where the second equality is 
Lieberman’s formula. Since we assume that Γ is invertible, we get that Γ−1 = 1

c
tΓ. �

As is alluded to in Lemma 2.4, the notion of orthogonality is highly relevant when 
considering morphisms between Frobenius algebras. Let us recast it in the context of 
motives:

Definition 2.10 (Orthogonal isomorphisms). Let X and Y be two smooth projective vari-
eties of the same dimension and Γ : h(X) → h(Y ) be an isomorphism between their 
Chow motives. Then by Lieberman’s formula we see that Γ−1 = tΓ if and only if 
(Γ ⊗ Γ)∗ΔX = ΔY . In this case, Γ is called an orthogonal isomorphism.

Finally, we can unravel the meaning of being isomorphic as Frobenius algebra objects 
for the motives of two varieties (and the same holds for Hodge morphisms between the 
cohomology algebras of smooth projective varieties of same dimension).

Proposition 2.11 (Frobenius algebra isomorphisms). Let X and Y be two smooth projec-
tive varieties of the same dimension and Γ : h(X) → h(Y ) be a morphism between their 
motives. Then the following are equivalent:

8 See e.g. [3, §3.1.4], and [52, Lemma 3.3] for a proof.
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(i) Γ is an isomorphism of Frobenius algebra objects.
(ii) Γ is an algebra isomorphism and Γ is orthogonal: that is, Γ−1 = tΓ or equivalently, 

(Γ ⊗ Γ)∗ΔX = ΔY .
(iii) Γ is an algebra isomorphism and deg(Γ) = 1: that is, deg(Γ∗[pt]) = 1 or equiva-

lently, Γ∗[Y ] = [X].
(iv) Γ is an isomorphism and (Γ ⊗ Γ)∗ΔX = ΔY and (Γ ⊗ Γ ⊗ Γ)∗δX = δY .

Proof. The equivalence between (i) and (ii) is a special case of Lemma 2.4. The equiva-
lence between (ii) and (iii) can be read off Lemma 2.9(ii). For the equivalence between 
(ii) and (iv), one only needs to see that an orthogonal isomorphism (Γ−1 = tΓ) is an 
algebra morphism (Γ ◦ δX = δY ◦ (Γ ⊗ Γ)) if and only if (Γ ⊗ Γ ⊗ Γ)∗δX = δY . But this 
again follows from Lieberman’s formula. �
3. Derived equivalent K3 surfaces

The aim of this section is to prove Theorem 1, as well as Corollaries 1 and 2.

3.1. Proof of Theorem 1

The proof relies crucially on the Beauville–Voisin description of the algebra structure 
on the motive of K3 surfaces:

Theorem 3.1 (Beauville–Voisin [4]). Let S be a K3 surface and let oS be the class of any 
point lying on a rational curve on S. Then, as cycle classes in CH2(S×S×S), we have

δS = p∗12ΔS ·p∗3oS+p∗13ΔS ·p∗2oS+p∗23ΔS ·p∗1oS−p∗1oS ·p∗2oS−p∗1oS ·p∗3oS−p∗2oS ·p∗3oS , (8)

where pk : S × S × S → S and pij : S × S × S → S × S denote the various projections.

Note that, for a K3 surface S, Theorem 3.1 implies that α · β = deg(α · β) oS for all 
divisors α, β ∈ CH1(S), and that c2(S) = (δS)∗ΔS = χ(S) oS = 24 oS ∈ CH2(S). (Of 
course, this is due originally to Beauville–Voisin [4].)

According to Proposition 2.11, in order to establish Theorem 1, it is necessary and 
sufficient to produce a correspondence Γ : h(S) → h(S′) which is invertible and such 
that

(i) (Γ ⊗ Γ)∗ΔS = ΔS′ , or equivalently Γ−1 = tΓ;
(ii) (Γ ⊗ Γ ⊗ Γ)∗δS = δS′ .

By the Beauville–Voisin Theorem 3.1, it is sufficient to produce a correspondence Γ :
h(S) → h(S′) which is invertible and such that

(i) (Γ ⊗ Γ)∗ΔS = ΔS′ , or equivalently Γ−1 = tΓ;
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(ii′) Γ∗oS = oS′ .

For the sake of completeness, we note that the above is also necessary: Indeed, by Lieber-
man’s formula [3, §3.1.4], (ii) is equivalent to δS′ = Γ ◦ δS ◦ (tΓ ⊗ tΓ), from which we 
obtain

24oS′ = δS′,∗(ΔS′) = Γ∗ ◦ δS,∗ ◦ (tΓ ⊗ tΓ)∗(ΔS′) = Γ∗ ◦ δS,∗(ΔS) = Γ∗(24oS),

where the first and last equalities are due to Beauville and Voisin as mentioned above, 
and where the third equality uses (i).

We now proceed to the proof of Theorem 1, i.e. to constructing an invertible corre-
spondence satisfying (i) and (ii′) above. Given a K3 surface S, we consider the refined 
Chow–Künneth decomposition of Kahn–Murre–Pedrini as described in §1.2.2 given by

h(S) = h0(S) ⊕ h2
alg(S) ⊕ h2

tr(S) ⊕ h4(S),

with π0
S = oS × S and π4

S = S × oS , where πi
S denote the projectors on the corre-

sponding direct summands and where oS denotes the Beauville–Voisin zero-cycle as in 
Theorem 3.1. Moreover, the decomposition is such that tπ2

alg,S = π2
alg,S and tπ2

tr,S = π2
tr,S .

Consider now two twisted derived equivalent K3 surfaces S and S′. As in the proof of 
Theorem 1.1, we only give a proof in the untwisted case, the twisted case being similar. 
We fix an exact linear equivalence ΦE : Db(S) ∼−→ Db(S′) with Fourier–Mukai kernel 
E ∈ Db(S×S′). The proof will proceed in two steps. First, we will construct an invertible 
correspondence

Γalg : halg(S) → halg(S′) with (Γalg)−1 = tΓalg and (Γalg)∗oS = oS′ ,

where halg(S) = h0(S) ⊕ h2
alg(S) ⊕ h4(S) (and similarly for S′) is the algebraic sum-

mand of the motive of S; second, we will construct an invertible correspondence on the 
transcendental summands of the motives of S and S′:

Γtr : h2
tr(S) → h2

tr(S′) with (Γtr)−1 = tΓtr and (Γtr)∗oS = 0.

The correspondence

Γ := Γalg + Γtr : h(S) → h(S′)

will then provide the desired isomorphism of Frobenius algebra objects.
First, the numerical Grothendieck group Knum

0 equipped with the Euler pairing is 
clearly a derived invariant. Using the Chern character isomorphism, we obtain an isom-
etry between the quadratic spaces ÑS(Sks)Q and ÑS(S′

ks)Q, where ÑS is the extended 
Néron–Severi group equipped with the Mukai pairing, hence is isometric to the (orthog-
onal) direct sum of the Néron–Severi lattice (endowed with the intersection pairing) 
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and a copy of the hyperbolic plane. By Witt’s cancellation theorem, the Néron–Severi 
groups NS(Sks)Q and NS(S′

ks)Q of two derived equivalent surfaces are isomorphic both as 
Gal(k)-representations and as quadratic spaces; there exists therefore a correspondence 
M = π2

alg,S′ ◦M ◦ π2
alg,S in CH2(S ×k S′) inducing an isometry NS(Sks)Q � NS(S′

ks)Q. 
This means that M induces an isomorphism h2

alg(S) ∼−→ h2
alg(S′) with inverse given by 

its transpose. It follows that Γalg := oS × S′ + M + S × oS′ induces an isomorphism 
halg(S) ∼−→ halg(S′) with inverse tΓalg. In addition, we have (Γalg)∗oS = oS′ .

