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Abstract

A remarkable result of Peter O’Sullivan asserts that the algebra epimor-
phism from the rational Chow ring of an abelian variety to its rational
Chow ring modulo numerical equivalence admits a (canonical) section.
Motivated by Beauville’s splitting principle, we formulate a conjectural
Section Property which predicts that for smooth projective holomorphic
symplectic varieties there exists such a section of algebra whose image
contains all the Chern classes of the variety. In this paper, we investi-
gate this property for (not necessarily symplectic) varieties with a Chow
motive of abelian type. We introduce the notion of a symmetrically dis-
tinguished abelian motive and use it to provide a sufficient condition for
a smooth projective variety to admit such a section. We then give a se-
ries of examples of varieties for which our theory works. For instance, we

prove the existence of such a section for arbitrary products of varieties
with Chow groups of finite rank, abelian varieties, hyperelliptic curves,
Fermat cubic hypersurfaces, Hilbert schemes of points on an abelian
surface or a Kummer surface or a K3 surface with Picard number at
least 19, and generalized Kummer varieties. The latter cases provide
evidence for the conjectural Section Property and exemplify the mantra
that the motives of holomorphic symplectic varieties should behave as
the motives of abelian varieties, as algebra objects.
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Introduction

Let X be a smooth projective variety over a field k. We denote by CH(X)

its Chow ring with rational coefficients, and by CH(X) the quotient of CH(X)

by numerical equivalence of algebraic cycles. The aim of this work is to build

upon a recent result of O’Sullivan [38] and give sufficient conditions on a

smooth projective varietyX for theQ-algebra epimorphism CH(X) � CH(X)

to admit a section that contains the Chern classes of X. This amounts to

lifting numerical cycle classes to cycle classes in the Chow groups such that



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

DISTINGUISHED CYCLES AND THE SECTION PROPERTY 55

the lifted cycles form a subalgebra and the lifting of the Chern classes are the

corresponding Chow-theoretic Chern classes.

0.1. Motivation: The motives of holomorphic symplectic vari-

eties. It is an insight of Beauville that the motives of smooth projective

holomorphic symplectic varieties should behave in a similar way to the mo-

tives of abelian varieties as algebra objects in the category of Chow motives.

Following the seminal work [9], Beauville [8] (meta-)conjectured that the con-

jectural Bloch–Beilinson filtration on the Chow ring of holomorphic symplectic

varieties should split. This will subsequently be referred to as the splitting

principle. That the conjectural Bloch–Beilinson filtration on the Chow ring

of abelian varieties should split was established by Beauville [7].

0.1.1. The conjecture of Beauville. A first verifiable consequence of

this splitting principle for simply connected holomorphic symplectic varieties

is the following concrete conjecture, called weak splitting property ; see [8] for

details.

Conjecture (Beauville [8]). Let X be a simply connected1 smooth projec-

tive holomorphic symplectic variety, and denote by R(X) the subalgebra of

CH(X) generated by divisors. Then the composition of the following natural

maps is injective:

R(X) ↪→ CH(X) � CH(X).

This conjecture was checked for K3 surfaces in the seminal work of Beauville

and Voisin [9], and in [8] Beauville checked it for Hilbert schemes of length-2

and length-3 subschemes on a K3 surface. The conjecture was later strength-

ened by Voisin [49], who added the Chern classes of X to the set of generators

of R(X) (see also [52]). Since then, the strengthened conjecture has been

shown to hold in a number of cases; see [49], [18], [53], [42], [19, §10], and [21].

0.1.2. Multiplicative Chow–Künneth decompositions. Beauville’s

splitting principle was reformulated in [43] directly on the level of Chow mo-

tives, without presupposing the existence of the Bloch–Beilinson filtration. In

the case of abelian varieties, Deninger and Murre [16] constructed a canoni-

cal Chow–Künneth decomposition of the motive of an abelian variety, lifting

to the motivic level the decomposition of Beauville on the level of the Chow

ring [7]. It can be checked that the decomposition of Deninger–Murre is com-

patible with the algebra structure on the Chow motives of abelian varieties;

following [43], we say that abelian varieties admit a multiplicative Chow–

Künneth decomposition. We refer to Section 6 for definitions and properties

of (multiplicative) Chow–Künneth decompositions. Similarly, for holomorphic

1This condition ensures that CH1(X) � CH
1
(X) is an isomorphism.
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symplectic varieties, the splitting principle suggests the following conjecture,

which is case-by-case verifiable.

Conjecture (Multiplicative Chow–Künneth decomposition [43]). A holo-

morphic symplectic variety X admits a multiplicative Chow–Künneth decom-

position with the additional property that the Chern classes ci(X) belong to

CH(X)(0).
2

The decomposition of the small diagonal for K3 surfaces of Beauville–Voisin

[9] in fact establishes the existence of a multiplicative Chow–Künneth de-

composition for K3 surfaces; see [43, Proposition 8.14]. The existence of a

multiplicative Chow–Künneth decomposition was established for the Hilbert

scheme of length-2 subschemes on a K3 surface in [43], more generally for the

Hilbert scheme of length-n subschemes on a K3 or abelian surface in [48], and

for generalized Kummer varieties in [20].

0.1.3. O’Sullivan’s theorem. There is another verifiable consequence of

Beauville’s splitting principle, which will be our main focus here. The Bloch–

Beilinson conjectures (or Murre’s conjecture (D) [36]) predict that for any

smooth projective variety, the composition CHi(X)(0) ↪→ CHi(X) � CH
i
(X)

is an isomorphism ofQ-vector spaces for all i. In the case where the conjectural

Bloch–Beilinson filtration splits, CH(X)(0) is a Q-subalgebra of CH(X), and

we would therefore expect that CH(X)(0) provides a section to the Q-algebra

epimorphism CH(X) � CH(X). In the case of abelian varieties, this was

conjectured by Beauville [7]. A breakthrough in that direction is the following

result due to O’Sullivan.

Theorem (O’Sullivan [38]). Let A be an abelian variety. Then the Q-

algebra epimorphism

CH(A) � CH(A)

admits a section (as Q-algebras) whose image consists of symmetrically dis-

tinguished cycles in the sense of Definition 1.7.

See Theorems 1.3 and 1.8 for a more precise version of O’Sullivan’s the-

orem. In particular, O’Sullivan’s theorem establishes the following version3

of Beauville’s conjecture for abelian varieties (see [1] and [34] for alternative

proofs): If A is an abelian variety, then the subalgebra of CH(A) generated by

symmetric divisors injects into cohomology via the cycle class map. In this

paper, inspired by the work of O’Sullivan [38] on the Chow rings of abelian

varieties, we would like to address the following consequence of Beauville’s

splitting principle.

2See (11) for the definition of the grading CH(X)(∗).
3This question was asked by Voisin as a more accessible consequence of Beauville’s more

general conjecture in [7].
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Conjecture 1 (Section Property). Let X be a smooth projective holomor-

phic symplectic variety. Then the Q-algebra epimorphism

CH(X) � CH(X)

admits a section (as Q-algebras) whose image contains the Chern classes of

X.

Conjecture 1 implies Beauville’s weak splitting property conjecture [8], as

well as its refinement due to Voisin [49], because CH1(X) � CH
1
(X) is an

isomorphism for smooth projective varietiesX with vanishing irregularity. We

prove the following result (Propositions 4.1, 4.17, 5.11, 5.12, 5.13 and 5.14) in

support of Conjecture 1.

Theorem 1. Let X be a product of holomorphic symplectic varieties that

are birational to either the Hilbert scheme of length-n subschemes on an

abelian surface or a Kummer surface or a K3 surface with Picard number

≥ 19, or a generalized Kummer variety. Then Conjecture 1 holds for X.

Finally, we note that the notion of symmetrically distinguished cycles on

an abelian variety A depends on the choice of an origin for A, and in par-

ticular that there are at least as many sections to the algebra epimorphism

CH(A) → CH(A) as the number of rational equivalence classes of points on A.

However, in the case of smooth projective irreducible holomorphic symplectic

(i.e., hyper-Kähler) varieties, we expect that a section as in Conjecture 1, if

it exists, is unique; and we also expect that cycles that are either classes of

algebraically co-isotropic subvarieties (see [52]) or restrictions of cycles defined

on the universal family belong to the image of the section (we refer to [21] for

some evidence).

0.2. Distinguished cycles on varieties with motive of abelian type.

Although our primary motivation for this work was to establish Theorem 1,

we were led to consider the following broader question (see Question 3.6):

Suppose X is a smooth projective variety whose Chow motive is isomorphic

to a direct summand of the motive of an abelian variety (such varieties are

said to have motive of abelian type; see Definition 1.1). Are there sufficient

conditions on X that ensure that the epimorphism CH(X) � CH(X) admits

a section that is compatible with the intersection product? For that purpose

we introduce the notion of distinguished cycles on varieties with motive of

abelian type; see Definition 3.2. Precisely, distinguished cycles depend a priori

on the choice of a marking : a marking for a variety X (see Definition 3.1)

is an isomorphism φ : h(X)
�−→ M of Chow motives, where M is4 a direct

summand of a Chow motive of the form ⊕ih(Ai)(ni) cut out by an idempotent

4Strictly speaking, M should be an object in the category M ab
sd introduced in Defini-

tion 2.1.
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matrix P of symmetrically distinguished cycles, where Ai is an abelian variety

and ni ∈ Z. Given such a marking, the group of distinguished cycles DCHφ(X)

consists of the image under P∗ of the symmetrically distinguished cycles on

each Ai, in the sense of O’Sullivan (see Definition 1.7), transported via the

induced isomorphism φ∗ : CH(X)
�−→ CH(M). The question becomes: What

are sufficient conditions on a marking φ for DCHφ(X) to be a subalgebra

of CH(X)? In Proposition 3.12, we show that it suffices that the following

condition holds:

(�Mult) The small diagonal δX belongs to DCHφ⊗3(X3).

Since it is natural to expect that the Chern classes are distinguished, we will

also require that the Chern classes of X are transported to symmetrically

distinguished cycles via φ, i.e., that the marking φ also satisfies the condition

(�Chern) All Chern classes c1(X), c2(X), . . . belong to DCHφ(X).

These two conditions are gathered in condition (�) in Definition 3.7, where we

also consider the more general situation where X is endowed with the action

of a finite group G. The condition (�Chern) is not only esthetically pleasing,

it is also essential to establish that the condition (�) is stable under natural

constructions such as blow-ups (Proposition 4.8).

Therefore in order to prove Theorem 1, it is enough to exhibit a suitable

marking for X such that the Chern classes and the small diagonal are distin-

guished with respect to the (product) markings. If such a suitable marking for

X exists, we will say that X satisfies (�); see Definition 3.7. This condition is

strictly stronger than the condition of having motive of abelian type; see Sec-

tion 7 for examples of varieties with motive of abelian type that do not satisfy

(�) and/or are such that the Q-algebra epimorphism CH(X) � CH(X) does

not admit a section. Thus that smooth projective holomorphic symplectic

varieties should satisfy the Section Property in Conjecture 1 is remarkable.