Second, recall from §1.2.3 that v2(E) induces an isomorphism h2
tr(S) ∼−→ h2

tr(S′) with 
inverse induced by v2(E∨ ⊗ p∗ωS). Since K3 surfaces have trivial first Chern class and 
trivial canonical bundle, it follows that the inverse of v2(E) is in fact its transpose. 
In other words, Γtr := π2

tr,S′ ◦ v2(E) ◦ π2
tr,S induces an isomorphism of Chow motives 

h2
tr(S) ∼−→ h2

tr(S′) with inverse its transpose. Finally, we do have (π2
tr)∗oS = 0 because 

of the orthogonality of π2
tr,S with π4

S .
The required correspondences Γalg and Γtr have thus been constructed and this con-

cludes the proof of Theorem 1. �
3.2. Proof of Corollary 1

Let S and S′ be two twisted derived equivalent K3 surfaces. Then due to Theorem 1
their motives are isomorphic as Frobenius algebra objects. As is explained in §2.1, iso-
morphisms of Frobenius algebra objects behave well with respect to (tensor) products, 
hence it suffices to see that for any n ∈ Z>0 the Hilbert schemes of length-n subschemes 
Hilbn(S) and Hilbn(S′) have isomorphic Chow motives as Frobenius algebra objects. To 
this end, we use the result of Fu–Tian [19] that describes the algebra object h(Hilbn(S))
in terms of the algebra objects h(Sm) for m ≤ n, together with some explicit combina-
torial rules. More precisely, by [19, Theorem 1.6 and Remark 1.7], for a K3 surface S, 
we have an isomorphism of algebra objects:

φ : h(Hilbn(S)) �

⎛⎝ ⊕
g∈Sn

h

(
SO(g)

)
, �orb,dt

⎞⎠Sn

, (9)

where Sn is the symmetric group acting naturally on Sn; for a permutation g, O(g) is 
its set of orbits in {1, · · · , n}, SO(g) is canonically identified with the fixed locus (Sn)g, 
and finally �orb,dt is the orbifold product with discrete torsion (see [18,19]) defined as 
follows (let us omit the Tate twists for ease of notation): it is compatible with the Sn-
grading, and for any g, h ∈ Sn, h 

(
SO(g)) ⊗ h 

(
SO(h)) → h 

(
SO(g,h)) is given by the 

pushforward via the diagonal inclusion SO(g,h) ↪→ SO(g) × SO(h) × SO(gh) of the cycle 
ε(g, h)cg,h ∈ CH(SO(g,h)), by [19, Lemma 9.3]:

cg,h :=
{

0, if ∃ t ∈ O(g, h) with dg,h(t) ≥ 2 ;∏
(24 pr∗(o )) , if ∀t ∈ O(g, h) has d (t) = 0 or 1,

(10)

t∈I t S g,h
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where ε(g, h) := (−1)
n−|O(g)|−|O(h)|+|O(gh)|

2 , O(g, h) is the set of orbits in {1, · · · , n} under 
the subgroup generated by g and h; for any orbit t ∈ O(g, h),

d(g, h)(t) := 2 + |t| − |t/g| − |t/h| − |t/gh|
2

is the graph defect function [19, Lemma 9.1] and I := {t ∈ O(g, h) | dg,h(t) = 1} is the 
subset of orbits with graph defect 1.

As our isomorphism of algebra objects Γ : h(S) → h(S′) satisfies Γ∗(oS) = oS′ , it is 
now clear from the above precise description that the right-hand side of (9) for S and 
for S′ are isomorphic algebra objects, and the isomorphism can be chosen orthogonal. 
As the morphism φ in (9) satisfies φ−1 = tφ, we have h(Hilbn(S)) and h(Hilbn(S′)) are 
isomorphic Frobenius algebra objects. This completes the proof. �
Remark 3.2 (Chow rings vs. algebra objects). It turns out that we do not need Theo-
rem 1 to show that two twisted derived equivalent K3 surfaces have isomorphic Chow 
rings. Indeed, Huybrechts’ result [30] (generalized to the twisted case in [31]) provides a 
correspondence Γ ∈ CH2(S×S′) that induces an isomorphism of graded Q-vector spaces 
Γ∗ : CH∗(S) ∼−→ CH∗(S′) with the extra property of being isometric on the Néron–Severi 
spaces CH1(S) ∼−→ CH1(S′). Now thanks to the theorem of Beauville–Voisin [4] saying 
that the image of the intersection product of two divisors on a K3 surface is of dimension 
1, this already implies that Γ∗ is actually an isomorphism of graded Q-algebras.

In contrast, in the situation of Corollary 1, a derived equivalence between Db(S) and 
Db(S′) does give rise to a derived equivalence between their powers and Hilbert schemes, 
thanks to Bridgeland–King–Reid [11] and Haiman [24]. However, it is not at all clear 
for the authors how to produce an isomorphism of the Chow rings (or even the rational 
cohomology rings) of two derived equivalent holomorphic symplectic varieties starting 
from the Fourier–Mukai kernel; see Conjecture 4.7.

3.3. Proof of Corollary 2

The equivalence of (i) and (ii) is due to Huybrechts [31, Corollary 1.4], while the 
implication (ii) ⇒ (iii) is Theorem 1. We now prove the implication (iii) ⇒ (i). Suppose 
that Γ : h(S) → h(S′) is an isomorphism that preserves the algebra structures. Let c be 
the rational number such that Γ∗[S′] = c [S], or equivalently such that Γ−1 = 1

c
tΓ by 

Lemma 2.9; then the following diagram is commutative:

H2(S) ⊗ H2(S) ∪ ��

(Γ⊗Γ)∗
��

H4(S)

Γ∗
��

deg �� Q

·c
��

H2(S′) ⊗ H2(S′) ∪ �� H4(S′)
deg �� Q.

(11)
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The commutativity of the left-hand square of (11) is implied directly by the assumption 
that Γ preserves the algebra structures, while the commutativity of the right-hand square 
follows from the Poincaré dual of the identity Γ∗[S′] = c [S]. If in addition Γ preserves 
the Frobenius algebra structure, then c = 1 by Proposition 2.11. This means that S and 
S′ are isogenous. �
3.4. A motivic global Torelli theorem

The aim of this section is to show that Lemma 2.9 directly allows to upgrade motivi-
cally the global Torelli theorem, without utilizing the decomposition of the diagonal of 
Beauville–Voisin (Theorem 3.1). We denote h(X)Z the Chow motive of X with integral 
coefficients.

Theorem 3.3 (Motivic global Torelli theorem for K3 surfaces). Let S and S′ be two com-
plex projective K3 surfaces. The following statements are equivalent:

(i) S and S′ are isomorphic;
(ii) H2(S, Z) and H2(S′, Z) are Hodge isometric;
(iii) h(S)Z and h(S′)Z are isomorphic as algebra objects.

Proof. The equivalence of items (i) and (ii) is the global Torelli theorem. The implication 
(i) ⇒ (iii) is obvious. It remains to check that (iii) ⇒ (ii). Once it is observed that 
Lemma 2.9 holds with integral coefficients, we obtain the following commutative diagram 
(with c ∈ Z), which is similar to (11) in the proof of Corollary 2

H2(S,Z) ⊗ H2(S,Z) ∪ ��

� (Γ⊗Γ)∗
��

H4(S,Z)

� Γ∗
��

�

deg �� Z

� ·c
��

H2(S′,Z) ⊗ H2(S′,Z) ∪ �� H4(S′,Z) �

deg �� Z.

Therefore, there is an isometry of lattices between H2(S, Z) ⊗ 〈c〉 and H2(S′, Z), which 
implies that c = 1. �
4. Beyond K3 surfaces

From now on, the base field will be the field of complex numbers. Orlov’s Conjecture 1
predicts that the Chow motives of two derived equivalent smooth projective varieties are 
isomorphic. Motivated by Theorem 1, we raised the following question in the introduc-
tion:
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Question 4.1. When can we expect more strongly that a derived equivalence between two 
smooth projective varieties implies an isomorphism between their rational Chow motives 
as Frobenius algebra objects?

We make some remarks and speculations on this question in this section.

Remark 4.2. By Bondal–Orlov [8], two derived equivalent smooth projective varieties 
that are either Fano or with ample canonical bundle are isomorphic; in particular, their 
motives are isomorphic as Frobenius algebra objects. Similarly, Question 4.1 also has a 
positive answer for curves, as they do not have non-isomorphic Fourier–Mukai partners 
[27, Corollary 5.46].

In general, one cannot expect in general a positive answer to Question 4.1. In fact, if 
h(X) and h(Y ) are isomorphic as Frobenius algebra objects then by applying the Betti 
realization functor, their cohomology rings are isomorphic as Frobenius algebras, that 
is, due to Proposition 2.11, there is a (graded) isomorphism of Q-algebras H∗(X, Q) →
H∗(Y, Q) sending the class of a point on X to the class of a point on Y . However, as we 
will see below, this is not the case in general for derived equivalent varieties.

4.1. Calabi–Yau varieties

Example 4.3. Borisov and Căldăraru [9] constructed derived equivalent (but non-
birational) Calabi–Yau threefolds X and Y with the following properties: Pic(X) = ZHX

with deg(H3
X) = 14 and Pic(Y ) = ZHY with deg(H3

Y ) = 42; hence there is no graded 
Q-algebra isomorphism between H∗(X, Q) and H∗(Y, Q) that respects the point class. 
Therefore, h(X) and h(Y ) are not isomorphic as Frobenius algebra objects. Neverthe-
less, thanks to the following proposition, H∗(X, Q) and H∗(Y, Q) are Hodge isomorphic as 
graded Q-algebras and also as graded Frobenius algebras after extending the coefficients 
to R.9

Proposition 4.4. Let X and Y be two derived equivalent Calabi–Yau varieties of dimen-
sion d ≥ 3. Suppose their Hodge numbers satisfy

• hp,q = 0 for all p 
= q and p + q 
= d;
• hp,p = 1 for all 2p 
= d and 0 ≤ p ≤ d.

Then:

(i) There is a (graded) real Frobenius algebra isomorphism between H∗(X, R) and 
H∗(Y, R) preserving the real Hodge structures.

9 We are not aware of any examples of derived equivalent smooth projective varieties with non-isomorphic 
cohomology as Q-algebras or as R-Frobenius algebras.
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(ii) If d is odd or d is even and s := deg(Y )
deg(X) is a square in Q, then H∗(X, Q) and 

H∗(Y, Q) are isomorphic as graded Q-Hodge algebras. Here the degree is the top 
self-intersection number of the ample generator of the Picard group.

Proof. We first prove (ii). Let E be the Fourier–Mukai kernel of the equivalence from 
Db(X) to Db(Y ). By [29, Proposition 5.44], the correspondence given by the Mukai vector 
v(E) ∈ CH∗(X × Y ) induces a Z/2Z-graded Hodge isometry

ΦH
E : H∗(X,Q) ∼−→ H∗(Y,Q),

where both sides are equipped with the Mukai pairing. Note that as the varieties are 
Calabi–Yau, the Mukai pairing is simply given by the intersection pairing with some 
extra sign changes ([29, Definition 5.42]). The transcendental cohomology denoted by 
H∗

tr(−, Q) is defined to be the orthogonal complement of the space of Hodge classes; it 
is obviously preserved by ΦH

E . Thanks to our assumption on the Hodge numbers, the 
transcendental cohomology is concentrated in degree d. Therefore by restricting ΦH

E , we 
get a Hodge isometry

φtr : Hd
tr(X,Q) ∼−→ Hd

tr(Y,Q).

On the other hand, if d is even, ΦH
E also provides an isometry between the subalgebras 

of Hodge classes Hdg∗Q(X) and Hdg∗Q(Y ). Since the quadratic space H0 ⊕ · · · ⊕ Hd−2 ⊕
Hd+2⊕· · ·⊕H2d equipped with the restriction of the Mukai pairing is isometric to U

d
2 ⊗Q

for both X and Y , the quadratic spaces HdgdQ(X) and HdgdQ(Y ) are isometric by Witt 
cancellation theorem. Due to the assumption that s := deg(Y )

deg(X) is a square and to Witt’s 
theorem, we have an isometry

φHdg : HdgdQ(X) (s) −→ HdgdQ(Y )

that sends H
d
2
X to H

d
2
Y , where HX and HY denote the ample generators of Pic(X) and 

Pic(Y ), respectively.
Let us now try to define a graded Hodge algebra isomorphism ψ : H∗(X, Q) →

H∗(Y, Q). Consider the following formulas with the numbers a, b to be determined later:

• Hi
X 
→ ai ·Hi

Y for all 0 ≤ i ≤ d and consequently [ptX ] 
→ ad s · [ptY ], where [pt] is 
the class of a point;

• a
d
2 · φHdg : HdgdQ(X) → HdgdQ(Y );

• b · φtr : Hd
tr(X, Q) → Hd

tr(Y, Q).

These formulas define an algebra isomorphism if and only if b2 = ad s. This equation has 
non-zero rational solutions when d is odd or d is even and s is a square in Q. Item (ii)
is therefore proved.
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The proof of (i) goes similarly as for (ii) by replacing Q by R. Notice that the analo-
gous assumption that s is a square in R is automatically satisfied. So it is enough to see 
that there are always non-zero real solutions to the equation b2 = ad s = 1, where the 
last equality reflects the Frobenius condition. �
Example 4.5. Let V and W be vector spaces of dimension 5 and 10, respectively. Given 
two generic isomorphisms φi :

∧2
V

�−→ W , i ∈ {1, 2}, one obtains two embeddings 
Gr(2, V ) ↪→ P (W ), whose intersection is a Calabi–Yau 3-fold X of Picard number 1. 
Using the inverses of the dual isomorphisms φ∨

i : W∨ �−→
∧2

V ∨, one defines similarly 
another Calabi–Yau 3-fold Y in P (W∨). In [10], Borisov, Căldăraru and Perry showed 
that X and Y are derived equivalent (but non-birational). As X and Y have the same 
degree (i.e. s = 1), the argument in the previous proposition shows that there is a 
(graded) Frobenius algebra isomorphism between H∗(X, Q) and H∗(Y, Q) preserving the 
Hodge structures.

4.2. Abelian varieties

Proposition 4.6 (Isogenous abelian varieties). Let A and B be two isogenous abelian 
varieties of dimension g. Then

(i) h(A) and h(B) are isomorphic as algebra objects.
(ii) The following conditions are equivalent:

(a) There is an isomorphism of Frobenius algebra objects between h(A) and h(B).
(b) There is a graded Hodge isomorphism of Frobenius algebras between H∗(A, Q)

and H∗(B, Q).
(c) There exists an isogeny of degree m2g between A and B for some m ∈ Z>0.
In the case that these equivalent conditions hold, the isomorphism in (a), denoted 
by Γ : h(A) → h(B), can be chosen to respect moreover the motivic decomposition 
of Deninger–Murre [17] in the sense that Γ ◦ πi

A = πi
B ◦ Γ for any i, where the πi’s 

are the projectors corresponding to the decomposition.
(iii) h(A)R and h(B)R are isomorphic as Frobenius algebra objects in the category of 

Chow motives with real coefficients.

Proof. (i) Consider any isogeny f : B → A. Then f∗ : h(A) → h(B) is an isomorphism 
of algebra objects with inverse given by 1

deg(f)f∗.
(ii) The implication (a) =⇒ (b) is obtained by applying the realization functor.
(b) =⇒ (c). Let γ : H∗(A, Q) ∼−→ H∗(B, Q) be a Frobenius algebra isomorphism pre-
serving the Hodge structures, and let γi : Hi(A, Q) → Hi(B, Q) be its i-th component, 
for all 0 ≤ i ≤ 2g. There exist a rational number λ and an isogeny f : B → A, such 
that γ1 : H1(A, Q) → H1(B, Q) is equal to 1

λf
∗|H1 . As H∗(A, Q) ∼=

∧• H1(A, Q) as alge-
bras and similarly for B, γ is in fact determined by γ1 in the following way: for any i, 
γi = ∧iγ1 = 1

i f
∗|Hi . We compute that
λ
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id = tγ ◦ γ =
(∑

i

1
λi

f∗|H2g−i

)
◦
(∑

i

1
λi

f∗|Hi

)
= 1

λ2g deg(f) · id.