We also want to stress that the original Section Property, i.e., the existence of

a section of the algebra epimorphism CH(X) � CH(X), does not behave well

enough under basic operations, for instance, products, blow-ups, quotients,

etc.; however, the closely related condition (�) is essentially motivic and be-

haves much better; see Section 4. In view of Proposition 3.12, one could also

be optimistic and go as far as proposing:

Conjecture 2 (Distinguished marking). A smooth projective holomorphic

symplectic variety admits a marking that satisfies (�).

In particular, this conjecture stipulates that smooth projective holomorphic

symplectic varieties have motives of abelian type. Some evidence towards the
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latter is provided by recent work of Kurnosov–Soldatenkov–Verbitsky [30] on

Kuga–Satake constructions.

Although holomorphic symplectic varieties seem to play a central role, we

provide many other examples of smooth projective varieties X that satisfy (�)

and hence are such that the Q-algebra epimorphism CH(X) � CH(X) admits

a section whose image contains the Chern classes of X. The building blocks

(see Section 5) are given by abelian varieties (O’Sullivan’s theorem), vari-

eties with Chow groups of finite rank (Proposition 5.2), hyperelliptic curves

(Corollary 5.4), cubic Fermat hypersurfaces (Proposition 5.7), K3 surfaces

with Picard rank ≥ 19 (Proposition 5.12), and generalized Kummer varieties

(Proposition 5.14). One can then construct new examples (see Section 4) of

varieties satisfying (�) by taking products (Proposition 4.1), certain projective

bundles and blow-ups (Example 4.6, Propositions 4.5 and 4.8, here that the

Chern classes are distinguished plays a central role), certain étale or cyclic

quotients (Propositions 4.9, 4.11 and 4.12), Hilbert squares and the first two

nested Hilbert schemes (Propositions 4.13 and 4.14), Hilbert schemes and

nested Hilbert schemes of curves or surfaces satisfying (�) (Remark 5.6 and

Proposition 5.13), and birational transforms of irreducible symplectic varieties

(Corollary 4.17). Combining the above-mentioned results, we obtain

Theorem 2. Let E be the smallest collection of isomorphism classes of

smooth projective complex varieties that contains varieties with Chow groups

of finite rank (as Q-vector spaces), abelian varieties, hyperelliptic curves, cubic

Fermat hypersurfaces, K3 surfaces with Picard rank ≥ 19, and generalized

Kummer varieties, and that is stable under the following operations:

(i) if X and Y belong to E, then X × Y belongs to E;

(ii) if X belongs to E, then P(⊕iSλi
TX) belongs to E, where TX is the

tangent bundle of X, the λi’s are nonincreasing sequences of integers,

and Sλi
is the Schur functor associated to λi;

(iii) if X belongs to E, then the Hilbert scheme of length-2 subschemes

X [2], as well as the nested Hilbert schemes X [1,2] and X [2,3], belong

to E;

(iv) if X is a curve or a surface that belongs to E, then for any n ∈ N,
the Hilbert scheme of length-n subschemes X [n], as well as the nested

Hilbert schemes X [n,n+1], belong to E;

(v) if one of two birationally equivalent irreducible holomorphic symplectic

varieties belongs to E, then so does the other.

If X is a smooth projective variety whose isomorphism class belongs to E,

then X admits a marking that satisfies (�) so that the Q-algebra epimorphism

CH(X) � CH(X) admits a section (as Q-algebras) whose image contains the

Chern classes of X.
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It is further shown in [31] that a certain complete family of Calabi–Yau va-

rieties and certain rigid Calabi–Yau varieties, constructed by Cynk and Hulek,

as well as certain varieties constructed by Schreieder, satisfy the condition (�)

so that these varieties can be added to the set E of Theorem 2.

An immediate consequence of Theorem 2 is the following concrete result

related to Beauville’s weak splitting property and the Beauville–Voisin con-

jecture (but beyond the hyper-Kähler context).

Corollary 1. Let X be a smooth projective variety that belongs to the

collection E of Theorem 2. Assume that X is regular5 and denote R(X) the

Q-subalgebra of CH(X) generated by divisors and Chern classes. Then the

natural composition

R(X) ↪→ CH(X) � CH(X)

is injective.

Note that all smooth projective varieties which we can show satisfy (�)

were already shown to admit a self-dual multiplicative Chow–Künneth de-

composition; see [44, Theorem 2], and [20] for the case of generalized Kum-

mer varieties. In fact, condition (�) implies the existence of a multiplicative

Chow–Künneth decomposition (Proposition 6.1). Note also that the struc-

ture of Section 4 is similar to the structure of [44, §3]. We refer to Section 6

for more on multiplicative Chow–Künneth decompositions and links to this

work. Finally, we note that while the result of Beauville–Voisin [9] shows that

the Q-algebra epimorphism CH(S) � CH(S) admits a section whose image

contains the Chern classes of S, for a K3 surface S, and while it can be shown

[48] that the Hilbert scheme of length-n subschemes on a K3 surface has a

self-dual multiplicative Chow–Künneth decomposition, we do not know how

to show in general that a K3 surface satisfies condition (�), nor do we know

how to show that the Hilbert scheme of length-n subschemes on a K3 sur-

face satisfies the Section Property (Conjecture 1). In fact it is even an open

problem to show in general that K3 surfaces have motive of abelian type.

Conventions and Notation. We work throughout the paper over an arbi-

trary algebraically closed field k, except in Sections 4.6, 5.3, 5.4, and 7, where

k is assumed to be the field of complex numbers. Chow groups CHi are always

understood to be with rational coefficients. For a smooth projective variety

X, we will write CH(X) for the (graded) rational Chow ring
⊕

i CH
i(X). We

5A smooth projective variety X over an algebraically closed field k is called regular if

its Picard variety is trivial, so that the projection morphism CH1(X) → CH
1
(X) is an

isomorphism. Note that the irregularity, i.e., the dimension of the Picard variety, is always

less than or equal to dimH1(X,OX) and equal to dimH1(X,OX) when char(k) = 0 by
Hodge theory.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

DISTINGUISHED CYCLES AND THE SECTION PROPERTY 61

will denote by CH
i
(X) the rational Chow group modulo numerical equivalence

and by CH(X) the rational Chow ring modulo numerical equivalence.

An abelian variety is always assumed to be connected and with a fixed

origin.

1. Symmetrically distinguished cycles

In this section, we review the theory of symmetrically distinguished cycles

developed by O’Sullivan in [38] and, with a view towards applications, extend

it slightly following the authors’ previous work [20] joint with Zhiyu Tian.

1.1. Motives of abelian type. Let CHM := CHM(k)Q and NumM :=

NumM(k)Q be, respectively, the category of rational Chow motives and that

of rational numerical motives over the base field k. By definition, there is a

natural (full) projection functor

CHM → NumM,

which sends a Chow motive to the corresponding numerical motive and sends

any cycle/correspondence modulo rational equivalence to its class modulo

numerical equivalence. A typical object in these two categories is a triple

(X, p, n) with X a smooth projective variety over k, p ∈ CHdimX(X ×X) or

CH
dimX

(X ×X) a projector (i.e., p ◦ p = p), and n ∈ Z. See [2] for the basic

notions.

Let us introduce the following subcategories of CHM and NumM that will

be relevant to our work.

Definition 1.1 (Motives of abelian type). Let M ab (resp., M ab) be the

strictly6 full, thick, and rigid tensor subcategory of CHM (resp., NumM)

generated by the motives of abelian varieties. A motive is said to be of

abelian type if it belongs to M ab; equivalently, if one of its Tate twists is

isomorphic to the direct summand of the motive of an abelian variety. We

have the restriction of the projection functor:

π : M ab → M ab.

Example 1.2. The Chow (resp., numerical) motives of the following alge-

braic varieties belong to the category M ab (resp., M ab):

(i) projective spaces, Grassmannian varieties, and more generally projec-

tive homogeneous varieties under a linear algebraic group and toric

varieties;

(ii) smooth projective curves;

6A full subcategory is called strictly full if it is closed under isomorphisms.
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(iii) Kummer K3 surfaces; K3 surfaces with Picard numbers at least 19 as

well as their (nested) Hilbert schemes;

(iv) abelian torsors;

(v) Hilbert schemes of abelian surfaces;

(vi) generalized Kummer varieties;

(vii) Fermat hypersurfaces;

(viii) projective bundles over and products of the examples above.

As far as the authors know, all examples of motives that have been proven to

be (Kimura) finite dimensional ([26]) belong7 to the category M ab.

Let us state the following result of [38], which is built upon [26] and [4]:

Theorem 1.3 (O’Sullivan [38, Theorem 5.5.3]). The projection ⊗-functor

π : M ab → M ab has a right-inverse T , which is unique up to a unique tensor

isomorphism above the identity.

Remark 1.4. See Theorem 1.8, together with Remark 2.5, for a down-to-

earth understanding of Theorem 1.3.

Remark 1.5. The existence of the right-inverse ⊗-functor T is ensured

by a general result of André–Kahn [4] concerning the so-called Wedderburn

categories, and such a section is unique only up to a nonunique tensor conju-

gacy. The Hopf algebra structure on the motive of an abelian variety, given

by the diagonal embedding and the group structure (in particular, the (−1)-

involution), allows O’Sullivan to make the section T unique up to a unique

tensor conjugacy above the identity.

Remark 1.6. The section T in Theorem 1.3 cannot be defined uniquely.

Indeed, let B be a torsor under an abelian variety A of dimension g. Obvi-

ously A and B have isomorphic Chow motives. If a canonical section T were

constructed for morphisms between �(−g) and h(B), then we would have

a canonical 1-dimensional subspace DCH0(B) inside the infinite-dimensional

space CH0(B), hence a canonical degree-one 0-cycle of B. However, as the

origin of B is not fixed, there is neither a privileged point nor a privileged

nontrivial 0-cycle.

1.2. Symmetrically distinguished cycles on abelian varieties.

O’Sullivan defines the following concrete notion of symmetrically distinguished

cycles on an abelian variety A, and shows (Theorem 1.8) that these provide

a section to

CH(A) � CH(A)

that is compatible with the intersection product.

7When k has characteristic zero, there are many varieties whose motive is not in M ab,
while conjecturally all varieties have finite-dimensional motive.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

DISTINGUISHED CYCLES AND THE SECTION PROPERTY 63

Definition 1.7 (Symmetrically distinguished cycles on abelian varieties

[38]). Let A be an abelian variety, and let α ∈ CH(A). For each integer

m ≥ 0, denote by Vm(α) the Q-vector subspace of CH(Am) generated by

elements of the form

p∗(α
r1 × αr2 × · · · × αrn),

where n ≤ m, rj ≥ 0 are integers, and where p : An → Am is a closed

immersion each component An → A of which is either a projection or the

composite of a projection with the involution [−1] : A → A. Then α is

symmetrically distinguished if for every m the restriction of the projection

CH(Am) → CH(Am) to Vm(α) is injective. The subgroup of symmetrically

distinguished cycles is denoted by DCH(A).

Here is the main result of O’Sullivan [38], which is the most important

ingredient that we use throughout this paper.