This yields that the isogeny f is of degree λ2g.
(c) =⇒ (a) If there is an isogeny f : B → A of degree m2g, then for any 0 ≤ i ≤ 2g
consider the morphism Γi := 1

miπ
i
B ◦ f∗ ◦ πi

A = 1
mi f

∗ ◦ πi
A from hi(A) to hi(B), which is 

an isomorphism with inverse Γ−1
i = 1

m2g−iπ
i
A◦f∗. Here we use the motivic decomposition 

of Deninger–Murre [17] for abelian varieties h(A) = ⊕2g
i=0h

i(A), and πi is the projector 
corresponding to hi. One readily checks that Γ :=

∑
i Γi : h(A) → h(B) is an isomorphism 

of algebra objects. Moreover, as πi = tπ2g−i for all i, we have that Γ−1
i = tΓ2g−i, hence 

Γ−1 = tΓ, that is, Γ respects the Frobenius structures. Notice that by construction, 
Γ respects the decomposition of Deninger–Murre.
The proof of (iii) is similar to the last part of the proof of (ii). One only needs to notice 
that there is no obstruction to taking the 2g-th root of a positive number in R. �

As a consequence, given two derived equivalent abelian varieties, in general there is 
no isomorphism of Frobenius algebra objects between their Chow motives (or their co-
homology). Indeed, by Proposition 4.6(ii), the motives of two derived equivalent abelian 
varieties that cannot be related by an isogeny of degree the 2g-th power of some positive 
integer are not isomorphic as Frobenius algebra objects. For instance, if one considers 
an abelian variety A with Néron–Severi group generated by one ample line bundle L, 
then any isogeny between A and A∨ is of degree χ(L)2m4g for some m ∈ Z>0. But in 
general, χ(L) is not a g-th power in Z. On the other hand, A and A∨ are always derived 
equivalent by Mukai’s classical result [39].

4.3. Hyper-Kähler varieties

One particularly interesting class of varieties for which we expect a positive an-
swer consists of (projective) hyper-Kähler varieties; these constitute higher-dimensional 
generalizations of K3 surfaces. Note that by Huybrechts–Nieper-Wißkirchen [32], any 
Fourier–Mukai partner of a hyper-Kähler variety remains hyper-Kähler.

Conjecture 4.7. Let X and Y be two projective hyper-Kähler varieties. If there is an 
exact equivalence between triangulated categories Db(X) and Db(Y ), then there exists 
an isomorphism of Chow motives h(X) and h(Y ), as Frobenius algebra objects in the 
categories of Chow motives. In particular, their Chow rings as well as cohomology rings 
are isomorphic.

The following result is known to the experts; it answers the last part of Conjecture 4.7
for cohomology with complex coefficients.

Proposition 4.8. Let X and Y be two derived equivalent projective hyper-Kähler varieties. 
Then their cohomology rings with complex coefficients are isomorphic as C-algebras.
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Proof. 10 As any exact equivalence Db(X) � Db(Y ) is given by Fourier–Mukai kernel, it 
lifts naturally to an equivalence of differential graded categories. Therefore we have an 
isomorphism of graded C-algebras between their Hochschild cohomology:

HH∗(X) � HH∗(Y ).

By a result of Huybrechts–Nieper-Wisskirchen [32] (see Calaque–Van den Bergh [14] in a 
greater generality), which was also previously announced by Kontsevich, the Hochschild–
Kostant–Rosenberg isomorphism twisted by the square root of the Todd genus gives rise 
to an isomorphism of C-algebras

HH∗(X) �
⊕

i+j=∗
Hi(X,

j∧
TX).

Now the symplectic forms on X induce an isomorphism between TX and ΩX , which 
yields isomorphisms of C-algebras:

⊕
i+j=∗

Hi(X,

j∧
TX) �

⊕
i+j=∗

Hi(X,Ωj
X) � H∗(X,C).

We can conclude by combining these isomorphisms. �
There are not so many known examples of derived equivalent hyper-Kähler varieties. 

Let us test Conjecture 4.7 for the available ones.

Example 4.9. Let S and S′ be two derived equivalent K3 surfaces. Then for any n ∈ N∗, 
the n-th Hilbert schemes Hilbn(S) and Hilbn(S′) are derived equivalent. Indeed, by 
combining the results of Bridgeland–King–Reid [11] and Haiman [24], we have exact 
linear equivalences of triangulated categories:

Db(Hilbn(S)) � Db(Sn−Hilb(Sn)) � Db
Sn

(Sn),

and similarly for S′; the Fourier–Mukai kernel E � · · · � E induces an equivalence

Db
Sn

(Sn) � Db
Sn

(S′n),

where E ∈ Db(S × S′) is the original Fourier–Mukai kernel inducing the equivalence 
between Db(S) and Db(S′). We showed in Corollary 1 that h(Hilbn(S)) and h(Hilbn(S′))
are isomorphic as Frobenius algebra objects.

10 It is not clear to the authors whether the isomorphism constructed in the proof preserves the Frobenius 
structure.
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Example 4.10. Conjecturally two birationally equivalent hyper-Kähler varieties are de-
rived equivalent [27, Conjecture 6.24]. Thanks to the result of Rieß [48], or rather its 
proof, we know that birational hyper-Kähler varieties have isomorphic Chow motives 
as Frobenius algebra objects, hence compatible with Conjecture 4.7. There are by now 
some cases where the derived equivalence is known. The easiest example might be the 
so-called Mukai flop. Another instance of interest is as follows : given a projective K3 
surface S and a Mukai vector v, when the stability condition σ varies in the chambers of 
the distinguished component Stab∗(S) of the manifold of stability conditions on Db(S), 
the moduli spaces Mσ(v) of σ-stable objects are all birational to each other, and their 
derived equivalence has been announced by Halpern-Leistner in [25].

Example 4.11. If one is willing to enlarge a bit the category of hyper-Kähler varieties to 
that of hyper-Kähler orbifolds,11 Conjecture 4.7 is closely related to the so-called mo-
tivic hyper-Kähler resolution conjecture investigated in [18] and [19]. Indeed, let M be 
a projective holomorphic symplectic variety endowed with a faithful action of a finite 
group G by symplectic automorphisms. The quotient stack [M/G] is a hyper-Kähler (or 
rather symplectic) orbifold. If the main component of the G-invariant Hilbert scheme 
X := G −Hilb(M) is a symplectic (or equivalently crepant) resolution of the singular 
variety M/G, then by Bridgeland–King–Reid [11, Corollary 1.3] there is an equivalence 
of derived categories Db(X) � Db([M/G]). On the other hand, the motivic hyper-Kähler 
resolution conjecture [18] predicts that the orbifold motive of [M/G] endowed with the 
orbifold product is isomorphic to the motive of X as algebra objects. In this sense, for-
getting the Frobenius structure, we can obtain some evidences for the orbifold analogue 
of Conjecture 4.7: for example between a K3 orbifold and its minimal resolution by [20], 
between [ker(An+1 +−→ A)/Sn] and the n-th generalized Kummer variety associated to 
an abelian surface A by [18], and between [Sn/Sn] and the n-th Hilbert scheme of a K3 
surface S by [19]. In fact, the authors suspect that the motivic hyper-Kähler resolution 
conjecture can be stated more strongly as an isomorphism of Frobenius algebra objects 
with complex coefficients, and the proofs of our aforementioned results do confirm this 
stronger version.

5. Chern classes of Fourier–Mukai equivalences between K3 surfaces

The aim of this final section is to provide evidence for the fact that the Chern classes 
of Fourier–Mukai equivalences between two K3 surfaces S and S′ define “distinguished” 
classes in the Chow ring of S×S′, in the sense that they can be added to the Beauville–
Voisin ring of S × S′ and the resulting ring would still inject into cohomology via the 
cycle class map.

11 Here by an orbifold we mean a smooth proper Deligne–Mumford stack with trivial generic stabilizer.
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5.1. The Beauville–Voisin ring, and generalizations

Let S be a K3 surface and define its Beauville–Voisin ring R∗(S) to be the subring of 
CH∗(S) generated by divisors and Chern classes of the tangent bundle. By Beauville–
Voisin’s Theorem 3.1, this ring has the property that it injects into cohomology via the 
cycle class map.

Let h(S) = h0(S) ⊕ h2(S) ⊕ h4(S) be the Chow–Künneth decomposition induced 
by π0

S = oS × S, π4
S = S × oS and π2

S = ΔS − π0
S − π4

S . In [50, Proposition 8.14]
it was observed that the decomposition of the small diagonal (8) is equivalent to the 
above Chow–Künneth decomposition being multiplicative, meaning that the multipli-
cation morphism h(S) ⊗ h(S) → h(S) is compatible with the grading given by the 
Chow–Künneth decomposition.

The following (formal) facts about multiplicative Chow–Künneth decompositions will 
be used. Let X and Y be two smooth projective varieties, both having motive endowed 
with a multiplicative Chow–Künneth decomposition. Then [50, Theorem 8.6] the product 
Chow–Künneth decomposition hn(X × Y ) =

⊕
i+j=n h

i(X) ⊗ hj(Y ) is multiplicative. 
Moreover, if p : X×Y → X denotes the projection, then p∗ : h(X) → h(X×Y ) is graded 
(i.e. compatible with the Chow–Künneth decompositions) and p∗ : h(X × Y ) → h(X)
shifts the gradings by −2 dimY .