Theorem 1.8 (O’Sullivan [38, Theorem 6.2.5]). Let A be an abelian va-

riety. Then the symmetrically distinguished cycles in CH(A) form a graded

Q-subalgebra DCH(A) that contains symmetric divisors and that is stable un-

der pull-backs and push-forwards along homomorphisms of abelian varieties.

Moreover, the composition

DCH(A) ↪→ CH(A) � CH(A)

is an isomorphism of Q-algebras.

Remark 1.9. Given an abelian variety A, thanks to Theorem 1.8, it is

easy to see by looking at the eigenvalues of multiplication-by-m endomor-

phisms (m ∈ Z) that DCH(A) is a subalgebra of CH(A)(0), where CH(A)(∗)
refers to Beauville’s decomposition8 [7]. Moreover, the inclusion DCHi(A) ⊆
CHi(A)(0) is an equality for i ≤ 1 as well as for i ≥ dimA− 1 by the Fourier

transform [5]. Beauville’s conjectures on abelian varieties in [7] would imply

that the subalgebra DCH(A) is equal to the direct summand CH(A)(0). In

this sense, O’Sullivan’s work [38] can be viewed as a step towards Beauville’s

conjectures.

1.3. . . . on abelian torsors with torsion structures. For later use,

we give a minor extension of O’Sullivan’s theory. The main idea appeared in

our previous work [20]: to treat the Chow motives of some algebraic varieties

like Hilbert schemes of abelian surfaces and generalized Kummer varieties,

it is inevitable to deal with “disconnected abelian varieties” where there is

no natural choice for the origins on the components, whence the notion of

symmetrically distinguished cycles a priori fails. However, a simple but crucial

8Beauville’s decomposition coincides with the decomposition induced, as in (11), by the
Chow–Künneth decomposition of Deninger–Murre [16].
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observation made in [20] is that we have a canonical notion of torsion points

on these components.

Definition 1.10 (Abelian torsors with torsion structure [20]). An abelian

torsor with torsion structure, or an a.t.t.s. for short, is a pair (X,QX) where

X is a connected smooth projective variety and QX is a subset of closed points

of X such that there exists an isomorphism, as algebraic varieties, f : X
�−→ A

from X to an abelian variety A which induces a bijection between QX and

Tor(A), the set of all torsion points of A. A choice of such an isomorphism f

is called a marking. A morphism of a.t.t.s.’s (X,QX) → (Y,QY ) consists of a

morphism of algebraic varieties f : X → Y such that f(QX) ⊆ QY .

This notion of a.t.t.s. sits in between the notion of abelian variety (with

fixed origin) and that of abelian torsor (without origin).

Definition 1.11 (Symmetrically distinguished cycles on a.t.t.s.’s). Given

an a.t.t.s. (X,QX), an algebraic cycle γ ∈ CH(X) is called symmetrically

distinguished if, for a marking f : X
�−→ A, the cycle f∗(γ) ∈ CH(A) is

symmetrically distinguished in the sense of O’Sullivan (Definition 1.7). By

[20, Lemma 6.7], this definition is independent of the choice of marking. An

algebraic cycle on a disjoint union of a.t.t.s.’s is symmetrically distinguished

if it is so on each component. We denote by DCH(X) the subspace of sym-

metrically distinguished cycles.

We have the following generalization of Theorem 1.8; see [20, Proposition

6.9]. Its proof uses the fact that torsion points on an abelian variety are all

rationally equivalent (with Q-coefficients).

Theorem 1.12. Let (X,QX) be an a.t.t.s. Then the symmetrically dis-

tinguished cycles in CH(X) form a graded Q-subalgebra that is stable under

pull-backs and push-forwards along morphisms of a.t.t.s.’s. Moreover, the

composition DCH(X) ↪→ CH(X) � CH(X) is an isomorphism of Q-algebras.

We refer to [20, §6.2] for more properties of symmetrically distinguished

cycles on a.t.t.s.’s.

2. Symmetrically distinguished abelian motives

To make a more flexible use of O’Sullivan’s Theorem 1.8 in the language of

motives, we introduce the following category M ab
sd . We refer to Remarks 2.5

and 2.7 for some motivation.

Definition 2.1 (The category M ab
sd ). The category of symmetrically dis-

tinguished abelian motives, denoted M ab
sd , is defined as follows:

(i) An object consists of the data of

• a positive integer r ∈ N∗;
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• a length-r sequence of abelian varieties (thus with fixed origins)

A1, . . . , Ar;

• a length-r sequence of integers n1, . . . , nr ∈ Z;
• an (r × r)-matrix P := (pi,j)1≤i,j≤r with

pi,j ∈ DCHdimAi+nj−ni(Ai ×Aj)

a symmetrically distinguished cycle (Definition 1.7) such that P ◦
P = P ; that is, for all 1 ≤ i, j ≤ r, we have

r∑
k=1

pk,j ◦ pi,k = pi,j in CHdimAi+nj−ni(Ai ×Aj).

Such an object is denoted in what follows by a triple

(A1 
 · · · 
 Ar, P = (pi,j) , (n1, . . . , nr)) .

(ii) The group of morphisms from (A1 
 · · · 
Ar, P = (pi,j) , (n1, . . . , nr))

to another object (B1 
 · · · 
Bs, Q = (qi,j) , (m1, . . . ,ms)) is defined

to be the subgroup of

r⊕
i=1

s⊕
j=1

CHdimAi+mj−ni(Ai ×Bj)

(whose elements are viewed as an (s× r)-matrix) given by

Q ◦

⎛⎝ r⊕
i=1

s⊕
j=1

CHdimAi+mj−ni(Ai ×Bj)

⎞⎠ ◦ P,

where the multiplication law is the one between matrices.

(iii) The composition is defined as usual by composition of correspon-

dences.

(iv) The category M ab
sd is an additive category where the direct sum is

given by(
r⊔

i=1

Ai, P, (n1, . . . , nr)

)
⊕

⎛⎝ s⊔
j=1

Bj , Q, (m1, . . . ,ms)

⎞⎠
=

⎛⎝ r⊔
i=1

Ai 

s⊔

j=1

Bj , P ⊕Q :=

(
P 0

0 Q

)
, (n1, . . . , nr,m1, . . . ,ms)

⎞⎠ .
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(v) The category M ab
sd is a symmetric monöıdal category where the tensor

product is defined by(
r⊔

i=1

Ai, P, (n1, . . . , nr)

)
⊗

⎛⎝ s⊔
j=1

Bj , Q, (m1, . . . ,ms)

⎞⎠
=

⎛⎝ r⊔
i=1

s⊔
j=1

Ai ×Bj , P ⊗Q, (nimj ; 1 ≤ i ≤ r, 1 ≤ j ≤ s)

⎞⎠ ,

where P ⊗Q is the Kronecker product of two matrices.

In particular, for any m ∈ Z, the mth Tate twist, i.e., the tensor

product with the Tate object �(m) := (Spec k, Spec k,m) sends (A1

· · · 
 Ar, P, (n1, . . . , nr)) to (A1 
 · · · 
 Ar, P, (n1 + m, . . . ,

nr +m)). All Tate objects are ⊗-invertible.

(vi) The category M ab
sd is rigid; the dual of (A1 
 · · · 
 Ar, P = (pi,j),

(n1, . . . , nr)) is given by (A1 
 · · · 
 Ar,
tP := (tpj,i), (d1 − n1,

. . . , dr−nr)), where dk = dimAk and the (i, j)th entry of tP is tpj,i ∈
CHdi+(dj−nj)−(di−ni)(Ai × Aj), the transpose of pj,i ∈ CHdj+ni−nj

(Aj ×Ai).

In a similar way, one can define the rigid symmetric monöıdal additive

category M atts
sd by replacing in the above definition abelian varieties (thus

with origin fixed) by abelian torsors with torsion structure (thus with only

the subset of torsion points fixed; cf. Section 1.3). With the notion and ba-

sic properties of symmetrically distinguished cycles extended to the case of

abelian torsors with torsion structure in Section 1.3, all the above construc-

tions go through. It is important to point out that9 M ab
sd and M atts

sd are not

subcategories of CHM since in the definition of motives, one uses varieties in-

stead of pointed varieties or varieties with additional structures. See, however,

Lemma 2.2 below.

There are natural fully faithful additive tensor functors

F : M ab
sd → M ab and F ′ : M atts

sd → M ab,

which send an object (A1 
 · · · 
Ar, P = (pi,j) , (n1, . . . , nr)) to the Chow mo-

tive Im (P :
⊕r

i=1 h(Ai)(ni) →
⊕r

i=1 h(Ai)(ni)). Here we use the facts that

CHM is pseudo-abelian and that P induces an idempotent endomorphism of⊕r
i=1 h(Ai)(ni) by construction.

For any object M in M ab
sd or M atts

sd and any i ∈ Z, the ith Chow group

CHi(M) is defined to be CHi(F (M)), which is nothing but

HomMab
sd

((Spec k, Spec k,−i),M) .

9We thank Peter O’Sullivan for reminding us of this subtle point.
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Despite the technical construction of the categories M ab
sd and M atts

sd , they

are, after all, not so different from the category M ab of abelian motives (Def-

inition 1.1).

Lemma 2.2 (Relation with Chow motives of abelian type). The functors

F : M ab
sd → M ab and F ′ : M atts

sd → M ab are equivalences of categories.

Proof. These two functors are fully faithful by definition, and we only have

to show that they are essentially surjective. Consider an object in CHM iso-

morphic to (A, p, n) with A a g-dimensional abelian torsor, p ∈ CHg(A×A) a

projector, and n ∈ Z. First we choose an origin for A so that the symmetric

distinguishedness makes sense in the rest of the proof. Using the existence

of symmetrically distinguished cycles in each numerical cycle class (Theo-

rem 1.8), one can find a symmetrically distinguished element q ∈ DCHg(A×A)

such that q is numerically equivalent to p. As p is a projector, we know that

q ◦ q is numerically equivalent to q. However, as q ◦ q and q are both symmet-

rically distinguished, they must be equal by the uniqueness of symmetrically

distinguished lifting in Theorem 1.8; i.e., q is a projector. Therefore (A, p, n)

is isomorphic, in CHM, to (A, q, n), which is in the image of the functor F .

Finally, since F factorizes through F ′, F ′ is also essentially surjective. �
Now we extend the notion of symmetrical distinguishedness from cycles

on abelian varieties (Definition 1.7) to morphisms in the category M ab
sd (and

M atts
sd ).

Definition 2.3 (Symmetrically distinguished morphisms in M ab
sd ). Given

two objects in M ab
sd , say, M := (A1 
 · · · 
Ar, P = (pi,j) , (n1, . . . , nr)) and

N := (B1 
 · · · 
Bs, Q = (qi,j) , (m1, . . . ,ms)), the subspace of symmetrically

distinguished morphisms from M to N , denoted by DHom(M,N), is defined

to be

DHom(M,N) := Q ◦
⊕
i,j

DCHdimAi+mj−ni(Ai ×Bj) ◦ P ⊆ Hom(M,N).

Similarly, one can define symmetrically distinguished morphisms in M atts
sd .

Here DCH(Ai ×Bj) is in the sense of Definition 1.7 or 1.11.

In particular, for any object M in M ab
sd (or M atts

sd ) and any integer i,

DHom(�(−i),M) is a canonical subgroup of CHi(M) = CHi(F (M)). We

denote10

DCHi(M) := DHom(�(−i),M)

and call its elements symmetrically distinguished cycles of M .

10Beware that our notation slightly conflicts with the notation of [8], where DCH∗(X)

stands for the subalgebra generated by divisors, which is denoted by R(X) in the present
paper.
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We collect some basic properties of symmetrically distinguished morphisms

in the following lemma. Recall that π : M ab → M ab is the natural projection

functor (Definition 1.1).

Lemma 2.4 (Relation with numerical motives of abelian type). In M ab
sd ,

(i) the composition and the tensor product of two symmetrically distin-

guished morphisms is again symmetrically distinguished. Hence we

have a tensor subcategory
(
M ab

sd , s.d.morphisms
)
.

(ii) For any two objects M,N ∈ M ab
sd , the functor π ◦ F induces an iso-

morphism:

DHom(M,N)
�−→ HomNumM(π(F (M)), π(F (N))).

In particular, for any object M ∈ M ab
sd , the composition of the nat-

ural map DCHi(M) ↪→ CHi(M) � CH
i
(M) := CH

i
(F (M)) is an

isomorphism.

(iii) The composed functor π ◦ F : M ab
sd → M ab induces an equivalence of

categories

F :
(
M ab

sd , s.d.morphisms
) �−→ M ab.

Similar properties also hold for the category M atts
sd .

Proof. (i) is a consequence of Theorem 1.8, which implies that symmetri-

cally distinguished cycles on abelian varieties are closed under tensor product

and that symmetrically distinguished correspondences between abelian vari-

eties are closed under composition.

For (ii), letM := (
⊔r

i=1 Ai, P, (n1, . . . , nr)) andN := (
⊔s

j=1 Bj , Q, (m1, . . . ,

ms)). Then, on the one hand, we have by definition

DHom(M,N) := Q ◦
⊕
i,j

DCHdimAi+mj−ni(Ai ×Bj) ◦ P,

and, on the other hand,

HomNumM (π(F (M)), π(F (N)))

= HomNumM

(
P
(
⊕h(Ai)(ni)

)
, Q

(
⊕h(Bj)(mj)

))
= Q ◦

⊕
i,j

CH
dimAi+mj−ni

(Ai ×Bj) ◦ P .

By Theorem 1.8, for any 1 ≤ i ≤ r, 1 ≤ j ≤ s, the natural map induced by

π ◦ F ,

DCHdimAi+mj−ni(Ai ×Bj)
�−→ CH

dimAi+mj−ni
(Ai ×Bj),

is an isomorphism. Now the fact that P and Q are matrices of symmetrically

distinguished cycles allows us to conclude.
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For (iii), the full faithfulness is the content of (ii), while the essential sur-

jectivity follows from that of F (Lemma 2.2) and π.

The same argument also works for the category M atts
sd by using Theo-

rem 1.12 in place of Theorem 1.8. �
Remark 2.5. Lemmas 2.2 and 2.4 are contrasting: on the one hand, the

whole category M ab
sd is equivalent to M ab, the category of abelian Chow

motives; on the other hand, the subcategory with same objects as M ab
sd

and with symmetrically distinguished morphisms (Definition 2.3) is equiv-

alent to M ab, the category of abelian numerical motives. Thus M ab
sd fulfills

our purpose exactly to make a bridge between M ab and M ab. More precisely,

we have the commutative diagram

M ab
sd

F

�
�� M ab

π
����

(M ab
sd , s.d.morph)

��

��

�

F

�� M ab

which gives an explicit way to understand O’Sullivan’s categorical Theo-

rem 1.3 via his more down-to-earth Theorem 1.8. Namely, we no longer

deal with the right-inverse tensor functor T , whose existence is proven in a

somehow abstract way and whose uniqueness is up to a tensor conjugacy, but

instead we have, via the equivalences F and F , a concrete subcategory of

symmetrically distinguished morphisms inside M ab
sd , which plays the role of

the section functor T . We think the construction and basic properties of M ab
sd

and its subcategory of symmetrically distinguished morphisms would have in-

dependent interest in the future study of algebraic cycles on abelian varieties

or, more generally, varieties with motives of abelian type.

Finally, let us note the following simple consequence of Lemma 2.4(iii),

which will be crucial when dealing with quotients (or, more generally, generi-

cally finite surjective morphisms) in Section 4.4.

Lemma 2.6. The category (M ab
sd , s.d.morphisms), with objects as in M ab

sd

but with morphisms restricted to symmetrically distinguished morphisms, is

pseudo-abelian.

Proof. This follows from the equivalence of categories in Lemma 2.4(iii)

and the fact that M ab is pseudo-abelian. �
Remark 2.7. In fact, the category (M ab

sd , s.d.morphisms) is the pseudo-

abelian additive envelop of the category Corrabsd of symmetrically distinguished

correspondences between abelian varieties: more precisely, an object of Corrabsd
is a couple (A, n) with A an abelian variety (with fixed origin) and n ∈ Z,
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and morphisms between two objects (A, n), (B,m) are given by

Hom((A, n), (B,m)) := DCHdimA+m−n(A×B);

the composition is the usual one for correspondences.

3. Distinguished cycles

3.1. Definitions and basic properties. Here are the key notions of this

paper.

Definition 3.1 (Marking). Let X be smooth projective variety such that

its Chow motive h(X) belongs to M ab. A marking for X consists of an object

M ∈ M ab
sd together with an isomorphism

φ : h(X)
�−→ F (M) in CHM,

where F : M ab
sd

�−→ M ab is the equivalence in Definition 2.1.

By Lemma 2.2, a marking for a smooth projective variety X with motive

of abelian type always exists. In practice, starting from Section 4, we will

abusively ignore the difference between M ab
sd and its image in M ab by F and

write a marking as an isomorphism φ : h(X)
�−→ M for M ∈ M ab

sd .

Definition 3.2 (Distinguished cycles). Let X be a smooth projective va-

riety such that its Chow motive h(X) belongs to M ab. Given a marking

φ : h(X)
�−→ F (M) with M ∈ M ab

sd , we define the subgroup of distinguished

cycles of codimension i of X, denoted by DCHi
φ(X), or sometimes DCHi(X)

if φ is clear from the context, to be the preimage of DCHi(M) (see Defini-

tion 2.3) via the induced isomorphism φ∗ : CHi(X)
�−→ CHi(M).

Almost by construction, we have the following.

Lemma 3.3. For any smooth projective variety X such that h(X) ∈ M ab

and any marking φ : h(X)
�−→ F (M) with M ∈ M ab

sd , the composition

DCHi
φ(X) ↪→ CHi(X) � CH

i
(X)

is an isomorphism. In other words, φ provides a section (as graded vector

spaces) of the natural projection CH(X) � CH(X).

Proof. In the commutative diagram

DCHi
φ(X) �

� ��

� φ∗

��

CHi(X) �� ��

� φ∗

��

CH
i
(X)

� φ∗
��

DCHi(M) �
� �� CHi(M) �� �� CH

i
(M)
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the composition of the bottom line is an isomorphism by Lemma 2.4. There-

fore the composition of the top line is also an isomorphism, hence DCHi
φ(X)

provides a section. �
Remark 3.4 (Fundamental class). Given a smooth projective variety X,

its fundamental class �X is always distinguished for any choice of marking.

Indeed, we can assume that X is connected, thus CH0(X) = Q · �X , and

Lemma 3.3 ensures that �X is distinguished.

Distinguished cycles behave well with respect to tensor products and pro-

jections.

Proposition 3.5 (Tensor products and projections). Let X,Y be two

smooth projective varieties with motive of abelian type, endowed with markings

φ : h(X)
�−→ F (M) and ψ : h(Y )

�−→ F (N). Then

φ⊗ ψ : h(X × Y )
�−→ F (M ⊗N)

provides a marking for X×Y , and the exterior product CHi(X)×CHj(Y )
⊗−→

CHi+j(X × Y ) respects distinguished cycles:

DCHi
φ(X)×DCHj

ψ(Y )
⊗−→ DCHi+j

φ⊗ψ(X × Y ).

Moreover, denoting p : X × Y → X the natural projection, we have

p∗DCHi
φ⊗ψ(X × Y )⊆DCHi−dimY

φ (X) and p∗DCHi
φ(X)⊆DCHi

φ⊗ψ(X × Y ),

and similarly for the natural projection, q : X × Y → Y .

Proof. That φ⊗ψ provides a marking forX×Y such that the exterior prod-

uct respects distinguished cycles follows directly from Lemma 2.4(i), which

says that the tensor product of two symmetrically distinguished morphisms is

symmetrically distinguished. To see that push-forwards and pull-backs along

projections respect distinguished cycles, it is enough, by Lemma 2.4(i), to

see that idM ⊗f : M ⊗ N → M ⊗ �(−d) is a symmetrically distinguished

morphism (Definition 2.3), where d := dimY and f : N → �(−d) is induced

by the morphism h(Y ) → �(−d) determined by the fundamental class of Y .

By Lemma 2.4(i), we only have to see that f is a symmetrically distinguished

morphism, which is explained in Remark 3.4. �
3.2. The main questions and the key condition (�).

Question 3.6. Here are the most important properties of the distinguished

cycles that we are going to investigate:

• When does
⊕

i DCHi
φ(X) form a (graded) Q-subalgebra of CH(X)?

• When do the Chern classes of X belong to
⊕

i DCHi
φ(X)?

To this end, let us introduce the following condition for smooth projective

varieties whose Chow motive is of abelian type.
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Definition 3.7. We say that a smooth projective variety X with h(X) ∈
M ab satisfies condition (�) if

There exists a marking φ : h(X)
�−→ F (M) (with M ∈ M ab

sd ) such that

(�Mult) (Multiplicativity) the small diagonal δX belongs to DCHφ⊗3(X3);

that is, under the induced isomorphism φ⊗3
∗ : CH(X3)

�−→ CH(M⊗3),

the image of δX is symmetrically distinguished, i.e., in DCH(M⊗3);

(�Chern) (Chern classes) all Chern classes of TX belong to DCHφ(X).

More generally, if X is a smooth projective variety equipped with the action

of a finite group G, we say that (X,G) satisfies (�) if there exists a marking

φ : h(X)
�−→ F (M) that satisfies, in addition to (�Mult) and (�Chern) above:

(�G) (G-invariance) the graph gX of g : X → X belongs to DCHφ⊗2(X2)

for any g ∈ G.

We will see in Corollary 3.16 that condition (�Mult) implies that the top

Chern class of TX is distinguished.

Lemma 3.8 (Diagonal). Notation is as before.

(i) Condition (�Mult) implies that the diagonal ΔX belongs to

DCHφ⊗2(X2).