A Chow–Künneth decomposition on the motive of X induces a bigrading on the Chow 
groups of X given by

CHi(X)(j) := CHi(h2i−j(X)),

which in case the Chow–Künneth decomposition is multiplicative satisfies

CHi(X)(j) · CHi′(X)(j′) ⊆ CHi+i′(X)(j+j′).

Given smooth projective varieties endowed with multiplicative Chow–Künneth decom-
positions, the products of which are endowed with the product Chow–Künneth decom-
positions, we therefore see that CH∗(−)(0) defines a subalgebra of CH∗(−) that is stable 
under pushforwards and pullbacks along projections, and stable under composition of 
correspondences belonging to CH∗(− ×−)(0).

Murre’s Conjecture 1.2(B) and (D) imply that CHi(X)(0) := CHi(h2i(X)) injects 
in cohomology with image the Hodge classes for any choice of Chow–Künneth de-
composition. (This is known unconditionally in the case i = 0 and i = dimX.) In 
particular, in the above situation of smooth projective varieties endowed with multi-
plicative Chow–Künneth decompositions, it is expected that the subalgebra CH∗(−)(0)
injects into cohomology with image the Hodge classes. In that sense, CH∗(−)(0) is a 
maximal subalgebra of CH∗(−) with the property that it injects into cohomology via
the cycle class map.
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5.2. Adding the second Chern class of Fourier–Mukai equivalences to the BV ring

Recall the following theorem of Huybrechts [28, Theorem 2] and Voisin [53, Corol-
lary 1.10].

Theorem 5.1 (Huybrechts, Voisin). Let ΦE : Db(S) ∼−→ Db(S′) be an exact linear equiva-
lence between K3 surfaces with Fourier–Mukai kernel E ∈ Db(S×S′). Then v(E) preserves 
the Beauville–Voisin ring.

In light of the discussion in §5.1, it is natural to ask whether a more general statement 
could be true, namely:

Question 5.2. Let ΦE : Db(S) ∼−→ Db(S′) be an exact linear equivalence between K3 
surfaces with Fourier–Mukai kernel E ∈ Db(S × S′). Then does v(E) belong to CH∗(S ×
S′)(0)?

For i = 0 or 1, the Mukai vectors vi(E) obviously belong to CHi(S × S′)(0), since in 
those cases CHi(S×S′) = CHi(S×S′)(0). In the case of v2(E), this can be deduced from 
Theorem 5.1:

Proposition 5.3. Let ΦE : Db(S) ∼−→ Db(S′) be an exact equivalence with Fourier–Mukai 
kernel E ∈ Db(S × S′). Then v2(E) belongs to CH2(S × S′)(0).

Proof. Since CH2(S ×S′) = CH2(S ×S′)(0) ⊕CH2(S ×S′)(2), it is enough to show that 
v2(E)(2) = 0. Let γ be any cycle in CH2(S × S′). On the one hand, we have γ(2) =
π2

tr,S′ ◦γ ◦π4
S +π0

S′ ◦γ ◦π2
tr,S . On the other hand, we have γ ◦π4

S = (p′)∗γ∗oS . Now setting 
γ = v2(E), Theorem 5.1 yields that v2(E) ◦ π4

S is a multiple of (p′)∗oS′ and henceforth 
since (π2

tr,S′)∗oS′ = 0 that π2
tr,S′ ◦ γ ◦ π4

S = 0. Likewise, we have π0
S′ ◦ v2(E) ◦ π2

tr,S = 0, 
and the proposition is established. �

We deduce from §5.1 the following

Theorem 5.4. Let R̃∗(S×S′) be the subring of CH∗(S×S′) generated by divisors, p∗c2(S), 
(p′)∗c2(S′) and c2(E), where E runs through the objects in Db(S × S′) inducing exact 
linear equivalences Db(S) ∼−→ Db(S′). The cycle class map R̃n(S×S′) → H2n(S×S′, Q)
is injective for n = 3, 4. In particular, if ΦE1 , ΦE2 : Db(S) ∼−→ Db(S′) are two exact 
linear equivalences with Fourier–Mukai kernels E1, E2 ∈ Db(S×S′), then c2(E1) ·c2(E2) ∈
Z[oS × oS′ ]. �
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5.3. Some speculations concerning Chern classes of twisted derived equivalent K3 
surfaces

It is natural to ask whether Theorem 5.1 extends to derived equivalences between 
twisted K3 surfaces:

Question 5.5. Let ΦE : Db(S, α) ∼−→ Db(S′, α′) be an exact equivalence between twisted 
K3 surfaces with Fourier–Mukai kernel E ∈ Db(S×S′, α−1�α′). Then does v(E) preserve 
the Beauville–Voisin ring? More generally, does v(E) belong to CH∗(S × S′)(0)?

We note that if v(E) preserves the Beauville–Voisin ring, then the same argument as 
in the proof of Proposition 5.3 gives that v2(E) belongs to CH2(S × S′)(0).

Let us now define E∗(S × S′) to be the subalgebra of CH∗(S × S′) generated by 
divisors, p∗c2(S), (p′)∗c2(S′), and the Chern classes of E , where E runs through objects 
in Db(S × S′, α−1 � α′) inducing exact equivalences ΦE : Db(S, α) ∼−→ Db(S′, α′) for 
some Brauer classes α ∈ Br(S) and α′ ∈ Br(S′). We then define Ẽ∗(S × S′) to be the 
subalgebra of CH∗(S × S′) generated by cycles of the form

γn−1 ◦ · · · ◦ γ0,

where γi ∈ E∗(Si × Si+1) for all i for some K3 surfaces S = S0, S1, . . . , Sn = S′. 
According to the discussion in §5.1, a positive answer to Question 5.5 would suggest 
that the following question should have a positive answer.

Question 5.6. Does Ẽ∗(S × S′) inject into cohomology via the cycle class map?

In particular, if H2(S, Q) � H2(S′, Q) is an isogeny, then the cycle class v2(En−1) ◦
· · ·◦v2(E0) inducing the isogeny between T (S)Q := H∗(h2

tr(S)) and T (S′)Q := H∗(h2
tr(S))

(with E0, . . . , En−1 as in (2)) should be canonically defined, i.e. should not depend on the 
choice of twisted derived equivalence between S and S′ as in (2) inducing the isogeny.

Appendix A. Non-isogenous K3 surfaces with isomorphic Hodge structures

Recall that two K3 surfaces S and S′ are said to be isogenous if their second rational 
cohomology groups are Hodge isometric, that is, if there exists an isomorphism of Hodge 
structures f : H2(S, Q) �−→ H2(S′, Q) making the following diagram commute:

H2(S,Q) ⊗ H2(S,Q) ∪ ��

f⊗f

��

H4(S,Q)
deg �� Q

H2(S′,Q) ⊗ H2(S′,Q) ∪ �� H4(S′,Q)
deg �� Q.
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We provide in this appendix infinite families of pairwise non-isogenous K3 surfaces with 
isomorphic rational Hodge structures, that is, for any two K3 surfaces S and S′ belonging 
to the same family, we have H2(S, Q) � H2(S′, Q) as Q-Hodge structures but there 
does not exist any isomorphism of Q-Hodge structures H2(S, Q) → H2(S′, Q) that is 
compatible with the intersection pairings given by (α, β) 
→ deg(α ∪ β). By Mukai [40], 
such K3 surfaces are not derived equivalent to each other, and actually not even through 
a chain of twisted derived equivalences (cf. Huybrechts [31, Theorem 0.1]).

In fact, our families have a stronger property: any two K3 surfaces S and S′ in the 
same family have Hodge-isomorphic rational cohomology algebras, that is, for any two K3 
surfaces S and S′ of the family, we have a graded Hodge isomorphism g : H∗(S, Q) �−→
H∗(S′, Q) that respects the cup-product, i.e. such that the following diagram commutes:

H∗(S,Q) ⊗ H∗(S,Q) ∪ ��

g⊗g

��

H∗(S,Q)

g

��
H∗(S′,Q) ⊗ H∗(S′,Q) ∪ �� H∗(S′,Q).