(ii) The condition that ΔX is distinguished is equivalent to saying that

the isomorphism σ : M
�−→ M∨(−dX), given by the commutativity of

the following diagram,11 is symmetrically distinguished in the sense

of Definition 2.3, where the top morphism is the Poincaré duality in

CHM (induced by ΔX):

(1) h(X)

φ�
��

PDX

�
�� h(X)∨(−dX)

F (M)
F (σ)

� �� F (M∨(−dX))

φ∨(−dX)�

��

Proof. Statement (ii) is tautological, and statement (i) follows from Propo-

sition 3.5 together with the observation that ΔX is the push-forward of δX
along the projection pr1,2 : X ×X ×X → X ×X. �

Lemma 3.9 (Equivalent formulation of (�Mult)). Let φ : h(X)
�−→ F (M)

be a marking as above, and let dX be the dimension of X. The condition

(�Mult) is equivalent to saying that the morphism μ : M⊗2 → M , deter-

mined by the commutativity of the following diagram,12 is a symmetrically

11Recall that F is an equivalence (Lemma 2.2), so F (σ) determines σ.
12Recall that F is an equivalence (Lemma 2.2), so F (μ) determines μ.
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distinguished morphism, where the top morphism is the intersection product

in CHM induced by the small diagonal:

(2) h(X)⊗2

φ⊗2 �
��

δX �� h(X)

φ�
��

F (M⊗2)
F (μ)

�� F (M)

Proof. First we claim13 that the condition that μ is symmetrically dis-

tinguished implies that σ in diagram (1) is symmetrically distinguished (or

equivalently, ΔX is distinguished by Lemma 3.8(ii)). Indeed, consider the

commutative diagram

h(X)⊗2

φ⊗2 �
��

δX �� h(X)

φ�
��

�X �� �(−dX)

F (M⊗2)
F (μ)

�� F (M)
F (ν)

�� F (�(−dX))

where the left square is (2), the top right morphism is induced by the funda-

mental class of X, and ν is the morphism determined by the commutativity

of the right square. By Remark 3.4, ν is a symmetrically distinguished mor-

phism. Now the outer square of the previous diagram gives the right square

in the following diagram:

h(X)

φ �
��

ηh(X)⊗idh(X) �� h(X)∨ ⊗ h(X)⊗2

(φ∨)−1⊗φ⊗2 �
��

idh(X)∨ ⊗(�X◦δX)
�� h(X)∨(−dX)

F (M)
F (ηM⊗idM )

�� F (M∨ ⊗M⊗2)
F (idM∨ ⊗(ν◦μ))

�� F (M∨)(−dX)

φ∨(−dX) �

��

where in the left square, ηM : � → M∨ ⊗ M is the unit of the duality for

M , and similarly for h(X). Therefore, by definition, the isomorphism σ in

diagram (1) is given by

σ = (idM∨ ⊗(ν ◦ μ)) ◦ (ηM ⊗ idM ) .

As μ, ν, and ηM are all symmetrically distinguished morphisms, so is σ by

Lemma 2.4(i).

Now let us show the equivalence between (�Mult) and the symmetric distin-

guishedness of μ. Thanks to the above claim and to Lemma 3.8, for both di-

rections of implication one can suppose that σ is symmetrically distinguished.

13We thank Peter O’Sullivan for mentioning this to us.
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Thus the following isomorphism, induced by composing with σ⊗2 ⊗ idM , pre-

serves the symmetrically distinguished elements:

CH2dX (M⊗3) = Hom(�,M(dX)⊗2 ⊗M)
�−→ Hom(�, (M∨)⊗2 ⊗M)

= Hom(M⊗2,M).

We can conclude by observing that this isomorphism sends φ⊗3
∗ (δX) to μ. �

Let us also mention the following convenient sufficient condition for (�G).

Lemma 3.10 (G-invariant marking). Let X be a smooth projective variety

endowed with an action of a finite group G. Let φ : h(X)
�−→ F (M) be a

marking as above. If ΔX is distinguished and if for any g ∈ G, we have

φ ◦ g = F (g) ◦φ for some symmetrically distinguished cycle g, then φ satisfies

(�G), where g : h(X) → h(X) is the automorphism induced by g.

Proof. For any g ∈ G, consider the composition

�(− dimX)
ΔX−−→ h(X)⊗ h(X)

id⊗g−−−→ h(X)⊗ h(X)
φ⊗φ−−−→ M ⊗M.

We obtain that (φ⊗φ)∗Γg = (φ⊗φ)◦ (id⊗g)◦ΔX = F (id⊗g)◦ (φ⊗φ)◦ΔX ,

where the latter term is symmetrically distinguished from the assumption on

ΔX . This means exactly that the graph Γg is distinguished. �
Remark 3.11 (Another formulation). The following interpretation of the

condition (�Mult) using the section T in Theorem 1.3 was kindly suggested to

us by Peter O’Sullivan.14 For an algebraic variety X with h(X) ∈ M ab, the

existence of a marking satisfying (�Mult) is equivalent to the existence of an

isomorphism of algebra objects

ϕ : h(X)
�−→ T (h(X)).

As such an isomorphism induces a section of the epimorphism CH(X) →
CH(X). The condition (�Chern) can be translated into saying that the Chern

classes belong to the image of the section. Similarly, in the presence of a

G-action, the condition (�G) can be spelled out by its graphs.

This formulation of (�) has the obvious advantage of being both natural

and intrinsic. However, to work out examples, which is the main objective of

this paper, as well as to prove theorems in practice (Sections 4 and 5), we find

it more convenient to stick to Definition 3.7 together with its interpretation

given in Lemma 3.9.

The motivation to study condition (�) is the following.

14The condition that h(X) ∈ M ab corresponds to the condition X ∈ V 0 in [38, §6.3],
and for such X, the existence of a marking satisfying (�Mult) corresponds to the condition
X ∈ V 00 in [38, §6.3].
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Proposition 3.12 (Subalgebra). Let X be a smooth projective variety with

motive of abelian type. If X satisfies condition (�Mult), then there is a section,

as graded algebras, for the natural surjective morphism CH(X) � CH(X).

If, moreover, (�Chern) is satisfied, then all Chern classes of X are in the image

of this section.

In other words, under (�), we have a graded Q-subalgebra DCH(X) of the

Chow ring CH(X), which contains all the Chern classes of X and is mapped

isomorphically to CH(X). We call elements of DCH(X) distinguished cycles

of X.

Proof. Let φ : h(X)
�−→ F (M) be a marking, where M ∈ M ab

sd . If φ

satisfies (�), then we define DCH(X) := DCHφ(X) as in Definition 3.2, and

this provides a section to the epimorphism CH(X) � CH(X) as graded vector

spaces by Lemma 3.3. To show that it provides a section as algebras, one has

to show that DCHφ(X) is closed under the intersection product of X (the unit

�X is automatically distinguished by Remark 3.4). Let α ∈ DCHi
φ(X), and

let β ∈ DCHj
φ(X). Then by definition the morphisms φ ◦ α : �(−i) → F (M)

and φ◦β : �(−j) → F (M) determine symmetrically distinguished morphisms.

By Lemma 2.4(i), (φ⊗2) ◦ (α⊗ β) = (φ ◦ α)⊗ (φ ◦ β) : �(−i− j) → F (M⊗2)

also determines a symmetrically distinguished morphism:

�(−i− j)
α⊗β ��

����
���

���
��

h(X)⊗2 δX ��

φ⊗2�
��

h(X)

φ�
��

F (M⊗2)
F (μ) �� F (M)

Condition (�) implies that μ, which is determined by the above commutative

diagram, is a symmetrically distinguished morphism. Therefore, the com-

position φ ◦ δX ◦ (α ⊗ β) in the above diagram determines a symmetrically

distinguished morphism, which means that α ·β = δX,∗(α⊗β) is in DCHφ(X).

The assertion concerning Chern classes is tautological. �
We deduce that condition (�Mult) actually already implies all the analo-

gous statements for all sorts of diagonals on higher powers (note the analogy

with [43, Proposition 8.7(iii)] in the context of self-dual multiplicative Chow–

Künneth decompositions).

Corollary 3.13 (Other diagonals). Let X be a smooth projective variety

with h(X) ∈ M ab. If X satisfies condition (�Mult), then all the classes of the

partial diagonals15 in a self-product of X are distinguished.

15A partial diagonal of a self-product Xn is a subvariety of the form {(x1, . . . , xn) ∈
Xn | xi = xj for all i ∼ j} for an equivalence relation ∼ on {1, . . . , n}.
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Proof. Let us fix a marking φ : h(X)
�−→ F (M) satisfying condition (�Mult)

and write DCH for DCHφ⊗? . Observe that any partial diagonal can be written

as the intersection product of several big diagonals.16 By Proposition 3.12,

we only have to show that any big diagonal of a self-product is distinguished.

However, a big diagonal is the exterior product of the distinguished class

ΔX ∈ DCH(X × X) (by Lemma 3.8) with copies of the fundamental class

�X ∈ DCH(X) (see Remark 3.4), and is henceforth distinguished, thanks to

Proposition 3.5. �
3.3. Distinguished morphisms and distinguished correspondences.

Definition 3.14 (Distinguished morphisms and distinguished correspon-

dences). Let X and Y be two smooth projective varieties equipped, respec-

tively, with markings φ : h(X)
�−→ F (M) and ψ : h(Y )

�−→ F (N) with

M,N ∈ M ab
sd . A correspondence Γ ∈ CH(X × Y ) is said to be distinguished

if it is distinguished with respect to the product marking on X × Y , i.e.,

Γ ∈ DCHφ⊗ψ(X × Y ), or equivalently the morphism (φ ⊗ ψ)(Γ) : M → N

is symmetrically distinguished in the sense of Definition 2.3. A morphism

f : X → Y is said to be distinguished if its graph belongs to DCHφ⊗ψ(X×Y ).

The notion of distinguished morphisms and distinguished correspondences

is only really relevant in the case where the markings satisfy condition (�Mult).

Proposition 3.15. Let X, Y, and Z be smooth projective varieties equipped

with markings that satisfy (�Mult), and let Γ ∈ DCH(X × Y ) and Γ′ ∈
DCH(Y × Z) be distinguished correspondences. Then:

(i) Γ∗DCH(X) ⊆ DCH(Y ) and Γ∗DCH(Y ) ⊆ DCH(X);

(ii) Γ′ ◦ Γ ∈ DCH(X × Z).

Proof. This is a direct consequence of Propositions 3.5 and 3.12. �
Corollary 3.16 (Top Chern class). Let X be an n-dimensional smooth

projective variety equipped with a marking satisfying (�Mult). Then the top

Chern class of X is distinguished, i.e., cn(TX) ∈ DCH0(X).

In particular, for a smooth projective curve, (�Chern) is implied by (�Mult).

Proof. Observe that the small diagonal δX , viewed as a correspondence

between X and X ×X, is distinguished by hypothesis and it transforms ΔX

to cn(X):

δ∗X (ΔX) = cn(X).

Under the hypothesis (�Mult), we know that ΔX ∈ DCH(X ×X) by Lemma

3.8. Hence Proposition 3.15(i) yields that the top Chern class cn(X) is dis-

tinguished.

16A big diagonal of a self-product Xn is a subvariety of the form {(x1, . . . , xn) ∈
Xn | xi = xj} for some 1 ≤ i �= j ≤ n.
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As for the case of curves, it suffices to recall, moreover, that the fundamen-

tal class is automatically distinguished by Remark 3.4. �

4. Operations preserving condition (�)

In this section, we provide some standard operations on varieties that pre-

serve (�). From now on, we systematically omit the functor F : M ab
sd → M ab,

which is an equivalence of categories (Lemma 2.2), in the notation of a mark-

ing.