We say that H∗(S, Q) and H∗(S′, Q) are Hodge algebra isomorphic.

A.1. Motivation and statements

The aim of this appendix is to show that, for K3 surfaces, the notion of isogeny
is strictly more restrictive than the notion of Hodge algebra isomorphic. In §A.4 this 
is upgraded motivically: we show that, for Chow motives of K3 surfaces, the notion 
of being isomorphic as Frobenius algebra objects is strictly more restrictive than the 
notion of being isomorphic as algebra objects, thereby justifying the somewhat technical 
condition (iii) involving Frobenius algebra objects in the motivic Torelli statement of 
Corollary 2.

First, we provide an infinite family of K3 surfaces whose rational cohomology rings are 
all Hodge algebra isomorphic (and, a fortiori, Hodge isomorphic), but they are pairwise 
non-isogenous. Precisely we have

Theorem A.1. There exists an infinite family {Si}i∈Z>0 of pairwise non-isogenous K3 
surfaces such that, for all j, k ∈ Z>0, H∗(Sj , Q) and H∗(Sk, Q) are Hodge algebra iso-
morphic. Moreover, such a family can be chosen to consist of K3 surfaces of maximal 
Picard rank 20.

In addition, we will show in Theorem A.11 that the Chow motives of K3 surfaces 
belonging to the family of K3 surfaces of Theorem A.1 are all isomorphic as algebra 
objects.

Second, if the Picard number is maximal, a family of K3 surfaces as in Theorem A.1
must have non-isometric Néron–Severi spaces (Lemma A.6). In this sense, we can improve 
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Theorem A.1 in order to have in addition isometric Q-quadratic forms on the Néron–
Severi spaces:

Theorem A.2. There exists an infinite family {Si}i∈Z>0 of pairwise non-isogenous K3 
surfaces such that, for all j 
= k ∈ Z>0, we have

• H∗(Sj , Q) and H∗(Sk, Q) are Hodge algebra isomorphic.
• H2

tr(Sj , Q) � H2
tr(Sk, Q), hence NS(Sj)Q � NS(Sk)Q, as Q-quadratic spaces.

Moreover, such a family can be chosen to consist of K3 surfaces with transcenden-
tal lattice being any prescribed even lattice with square discriminant and of signature 
(2, 2), (2, 4), (2, 6) or (2, 8).

Furthermore, we will show in Proposition A.12 that, assuming Conjecture A.7, the K3 
surfaces in such a family all have isomorphic Chow motives and isomorphic Chow rings, 
but their Chow motives are pairwise non-isomorphic as Frobenius algebra objects. This 
gives evidence that one cannot characterize the isogeny class of a complex K3 surface 
with its Chow ring.

Remark A.3. As mentioned to us by Chiara Camere, examples of a pair of non-isogenous 
K3 surfaces with isomorphic rational Hodge structures were constructed geometri-
cally, via the so-called Inose isogenies12 [33], by Boissier–Sarti–Veniani [7]. Precisely, 
let f be a symplectic automorphism of prime order p of a K3 surface S and let 
S′ be the minimal resolution of the quotient S/〈f〉; the surface S′ is a K3 surface 
and, by definition, the rational map S ��� S′ is a degree-p Inose isogeny between 
these two K3 surfaces. On the one hand, we have isomorphisms of Hodge structures 
H2

tr(S, Q) = H2
tr(S, Q)f � H2

tr(S/〈f〉, Q) � H2
tr(S′, Q). On the other hand, [7, Theorem 

1.1 and Corollary 1.2] provide many situations where H2
tr(S, Q) and H2

tr(S′, Q) are not 
isometric and consequently H2(S, Q) and H2(S′, Q) are not Hodge isometric. Note that 
this approach only produces finitely many non-isogenous K3 surfaces with isomorphic 
Hodge structures. The aim of this appendix is to show, via the surjectivity of the period 
map, that in fact one can produce an infinite family of such pairwise non-isogenous K3 
surfaces.

A.2. Hodge isomorphic vs. Hodge algebra isomorphic

All the examples of non-isogenous K3 surfaces that we will consider will consist of 
K3 surfaces S and S′ whose respective transcendental lattices T and T ′ become Hodge 
isometric after some twist, i.e. such that T � T ′(m) as Hodge lattices for some integer 
m. The aim of this paragraph is to show that the cohomology algebras of any two such 

12 Note that an Inose isogeny is not an isogeny in our sense.
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K3 surfaces are Hodge algebra isomorphic; cf. Lemma A.5 below. This will reduce the 
proofs of Theorems A.1 and A.2 to showing that the K3 surfaces in the families have 
Hodge isomorphic transcendental cohomology groups.

First we state a general lemma based on the classical classification of quadratic forms 
over Q. This lemma will also be used in the proof of Theorem A.2.

Lemma A.4. Let Q be a non-degenerate Q-quadratic form of even rank.

• If disc(Q) = 1 and rk(Q) ≡ 0 mod 4, or if disc(Q) = −1 and rk(Q) ≡ 2 mod 4, then 
for any m ∈ Q>0, Q and Q(m) are isometric Q-quadratic forms.

• If disc(Q) = 1 and rk(Q) ≡ 2 mod 4, or if disc(Q) = −1 and rk(Q) ≡ 0 mod 4, 
then for any m ∈ NQ(i)×, Q and Q(m) are isometric Q-quadratic forms, where 
NQ(i)× = {x2 + y2 | (x, y) 
= (0, 0) ∈ Q2} is the norm group of the field extension 
Q(i)/Q.

Proof. Obviously Q and Q(m) have the same rank and signature. As the rank of Q is 
even, their discriminants are also the same (that is, only differ by a square). By the 
classification theory of quadratic forms over Q, we only need to check that for any prime 
number �, their ε-invariants are equal at all places �. Assume that Q is equivalent to the 
diagonal form 〈a1, . . . , ar〉 where r is the rank of Q and ai ∈ Q; its discriminant is thus 
given by disc(Q) =

∏r
i=1 ai and we have

ε
(Q(m)) :=
∏
i<j

(aim, ajm)
 =
∏
i<j

(ai, aj)


(
r∏

i=1
(ai,m)


)r−1

(m,m)r(r−1)/2



= ε
(Q)
(
(disc(Q)r−1(−1)r(r−1)/2,m

)


,

where (a, b)
 is the Hilbert symbol of a, b for the local field Q
 and the last equality uses 
the identity (m, m)
 = (m, −1)
. One concludes by using the fact that (m, −1)
 = 1 for 
all prime numbers � when m ∈ NQ(i)×. �
Lemma A.5. Let S and S′ be two complex K3 surfaces. The following statements are 
equivalent:

(i) There is a Hodge isometry H2
tr(S′, Q) � H2

tr(S, Q)(m), for some m ∈ Q>0;
(ii) There is a Hodge isometry H2(S′, Q) � H2(S, Q)(m), for some m ∈ Q>0;
(iii) The cohomology rings H∗(S, Q) and H∗(S′, Q) are Hodge algebra isomorphic.

Proof. (i) ⇒ (ii). Clearly any choice of linear isomorphism between the orthogonal 
complements of H2

tr(S, Q) and H2
tr(S′, Q) provides a Hodge isomorphism H2(S, Q) �

H2(S′, Q) that extends the Hodge isomorphism between H2
tr(S, Q) and H2

tr(S′, Q). Since 
the K3 lattice Λ := E8(−1)⊕2 ⊕ U⊕3 and its twist Λ(m) are Q-isometric for all positive 
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rational numbers m (cf. Lemma A.4), the Hodge isometry H2
tr(S′, Q) � H2

tr(S, Q))(m)
extends to a Hodge isometry H2(S′, Q) � H2(S, Q)(m) by Witt’s theorem, where the 
twist (m) refers to the quadratic form.

(ii) ⇒ (iii). Item (ii) means that there is a Hodge class Γ ∈ H4(S × S′, Q) making 
the diagram

H2(S,Q) ⊗ H2(S,Q) ∪ ��

(Γ⊗Γ)∗
��

H4(S,Q)
deg �� Q

·m
��

H2(S′,Q) ⊗ H2(S′,Q) ∪ �� H4(S′,Q)
deg �� Q

(12)

commute. By imposing the (4, 0)- and (0, 4)-Künneth components of Γ to be [pt] ×[S′] and 
m [S] × [pt], respectively, we obtain that Γ∗ : H∗(S, Q) → H∗(S′, Q) is an isomorphism 
of algebras.