4.1. Product varieties. Given two smooth projective varieties X and Y

with markings φ : h(X)
�−→ M and ψ : h(Y )

�−→ N , their product will always

be understood to be endowed with the marking

φ⊗ ψ : h(X ×k Y ) ∼= h(X)⊗ h(Y )
�−→ M ⊗N,

which we will refer to as the product marking. If X and Y are endowed with

the action of a finite group G, thenX×Y is endowed with the natural diagonal

action of G. Our condition (�) (see Definition 3.7) behaves well with respect

to products as seen below.

Proposition 4.1 (Products). Assume X and Y are two smooth projective

varieties satisfying condition (�). Then the natural marking on the product

X × Y satisfies (�) and has the additional property that the graphs of the two

natural projections are distinguished.

If in addition X and Y are equipped with the action of a finite group G

and the respective markings satisfy (�G), then the product marking on X × Y

satisfies (�G).

Proof. By assumption, there are markings φ : h(X)
�−→ M and ψ : h(Y )

�−→
N satisfying (�). The assertion (�Mult) (resp., (�G)) follows from Proposi-

tion 3.5 applied to X and Y replaced by X3 and Y 3 (resp., X2 and Y 2).

Indeed, δX×Y = δX ⊗ δY (resp., gX×Y = gX ⊗ gY ).

The assertion (�Chern) concerning the Chern classes follows directly from

the formula

ci(X × Y ) =
i∑

j=0

cj(X)⊗ ci−j(Y )

and Proposition 3.5.

Finally, as the diagonal ΔX ∈ CH(X × X) and fundamental class �Y
of Y are distinguished (Lemma 3.8, Remark 3.4), Proposition 3.5 tells us

that the graph of the projection X × Y → X, which is equal to ΔX ⊗ �Y ∈
CH(X×X×Y ), is distinguished. The proof is similar for the other projection

X × Y → Y . �
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Remark 4.2 (Permutations). Suppose X has a marking that satisfies (�).

Then any permutation of the factors of Xn defines a distinguished correspon-

dence in DCH(X2n) for the product marking by Corollary 3.13.

Remark 4.3. Assume X and Y are two smooth projective varieties en-

dowed with the action of the finite groups G and H, respectively. The product

G×H acts naturally on the product X × Y . Suppose X and Y satisfy (�G)

and (�H), respectively. Then the same arguments as above show that the

product marking on X × Y satisfies (�G×H).

4.2. Projective bundles. We show in this subsection that the condition

(�) is stable by forming projective bundles as long as the Chern classes of the

vector bundle are distinguished.

Let X be a smooth projective variety of dimension d, and let E be a vector

bundle over X of rank (r+1). Let π : P(E) → X be the associated projective

bundle.17 Let ξ be the first Chern class of Oπ(1).

Recall the projective bundle formula (see [2, §4.3.2]):

(3) b :

r⊕
k=0

h(X)(−k)
�−→ h(PE),

which is given factorwise by ξk · π∗ : h(X)(−k) → h(PE) for 0 ≤ k ≤ r.

The following lemma18 computes the small diagonal for PE. A piece of

notation is convenient: for an element ω ∈ CHk(X), viewed as a morphism

� → h(X)(k), we will talk about the morphism multiplication by ω, denoted

by ·ω : h(X) → h(X)(k), which is by definition the following composition:

h(X)
id⊗ω−−−→ h(X)⊗ h(X)(k)

δX(k)−−−−→ h(X)(k).

With a marking being fixed, if ω belongs to DCH(X) and X satisfies (�Mult),

then by Proposition 3.15 multiplication by ω is a distinguished morphism.

Lemma 4.4 (Small diagonal of projective bundles). Notation is as above.

The intersection product

δPE : h(PE)⊗ h(PE) → h(PE)

induces, via (3), a morphism (
⊕r

k=0 h(X)(−k))
⊗2 →

⊕r
m=0 h(X)(−m) such

that for any 0 ≤ k, l,m ≤ r, the morphism

h(X)(−k)⊗ h(X)(−l) → h(X)(−m)

is described as:

• If m > k + l or m > r, it is the zero map.

17The P we are using here is the space of 1-dimensional subspaces, thus different from

Grothendieck’s convention.
18This should be known, but the authors could not find a proper reference.
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• If m = k + l ≤ r, it is induced by the intersection product of X,

namely, δX .

• If k + l ≤ r and m �= k + l, it is the zero map.

• If m ≤ r < k + l, then it is the composition

h(X)(−k)⊗ h(X)(−l)
δX(−k−l)−−−−−−→ h(X)(−k − l)

·ω−→ h(X)(−m),

where the second morphism is the multiplication by the following char-

acteristic class (with s being the Segre class)19

ω :=
r−m∑
t=0

ct(E)sk+l−m−t(E) ∈ CHk+l−m(X).

Proof. By Manin’s identity principle ([2, §4.3.1]), we only have to prove

the lemma for Chow groups. Let us first compute the inverse b−1 of the

isomorphism in the projective bundle formula

b :
r⊕

k=0

CH∗−k(X)
�−→ CH∗(PE).

Assume γ ∈ CH∗(PE) is the image of (z0, z1, . . . , zr) ∈
⊕r

k=0CH
∗−k(X), i.e.,

γ =

r∑
k=0

π∗(zk) · ξk.

For any t ≥ 0, π∗(γ · ξt) =
∑r

k=0 π∗(π
∗(zk) · ξk+t) =

∑r
k=0 zk · sk+t−r(E).

Since the total Segre class is the inverse of the total Chern class, we have for

any 0 ≤ k ≤ r,

zk =

r−k∑
t=0

ct(E) · π∗(γ · ξr−k−t).

This gives b−1. Now let us go back to the product formula. We have to

compute the composition b−1 ◦ (b ⊗ b) whose (k, l,m)th component for any

0 ≤ k, l,m ≤ r is the composition

CH(X)⊗ CH(X)
(ξk·π∗,ξl·π∗)−−−−−−−−→ CH(PE)⊗ CH(PE)

·−→ CH(PE)
b−1
m−−→ CH(X),

where the last morphism is
∑r−m

t=0 ct(E) · π∗(• · ξr−m−t) by the formula for

b−1. Now, for any z, z′ ∈ CH(X), the mth component of π∗(z) · ξk · π∗(z′) ·
ξl = π∗(z · z′) · ξk+l is

∑r−m
t=0 ct(E) · π∗(π

∗(z · z′) · ξk+l · ξr−m−t) = z · z′ ·
(
∑r−m

t=0 ct(E)sk+l−m−t(E)). We can easily conclude in all cases. �

19The total Segre class is by definition the inverse of the total Chern class; cf. [22,
Chapter 3].
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Proposition 4.5 ((�) and projective bundles). Let X be a smooth pro-

jective variety, and let E be a vector bundle over X of rank (r + 1). Let

π : P(E) → X be the associated projective bundle. If we have a marking for

X satisfying (�) such that all Chern classes of E are distinguished, then PE
has a natural marking such that PE satisfies (�) and such that the projection

π : PE → X is distinguished.

If in addition X is equipped with the action of a finite group G such that

E is G-equivariant and such that the marking of X satisfies (�G), then the

natural marking of PE satisfies (�G).

Proof. Let φ : h(X)
�−→ M be a marking that satisfies (�) and is such

that ck(E) ∈ DCH(X). Using the projective bundle formula (3), we obtain a

marking for PE:

λ : h(PE)
�−→

r⊕
k=0

M(−k).

Let us show that λ satisfies (�).

For (�Mult), one uses the interpretation of (�Mult) given in Lemma 3.9.

Since δX as well as the Chern classes and Segre classes of E are distinguished,

the condition (�Mult) follows from Lemma 4.4.

For (�Chern), we first claim that for any k, the cycle π∗(α) · ξk is distin-

guished if α ∈ CH(X) is so. For k ≤ r, this is by definition, while for k > r,

we use the equality ξr+1 + π∗(c1(E))ξr + · · ·+ π∗(cr+1(E)) = 0 and the dis-

tinguishedness of the Chern classes of E to reduce to the treated cases. Now

from the short exact sequences

0 → OPE → π∗(E)⊗Oπ(1) → TPE/X → 0,

0 → TPE/X → TPE → π∗TX → 0,

we see that all the Chern characters of PE are linear combinations of terms of

the form π∗(α) · ξk, where α is a polynomial of Chern classes of X and of E.

By assumption α is distinguished; hence so are the Chern characters of PE.

With (�Mult) being proven for PE, we know that DCH(PE) is a subalgebra

by Proposition 3.12. We are then done because Chern classes are polynomials

of Chern characters.

The distinguishedness of (the graph of) the projection π : P(E) → X is

obvious: via the markings φ and λ, it is equivalent to saying that the inclusion

of the first summand

M ↪→ M ⊕M(−1)⊕ · · · ⊕M(−r)

is a symmetrically distinguished morphism.

Finally, assume that X is equipped with the action of a finite group G such

that E is G-equivariant. Note that with the induced action of G on PE, we
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have that π is G-equivariant and we have that (gPE)∗ξ = ξ (since G preserves

Oπ(1)). Thus the action of G commutes with b and b∨. Since we are assuming

that the marking φ of X satisfies (�G), we find that the marking λ satisfies

(�G). �
Example 4.6. If X is a smooth projective variety with a marking that

satisfies (�), then natural examples of vector bundles with distinguished Chern

classes are given by the tangent bundle TX as well as other vector bundles

obtained from it by performing duals, tensor products, and direct sums. More

generally, one may consider direct sums of vector bundles of the form SλTX ,

where λ is a nonincreasing sequence of integers and Sλ is the associated Schur

functor. By Proposition 4.5, the projective bundle associated to any such

vector bundle has a marking that satisfies (�).

4.3. Blow-ups. We will show in this subsection that condition (�) in Def-

inition 3.7 passes to a blow-up in the expected way.

We fix the following notation throughout this subsection. Let X be a

smooth projective variety of dimension d, let i : Y ↪→ X be a closed immersion

of a smooth subvariety of codimension c, and let N := NY/X be the normal

bundle. Let X̃ be the blow-up of X along Y , and let E be the exceptional

divisor, which is identified with P(N ). Denote by ξ the first Chern class of

Op(1) = N ∨
E/ ˜X

. The names of some relevant morphisms are in the following

cartesian diagram:

(4) E � � j ��

p

��

X̃

τ

��
Y � � i �� X

Recall the blow-up formula (see [2, §4.3.2])

(5) b : h(X)⊕
c−1⊕
k=1

h(Y )(−k)
�−→ h(X̃),

which is given by:

• τ∗ : h(X) → h(X̃);

• for any 1 ≤ k ≤ c− 1, j∗(ξ
k−1 · p∗(−)) : h(Y )(−k) → h(X̃).

The following lemma20 computes the small diagonal of X̃3.