(iii) ⇒ (ii). Let Γ : H∗(S, Q) → H∗(S′, Q) be a Hodge algebra isomorphism. Then its 
restriction to H2(S, Q) induces the commutative diagram (12), where m is the rational 
number such that Γ∗[pt] = m [pt].

(ii) ⇒ (i). As any Hodge isomorphism must preserve the transcendental part, we see 
that the restriction of a Hodge isometry as in (ii) gives a Hodge isometry H2

tr(S, Q) →
H2

tr(S′, Q). �
A.3. Proof of Theorems A.1 and A.2

A.3.1. Hodge algebra isomorphic but non-isometric transcendental cohomology
This lattice-theoretic approach to show the existence of non-isogenous K3 surfaces 

with Hodge isomorphic second cohomology group was communicated to us by Benjamin 
Bakker, who attributes it to Huybrechts. Let S be a projective K3 surface with Picard 
number ρ. Denote its transcendental lattice by T := H2

tr(S, Z); it is an even lattice of 
signature (2, 20 −ρ). By Nikulin’s embedding theorem [44, Theorem 1.14.4] (see also [29, 
Theorem 14.1.12, Corollary 14.3.5]), when 12 ≤ ρ ≤ 20, for any integer m > 0, the lattice 
T (m) admits a primitive embedding into the K3 lattice Λ := E8(−1)⊕2 ⊕ U⊕3, unique 
up to O(Λ). Now consider the (new) Hodge structure on Λ given by declaring that the 
Hodge structure on T (m) is the same as the one on T and T (m)⊥ is of type (1, 1). By 
the surjectivity of the period map, there exists a K3 surface Sm, such that there is a 
Hodge isometry T (m) � H2

tr(Sm, Z). In particular, for all m > 0, the Hodge structures 
H2(Sm, Q) are all isomorphic to H2(S, Q) and in fact, for all m > 0, the cohomology 
algebras H∗(Sm, Q) are Hodge algebra isomorphic due to Lemma A.5.

Proof of Theorem A.1. We now take ρ = 20 and let S be the Fermat quartic surface; its 
transcendental lattice T is isomorphic to Z(8) ⊕ Z(8). In order to prove Theorem A.1, 
it is enough to construct an infinite sequence of positive integers {mj}∞j=1, such that 
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the lattices T (mj) � Z(8mj) ⊕ Z(8mj) are pairwise non-isometric over Q. However, it 
is easy to see that for m, m′ ∈ Z>0, the two Q-quadratic forms Q(8m) ⊕ Q(8m) and 
Q(8m′) ⊕ Q(8m′) are isometric if and only if mm′ belongs to {x2 + y2 | x, y ∈ Z}, 
which in turn is equivalent to the condition that any prime factor of mm′ congruent to 
3 modulo 4 has even exponent, by the theorem of the sum of two squares. Therefore a 
desired sequence is easy to construct, for example, one can take mj to be the j-th prime 
number congruent to 3 modulo 4. �
A.3.2. Hodge algebra isomorphic and isometric but non-Hodge isometric transcendental 
cohomology

In the previous example, the K3 surfaces Smj
all have isomorphic H2(−, Q) as rational 

Hodge structures and their isogeny classes are distinguished from each other by the Q-
quadratic forms on H2

tr(−, Q). We would like to go further and produce non-isogenous 
K3 surfaces with H2

tr(−, Q) both isomorphic as Hodge structures and isometric as Q-
quadratic forms. Let us first remark that no such examples of K3 surfaces exist in the 
case of maximal Picard number ρ = 20. Indeed, we have the following elementary result:

Lemma A.6. Let S, S′ be two K3 surfaces with maximal Picard number ρ = 20.

• If H2
tr(S, Z) and H2

tr(S′, Z) are isometric lattices, then S and S′ are isomorphic.
• If H2

tr(S, Q) and H2
tr(S′, Q) are isometric Q-quadratic forms, then S and S′ are isoge-

nous.
• If H2

tr(S, Q) and H2
tr(S′, Q) are Hodge isomorphic, then H∗(S, Q) and H∗(S′, Q) are 

Hodge algebra isomorphic.

Proof. We only prove the first two points; the third is left to the reader. Let T be 
the quadratic space underlying their transcendental cohomologies. Due to the Hodge–
Riemann bilinear relations, T is positive definite. Choose an orthogonal basis {e1, e2} of 
T and let di := (ei, ei) ∈ Q>0. One observes that there are only two isotropic directions 
in T ⊗ C, namely 

√
d1e1 ± i

√
d2e2, hence only two possible Hodge structures of K3 

type on T . However, these two Hodge structures are Hodge isometric via the Q-linear 
transformation e1 
→ e1; e2 
→ −e2. �

For K3 surfaces with ρ = 12, 14, 16, 18, there are indeed examples of non-isogenous 
K3 surfaces with H2

tr(−, Q) both isometric and isomorphic as rational Hodge structures, 
as is stated in Theorem A.2.

Proof of Theorem A.2. Given any even lattice T of signature (2, 2), (2, 4), (2, 6) or (2, 8)
whose discriminant is a square, by Lemma A.4, the Q-quadratic forms T (m) ⊗ Q and 
T ⊗ Q are isometric for any integer m ∈ Z>0 which is the sum of two squares. On the 
other hand, a generic choice of an isotropic element σ ∈ T ⊗C gives rise to an irreducible 
Q-Hodge structure on T , hence on all its twists T (m), with minimal endomorphism 
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algebra; i.e. EndHS(TQ) � Q. So for all m ∈ Z>0 which is the sum of two squares, the 
twists T (m) ⊗ Q are all Hodge isomorphic and isometric. However, since for any such 
integers m and m′, HomHS (T (m) ⊗Q, T (m′) ⊗Q) = Q, we see that T (m) ⊗ Q and 
T (m′) ⊗Q are Hodge isometric if and only if mm′ is a square.

In order to realize the twists T (m) as transcendental lattices of K3 surfaces, we use 
Nikulin’s embedding theorem [44, Theorem 1.14.4] to get a primitive embedding of T (m)
into the K3 lattice Λ. For each m ∈ Z>0, we can therefore construct a Hodge structure 
on Λ by declaring that T (m) carries the Hodge structure on T and T (m)⊥ is of type 
(1, 1). By the surjectivity of the period map, for any m ∈ Z>0, there exists a K3 surface 
Sm with H2

tr(Sm, Q) Hodge isometric to T (m).
Now, thanks to Lemma A.5, it remains to construct an infinite sequence of positive 

integers {mj}∞j=1 which are sums of two squares, such that the product of any two 
different terms is not a square. This is easily achieved: for example, one can take mj to 
be the j-th prime number congruent to 1 modulo 4. �
A.4. Consequences on motives

A.4.1. The general expectations
The following conjecture is a combination of the Hodge conjecture and of the con-

servativity conjecture (which itself is a consequence of the Kimura–O’Sullivan finite-
dimensionality conjecture or of the Bloch–Beilinson conjectures).

Conjecture A.7. Two smooth projective varieties X and Y have isomorphic Chow motives 
if and only if their rational cohomologies are isomorphic as Hodge structures:

h(X) � h(Y ) as Chow motives ⇐⇒ H∗(X,Q) � H∗(Y,Q) as graded Hodge structures.

The implication ⇒ holds unconditionally and is simply attained by applying the 
Betti realization functor. Regarding the implication ⇐, the Hodge conjecture predicts 
that an isomorphism H∗(X, Q) � H∗(Y, Q) of graded Hodge structures and its inverse 
are induced by the action of a correspondence. Hence the homological motives of X and 
Y are isomorphic. By conservativity, such an isomorphism lifts to rational equivalence, 
i.e. lifts to an isomorphism between the Chow motives of X and Y .