Lemma 4.7 (Small diagonal of blow-ups). The intersection product

δ
˜X : h(X̃)⊗ h(X̃) → h(X̃)

is described via the isomorphism (5) as follows:

20This should be known, but the authors could not find a proper reference.
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• h(X)⊗ h(X) → h(X) is the intersection product (induced by δX).

• For any 1 ≤ k ≤ c− 1, h(X)⊗ h(Y )(−k) → h(Y )(−k) is the compo-

sition

h(X)⊗ h(Y )(−k)
i∗⊗id−−−→ h(Y )⊗ h(Y )(−k)

δY (−k)−−−−−→ h(Y )(−k).

• For any 1 ≤ k, l ≤ c− 1,

h(Y )(−k)⊗ h(Y )(−l) → h(X)

is the composition

h(Y )(−k)⊗h(Y )(−l)
δY (−k−l)−−−−−−→ h(Y )(−k−l)

−·sk+l−c(N )−−−−−−−−−→ h(Y )(−c)
i∗−→ h(X),

where in second morphism, s stands for the Segre class.

• For any 1 ≤ k, l,m ≤ c− 1,

h(Y )(−k)⊗ h(Y )(−l) → h(Y )(−m)

is as follows:

– if m ≥ c or m > k + l, it is the zero map;

– if m = k + l ≤ c− 1, then it is induced by −δY ;

– if m �= k + l ≤ c− 1, then it is the zero map;

– if m ≤ c− 1 < k + l, it is the composition

h(Y )(−k)⊗ h(Y )(−l)
δY (−k−l)−−−−−−→ h(Y )(−k − l)

·ω−→ h(Y )(−m),

where the second morphism is the multiplication by the following

characteristic class with s standing for the Segre class:

ω := −
c−m∑
t=1

sk+l−m−t+1(N ) · ct−1(N ) ∈ CHk+l−m(Y ).

Proof. We only have to prove the lemma for Chow groups thanks to Manin’s

identity principle ([2, §4.3.1]). As in Lemma 4.4, we compute the inverse of

b : CH∗(X)⊕
c−1⊕
k=1

CH∗−k(Y ) → CH∗(X̃).

Assume γ = τ∗(z0) +
∑c−1

k=1 j∗(p
∗(zk) · ξk−1), where z0 ∈ CH(X) and zk ∈

CH(Y ) for all 1 ≤ k ≤ c − 1. Then b−1 is given by z0 = τ∗(γ), and for all

1 ≤ k ≤ c− 1,

zk = −
c−k∑
t=1

p∗(j
∗(γ) · ξc−k−t) · ct−1(N ).

Now concerning intersection products, we have to compute b−1 ◦ (b⊗ b). We

only give the computation of the (k, l,m)th component when 1 ≤ k, l,m ≤ c−1
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and leave the other cases to the reader. Let z, z′ ∈ CH(Y ). Then the mth

component of the product

j∗(p
∗(z) · ξk−1) · j∗(p∗(z′) · ξl−1) = j∗

(
p∗(z) · ξk−1 · j∗(j∗(p∗(z′) · ξl−1))

)
= −j∗

(
p∗(z · z′) · ξk+l−1

)
is

c−m∑
t=1

p∗
(
j∗j∗

(
p∗(z · z′) · ξk+l−1

)
· ξc−m−t

)
· ct−1(N )

= −
c−m∑
t=1

p∗
(
p∗(z · z′) · ξk+l+c−m−t

)
· ct−1(N )

= −
c−m∑
t=1

z · z′ · sk+l−m−t+1(N ) · ct−1(N ).

Then all cases follow easily. �
Proposition 4.8 ((�) and blow-ups). Let X be a smooth projective variety,

and let i : Y ↪→ X be a smooth closed subvariety. If we have markings

satisfying condition (�) for X and Y such that the inclusion morphism i :

Y ↪→ X is distinguished (Definition 3.14), then X̃, the blow-up of X along

Y has a natural marking that satisfies (�) and is such that the morphisms in

diagram (4) are all distinguished.21

If in addition X is equipped with the action of a finite group G such that

G · Y = Y and such that the markings of X and Y satisfy (�G), then the

natural marking of X̃ also satisfies (�G).

Proof. Let φ : h(X)
�−→ M and ψ : h(Y )

�−→ N be markings satisfying (�).

Using the blow-up formula (5), φ and ψ induce a marking for X̃:

(6) λ : h(X̃)
�−→ M ⊕

c−1⊕
k=1

N(−k),

which we will show to satisfy (�).

Using the short exact sequence 0 → TY → TX |Y → N → 0, we see that

the Chern classes of N can be expressed as polynomials of Chern classes of Y

and Chern classes ofX restricted to Y , which are all in DCH(Y ) by hypothesis

(�Chern) for X and Y . Since DCH(Y ) is a subalgebra (Proposition 3.12), all

Chern classes of N are distinguished on Y . The condition (�Mult) then follows

from Lemma 4.7 (together with Proposition 3.15), since all Segre and Chern

classes as well as the morphisms i∗ : h(X) → h(Y ) and i∗ : h(Y ) → h(X)(c),

21The exceptional divisor E is endowed with the natural marking of Proposition 4.5 by
its projective bundle structure over Y .
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and the intersection products δX : h(X)⊗2 → h(X) and δY : h(Y )⊗2 → h(Y )

are all distinguished by assumption.

That the morphisms in diagram (4) are all distinguished in the sense of

Definition 3.14 is straightforward: the inclusion morphism i : Y ↪→ X is

distinguished by assumption; the projective bundle p : E → Y is distinguished

thanks to Proposition 4.5; the distinguishedness of of τ is equivalent to saying

that (via the markings φ and λ) the inclusion of the first summand M ↪→
M⊕

⊕c−1
k=1 N(−k) is symmetrically distinguished, which is obvious; finally, one

checks easily that via the natural markings, the morphism j∗ : h(X̃) → h(E)

corresponds to the morphism

(i∗,− id, . . . ,− id) : M⊕N(−1)⊕· · ·⊕N(−c+1)→N⊕N(−1)⊕· · ·⊕N(−c+1),

which is obviously symmetrically distinguished.

Now for (�Chern), we use the formula for Chern classes of a blow-up given

in [22, Theorem 15.4]. Given the distinguishedness of the Chern classes of TX ,

TY , and N , we only have to show that for any α ∈ DCH(Y ) and k ∈ N, the
class j∗(p

∗(α) · ξk) ∈ CH(X̃) is distinguished. But that is immediate, because

each of j, p, α, and ξ = −j∗j∗(1) is distinguished by the above.

Finally, assume that X is equipped with the action of a finite group G such

that G ·Y = Y . Note that with the induced action of G on E and X̃, we have

that the morphisms in diagram (4) are G-equivariant. Thus the action of G

commutes with b and b∨. Since we are assuming that the markings of X and

Y satisfy (�G), we find that the marking λ satisfies (�G). �
4.4. Generically finite morphism. In this subsection, we show that

the condition (�) passes from the source variety of a surjective and generically

finite morphism to the target variety under natural assumptions.

Proposition 4.9. Let π : X → Y be a generically finite and surjective

morphism between smooth projective varieties. If X has a marking satisfying

(�Mult) and such that the cycle tΓπ ◦ Γπ is distinguished in CH(X ×X), then

Y has a natural marking that satisfies (�Mult) and is such that the graph of π

is distinguished.

Proof. Let d be the degree of π, and let n be the dimension of X and Y .

Let M ∈ M ab
sd , and let φ : h(X)

�−→ M be a marking satisfying (�Mult). The

graph of π and its transpose induce, respectively,

π∗ := Γπ : h(X) → h(Y ),

π∗ := tΓπ : h(Y ) → h(X)
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such that π∗ ◦ π∗ = d ·ΔY ∈ End(h(Y )). Therefore 1
d
tΓπ ◦ Γπ = 1

dπ
∗ ◦ π∗ ∈

End(h(X)) is a projector and π∗ induces an isomorphism of Chow motives

h(Y )
�−→

(
X,

1

d
tΓπ ◦ Γπ, 0

)
.

Consider the projector

q := φ ◦ 1

d
tΓπ ◦ Γπ ◦ φ−1

in End(M). Since tΓπ◦Γπ is distinguished by assumption, q is a symmetrically

distinguished idempotent endomorphism of M . By Lemma 2.6, we have a

canonical image

N := Im (q : M → M) ,

with N ∈ M ab
sd and such that the projection p : M � N and the inclusion

i : N ↪→ M are symmetrically distinguished morphisms in M ab
sd .

By definition, we have p◦i = id and i◦p = q = φ◦ 1
dπ

∗◦π∗◦φ−1. Therefore

the composition

λ := p ◦ φ ◦ π∗ : h(Y ) → N

is an isomorphism with inverse λ−1 = 1
dπ∗ ◦ φ−1 ◦ i. Note that λ is nothing

else but the following composition of isomorphisms:

h(Y )
�−→

(
X,

1

d
tΓπ ◦ Γπ, 0

)
p◦φ−−→ N.

We now show that the marking for Y provided by the isomorphism λ satisfies

(�Mult). We consider the following commutative diagram:

h(Y )⊗ h(Y )
δY ��

� �

π∗⊗π∗

��

h(Y )� �

π∗

��

λ

��

h(X)⊗ h(X)
δX ��

� φ⊗φ

��

h(X)

� φ

��
M ⊗M

μX �� M

p
����

N ⊗N
��

i⊗i

��

μY �� N

where μY := p◦μX ◦ (i⊗ i) is clearly symmetrically distinguished as μX , i⊗ i,

and p are so. By Lemma 3.9, it suffices to check that μY ◦ (λ ⊗ λ) = λ ◦ δY .
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This is straightforward:

μY ◦ (λ⊗ λ) = p ◦ μX ◦ (i⊗ i) ◦ (λ⊗ λ)

= p ◦ μX ◦ (φ⊗ φ) ◦ (π∗ ⊗ π∗)

= p ◦ φ ◦ π∗ ◦ δY
= λ ◦ δY ,

where the second equality uses i ◦ λ = i ◦ p ◦ φ ◦ π∗ = q ◦ φ ◦ π∗ = φ ◦ π∗ and

the third equality uses the commutativity of the previous diagram.

That the graph of π : X → Y is distinguished is equivalent to the con-

dition that the natural inclusion N ↪→ M , or equivalently p : M � N , is a

symmetrically distinguished morphism. �
Remark 4.10 ((�) and semismall morphisms). When π : X → Y is semi-

small (cf. Section 5.5.1), then the condition on the cycle tΓπ◦Γπ in Proposition

4.9 is equivalent to the more explicit condition that the class of X ×Y X in

CHn(X ×X) is distinguished.

Proposition 4.11 ((�) and étale covers). Notation and assumptions are

as in Proposition 4.9. If, moreover, π is étale and the marking for X satisfies

(�Chern), then the natural marking for Y also satisfies (�Chern).

Proof. Let d be the degree of π. For any i ∈ N, ci(Y ) = 1
dπ∗π

∗(ci(Y )) =
1
dπ∗ci(X) is distinguished since ci(X) is distinguished and π is a distinguished

morphism. �
Proposition 4.12 ((�) and finite group quotients). Let X be a smooth

projective variety endowed with an action of a finite group G such that the

quotient Y := X/G is smooth. If there is a marking for (X,G) satisfying

(�Mult) and (�G), then Y has a natural marking that satisfies (�Mult) and is

such that the quotient morphism π : X → Y is distinguished.