Obviously, if h(X) � h(Y ) as (Frobenius) algebra objects in the category of Chow 
motives, then by realization H∗(X, Q) and H∗(Y, Q) are Hodge (Frobenius) algebra iso-
morphic. We would like to discuss to which extent the converse statement could be true. 
In general, this is not the case: consider for instance a complex K3 surface S; then the 
blow-up S1 of S at a point lying on a rational curve and the blow-up S2 of S at a very 
general point have Hodge isomorphic cohomology Frobenius algebras, but due to the 
Beauville–Voisin Theorem 3.1 we have

1 = rk
(
CH1(S1) ⊗ CH1(S1) → CH2(S1)

)

= rk

(
CH1(S2) ⊗ CH1(S2) → CH2(S2)

)
= 2,
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in particular their Chow motives are not isomorphic as algebra objects.
However, in the case of hyper-Kähler varieties, one can expect:

Conjecture A.8. Two smooth projective hyper-Kähler varieties X and Y have isomorphic 
Chow motives as (Frobenius) algebra objects if and only if their rational cohomology rings 
are Hodge (Frobenius) algebra isomorphic:

h(X) � h(Y ) as (Frobenius) algebra objects

⇐⇒ H∗(X,Q) and H∗(Y,Q) are Hodge (Frobenius) algebra isomorphic.

We note that Corollary 2 establishes this conjecture in the case of K3 surfaces and 
Frobenius algebra structures. In general, Conjecture A.8 is implied by the combination 
of the Hodge conjecture and of the “distinguished marking conjecture” for hyper-Kähler 
varieties [21, Conjecture 2].

Proposition A.9. Let X and Y be hyper-Kähler varieties of same dimension d. Assume:

• The Hodge conjecture in codimension d for X × Y ;
• X and Y satisfy the “distinguished marking conjecture” [21, Conjecture 2].

Then Conjecture A.8 holds for X and Y .

Proof. By [21, §3], the distinguished marking conjecture for X and Y provides for all 
non-negative integers n and m a section to the graded algebra epimorphism CH∗(Xn ×
Y m) → CH∗(Xn × Y m) in such a way that these are compatible with push-forwards 
and pull-backs along projections. In addition, the images of the sections corresponding 
to CH∗(X2) → CH∗(X2) and CH∗(Y 2) → CH∗(Y 2) contain the diagonals ΔX and ΔY , 
respectively. Here, CH∗(−) denotes the Chow ring modulo numerical equivalence. In fact, 
since numerical and homological equivalence agree for abelian varieties, the same holds 
for X and Y (via their markings).

As before, the Hodge conjecture predicts that a Hodge isomorphism H∗(X, Q) �
H∗(Y, Q) and its inverse are induced by the action of an algebraic correspondence. We 
fix the isomorphism φ : h(X) ∼−→ h(Y ) to be the correspondence that is the image of 
the Hodge class under the section to CH∗(X × Y ) → CH∗(X × Y ) inducing the Hodge 
isomorphism of (Frobenius) algebras H∗(X, Q) ∼−→ H∗(Y, Q). Since the (Frobenius) al-
gebra structure on the motives of varieties is simply described in terms of the rational 
equivalence class of the diagonal and of the small diagonal, the isomorphism φ provides, 
thanks to the compatibilities of the sections on the product of various powers of X and 
Y , a morphism compatible with the (Frobenius) algebra structures. �

Although we do not know how to establish Conjecture A.8 in general for K3 surfaces 
and algebra structures, we can still say something for K3 surfaces with a Shioda–Inose 
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structure. Recall that a Shioda–Inose structure on a K3 surface S consists of a Nikulin 
involution (that is, a symplectic involution) with rational quotient map π : S ��� Y

such that Y is a Kummer surface and π∗ induces a Hodge isometry TS(2) � TY , where 
TS and TY denote the transcendental lattices of S and Y . If S admits a Shioda–Inose 
structure, let f : A → Y be the quotient morphism from the complex abelian surface 
whose Kummer surface is Y . By [38, §6], there is a Hodge isometry of transcendental 
lattices TS � TA, and f∗π∗ induces an isomorphism H2

tr(S, Q) ∼−→ H2
tr(A, Q) with inverse 

1
2f∗π

∗.

Proposition A.10. Let S and S′ be two K3 surfaces with a Shioda–Inose structure ( e.g. 
with Picard rank ≥ 19, [38, Corollary 6.4]). The following conditions are equivalent.

(i) H∗(S, Q) and H∗(S′, Q) are Hodge algebra isomorphic.
(ii) h(S) � h(S′) as algebra objects in the category of rational Chow motives.

Proof. Let S and S′ be two K3 surfaces with a Shioda–Inose structure. In a similar 
vein to Proposition A.9, the proposition is a combination of the validity of the Hodge 
conjecture for S × S′, together with the fact [21, Proposition 5.12] that S and S′

satisfy the distinguished marking conjecture of [21, Conjecture 2]. The fact that the 
Hodge conjecture holds for S×S′ reduces, via the correspondence-induced isomorphism 
H2

tr(S, Q) ∼−→ H2
tr(A, Q) described above, to the fact that the Hodge conjecture holds for 

the product of any two abelian surfaces. The latter is proven in [37]. �

A.4.2. Non-isogenous K3 surfaces with Chow motives isomorphic as algebra objects
By combining Theorem A.1 with the fact [38, Corollary 6.4] that K3 surfaces of 

maximal Picard rank admit a Shioda–Inose structure, we can establish:

Theorem A.11. There exists an infinite family of K3 surfaces such that

• they are pairwise non-isogenous;
• their Chow motives are pairwise non-isomorphic as Frobenius algebra objects;
• their Chow motives are all isomorphic as algebra objects.

Proof. Let {Si}i∈Z>0 be a family of pairwise non-isogenous K3 surfaces of maximal 
Picard rank such that H∗(Sj , Q) and H∗(Sk, Q) are Hodge algebra isomorphic for all 
j, k ∈ Z. Such a family of K3 surfaces exist thanks to Theorem A.1. By Corollary 2 the 
Chow motives of these K3 surfaces are pairwise non-isomorphic as Frobenius algebra 
objects. The fact that the Chow motives of any two surfaces in the family are isomorphic 
as algebra objects is Proposition A.10. �
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Finally, the following proposition gives evidence that the notion of “isogeny” for K3 
surfaces is strictly more restrictive than the notion of “isomorphic Chow rings” (see 
Remark 3.2):

Proposition A.12. Assume that Conjecture A.7 holds for K3 surfaces. Then there exists 
an infinite family {Si}i∈Z>0 of pairwise non-isogenous K3 surfaces with the property 
that, for all j, k ∈ Z>0, there exists an isomorphism h(Sj) 

∼−→ h(Sk) of Chow motives 
inducing a ring isomorphism CH∗(Sj) 

∼−→ CH∗(Sk) such that the distinguished class oSj

is mapped to the distinguished class oSk
.

Moreover, such a family can be chosen to consist of K3 surfaces with transcenden-
tal lattice being any prescribed even lattice with square discriminant and of signature 
(2, 2), (2, 4), (2, 6) or (2, 8).

Proof. We consider the infinite family constructed in Theorem A.2. For any j 
= k, Sj

and Sk are not isogenous. On the other hand, Conjecture A.7 implies that the Chow 
motives of Sj and Sk are isomorphic; in particular, by the same weight argument as in 
§1.2.3, there exists an isomorphism between their transcendental motives:

Γtr : h2
tr(Sj) � h2

tr(Sk).

As NS(Sj)Q and NS(Sk)Q are isometric by construction, there is an isomorphism between 
the algebraic part of their weight-2 motives Γ2

alg : h2
alg(Sj) → h2

alg(Sk) which induces the 
isometry between the Néron–Severi spaces. Combining them together, Γ := oSj

× Sk +
Γ2

alg + Γtr + Sj × oSk
yields an isomorphism between their Chow motives:

Γ : h(Sj) = h0(Sj) ⊕ h2
alg(Sj) ⊕ h2

tr(Sj) ⊕ h4(Sj)
∼−→ h(Sk)

= h0(Sk) ⊕ h2
alg(Sk) ⊕ h2

tr(Sk) ⊕ h4(Sk),

with the extra property that it induces an isometry between the Q-quadratic spaces 
CH1(Sj) and CH1(Sk). Now as in Remark 3.2, according to the Beauville–Voisin theorem 
[4], the image of the intersection product CH1(Sj) ⊗CH1(Sj) → CH2(Sj) is 1-dimensional 
and similarly for Sk. This implies that Γ induces an isomorphism of Chow rings with 
Γ∗oSj

= oSk
. �

Remark A.13. In Proposition A.12, if one assumes Conjecture A.8 for K3 surfaces instead 
of Conjecture A.7, then the K3 surfaces of the family have isomorphic Chow motives as 
algebra objects.
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