Moreover, if π : X → Y is étale or a cyclic covering along a divisor D

such that D ∈ DCH(X) and if the marking for X satisfies (�Chern), then the

natural marking for Y also satisfies (�Chern).

Proof. The assertions concerning (�Mult) and the distinguishedness of π

follow from Proposition 4.9. Indeed, by Remark 4.10, in order to apply Propo-

sition 4.9, it suffices to check that the class of X ×Y X is distinguished. In

the present situation of finite group quotient, X ×Y X is nothing but
∑

g Γg,

which is distinguished in CH(X ×X) by (�G).

As for the condition (�Chern), the étale case is treated in Proposition 4.11.

Suppose π : X → Y is a degree d cyclic covering branched along a divisor D

such that D ∈ DCH(X). In order to show that the natural marking on Y

satisfies (�Chern), it suffices to show by the projection formula that π∗ ch(TY )
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is distinguished. We have a short exact sequence

0 −→ TX −→ π∗TY −→ OD(dD) −→ 0.

Since X satisfies (�Chern), it is enough to show that ch(OD(dD)) belongs to

DCH(X). Now OD(dD) fits into the short exact sequence

0 −→ OX((d− 1)D) −→ OX(dD) −→ OD(dD) −→ 0.

Since the class of the divisor D is assumed to belong to the Q-subalgebra

DCH(X), we find that indeed ch(OD(dD)) = ch(OX(dD))−ch(OX((d−1)D))

belongs to DCH(X), which concludes the proof. �
4.5. Hilbert squares and nested Hilbert schemes.

Proposition 4.13 (Hilbert squares). Assume X is a smooth projective

variety with a marking that satisfies (�). Then X [2] has a natural marking

that satisfies (�) and is such that the universal family {(x, z) : x ∈ Supp(z)} ⊆
X ×X [2] is distinguished (with respect to the product marking).

Proof. The productX×X is naturally endowed with the action ofG := Z/2
that switches the factors, and the locus of fixed points is the diagonal, which

is isomorphic to X. By Remark 4.2, the product marking on X ×X satisfies

(�G). Therefore, we may apply Proposition 4.8 to obtain a marking on the

blow-up X̃ ×X of X ×X along the diagonal that satisfies (�) and (�G). Now

X [2] is the quotient of the latter blow-up by the cyclic action of Z/2. Thus

Proposition 4.12 provides a marking for X [2] that satisfies (�).

Finally, we show that the universal family Y := {(x, z) : x ∈ Supp(z)} is

distinguished. First note that Y is isomorphic to X̃ ×X so that Y is endowed

with the natural marking coming from that of X. In order to conclude, we

only need to show that the graph Γ of the inclusion morphism i : Y ↪→ X×X [2]

is distinguished. This is clear because the components Y → X and Y → X [2]

of i, which consist of the composition X̃ ×X → X×X → X and the quotient

morphism X̃ ×X → X [2], are distinguished. �
Recall that by a result of Cheah [13], for a smooth projective variety X

of dimension ≥ 3, the only smooth nested Hilbert schemes of finite length

subschemes on X are X [2], X [3], X [1,2], and X [2,3]. By the same method, we

have the following proposition.

Proposition 4.14 (Nested Hilbert schemes). The assumption is as in

Proposition 4.13. Then X [1,2] and X [2,3] have natural markings satisfying (�)

and are such that the classes of the universal subschemes are distinguished.

Proof. It is clear that X [1,2] is isomorphic to X̃ ×X, the blow-up of X×X

along the diagonal, hence satisfies (�) by Proposition 4.8. Similarly, X [2,3]

is isomorphic to the blow-up of X × X [2] along the universal subscheme Y .

As is mentioned in the proof of the previous proposition, Y is isomorphic to
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X [1,2] and hence to X̃ ×X; thus it has a marking satisfying (�). As X [2]

is endowed with the marking in Proposition 4.13, X ×X [2] is endowed with

the product marking satisfying (�) by Proposition 4.1. Moreover, the Chern

classes of the normal bundle of Y in X × X [2] are distinguished since they

are polynomials of the Chern classes of TY , of TX pulled-back to Y = X̃ ×X

via the first projection and of TX[2] pulled-back to Y via the Z/2 quotient

map (cf. the computation in [44, Theorem 6.1]), which are all distinguished

by Propositions 4.8 and 4.12. Again by Proposition 4.8, X [2,3] has a marking

satisfying (�). The assertions about the universal subschemes follow from

Corollary 3.13. �

Remark 4.15 (Hilbert cubes). An argument similar to the above com-

bined with the explicit description of the Hilbert cube X [3] in [44] shows that

X [3] satisfies (�) once X does. Indeed, X [3] is constructed from X3 in five

steps (cf. [44] or [17]): the first three are successive blow-ups of X3, each

time along a center satisfying (�) with normal bundle having distinguished

Chern classes; the fourth step is a quotient map by a distinguished cyclic

Z/3-action; the final step is a blow-down of divisor with distinguished normal

bundle to a center satisfying (�). Thus using Propositions 4.1, 4.5, 4.8, 4.12,

and Corollary 3.13 repeatedly in the first four steps, and using in the final

step the analogue of the technical [44, Lemma 6.4] (with CH(−)(0) replaced

by DCH(−)), one can obtain a marking of X [3] satisfying (�). The details are

left to the interested reader.

4.6. Birational transforms for hyper-Kähler varieties. Using Huy-

brechts’s fundamental result [24] on deformation equivalence between bira-

tional hyper-Kähler varieties, Rieß [41] shows that the Chow rings of bira-

tional hyper-Kähler varieties are isomorphic. Actually her proof yields the

following more precise result.

Theorem 4.16 (Rieß [41, §3.3 and Lemma 4.4]). Let X and Y be d-

dimensional irreducible holomorphic symplectic varieties. If they are bira-

tional, then there exists a correspondence Z ∈ CHd(X × Y ) such that

(i) (Z × Z)∗ : CHd(X ×X) → CHd(Y × Y ) sends ΔX to ΔY ;

(ii) (Z×Z×Z)∗ : CHd(X×X×X) → CHd(Y ×Y ×Y ) sends δX to δY ;

(iii) Z∗ : CH(X) → CH(Y ) sends ci(X) to ci(Y ) for any i ∈ N;
(iv) Z induces an isomorphism of algebra objects h(X) → h(Y ) in CHM

with inverse given by tZ.

In particular, Z induces an isomorphism between their Chow rings (resp.,

cohomology rings).
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Corollary 4.17. Let X and Y be d-dimensional irreducible holomorphic

symplectic varieties that are birationally equivalent. If X has a marking that

satisfies (�), then so does Y .

Proof. Let Z ∈ CHd(X × Y ) = Hom(h(X), h(Y )) be the correspondence

in Theorem 4.16. Let φ : h(X)
�−→ M be a marking satisfying (�). Then

we consider the marking ψ = φ ◦ Z∗ : h(Y )
�−→ M . The fact that ψ satis-

fies the conditions (�Mult) and (�Chern) follows from Theorem 4.16(ii), (iii),

respectively, together with the corresponding property of φ. �

5. Examples of varieties satisfying condition (�)

We provide in this section some examples of varieties satisfying condition

(�). Together with the operations in Section 4, we obtain even more examples.

Thanks to Proposition 3.12, the rational Chow ring of each of them possesses a

subalgebra consisting of distinguished cycles, which is mapped isomorphically

to the numerical Chow ring and contains all Chern classes of the variety.

5.1. Easy examples. First of all, as (�) is certainly a property preserved

by isomorphisms of algebraic varieties, we have by O’Sullivan’s Theorem 1.8

the following lemma.

Lemma 5.1. Any abelian torsor, that is, a variety isomorphic to an abelian

variety, satisfies (�).

Another set of examples generalizes the projective spaces.

Proposition 5.2. Let X be a smooth projective variety over a field k, and

let Ω be a universal domain containing k. Assume that X satisfies at least

one of the following conditions:

(1) X  G/P is a homogeneous variety, where G is a linear algebraic

group and P is a parabolic subgroup.

(2) X is a toric variety.

(3) The bounded derived category Db
coh(X) has a full exceptional collec-

tion.

(4) The cycle class map CH∗(XΩ) → H∗(XΩ,Q�) is injective for some

prime � �= char k.

(5) The Chow group CH∗(XΩ) is a finite-dimensional Q-vector space.

Then X satisfies (�).

Proof. Actually any of these conditions ensures that the Chow motive of

X is of Lefschetz–Tate type:

h(X) 
⊕
i

�(ai),
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with ai ∈ Z. It is well known for (1) and (2), while for (3) it is established

in [10] and [33]. For (4), it is the main result of [32] (see also [50, §2.2] for a
recent account), and for (5), it is proven in [27], [47]. �

5.2. Curves. Recall that the smooth projective curves of genus 0 and 1

are covered in §5.1. We consider in this subsection curves of higher genera.

Let C be a smooth projective curve with genus g ≥ 2. Its Jacobian vari-

ety JC is a principally polarized abelian variety of dimension g with origin

denoted by O and theta divisor denoted by Θ ∈ CH1(JC), which is always

assumed to be symmetric. By choosing a base point z ∈ C, we have the

Abel–Jacobi embedding:

ιz : C ↪→ JC,

x �→ OC(x− z).

Associated to z, there is also the motivic decomposition of C:

h(C) = h0(C)⊕ h1(C)⊕ h2(C),

where h0(C) := (C, z × C, 0)  �, h2(C) := (C,C × z, 0)  �(−1), and

h1(C) := (C,ΔC − z × C − C × z, 0).

Proposition 5.3. Let C be a smooth projective curve of genus g ≥ 2.

If there exists a point z ∈ C such that ιz(C) ∈ CH1(JC) is symmetrically

distinguished,22 then C satisfies condition (�).

Proof. Let us fix z and simply write ι := ιz and C := ιz(C). Assume

that C ∈ CH1(JC) is symmetrically distinguished. Since the 1-cycles C and
1

(g−1)!Θ
g−1 are numerically equivalent and symmetrically distinguished, they

are actually equal (i.e., rationally equivalent), thanks to Theorem 1.8.

Deninger and Murre construct in [16] a canonical motivic decomposition

h(JC) =

2g⊕
i=0

h
i(JC).

Let πi ∈ CHg(JC × JC) be the projector corresponding to hi(JC). For

example, π0 = [O] × JC and π2g = JC × [O]. See [29] for the explicit

formulae of the other projectors πi. One important feature, easily seen from

Theorem 1.8, is that they are all symmetrically distinguished.

We claim that Γι =: ι∗ : h(C) → h(JC)(g − 1) induces isomorphisms:

• h2(C)
�−→ h2g(JC)(g − 1) := (JC, JC × [O], g − 1);

• h1(C)
�−→ h2g−1(JC)(g − 1) := (JC, π2g−1, g − 1);

22By Remark 1.9, this condition is equivalent to ιz(C) ∈ CH1(JC)(0).
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• h0(C)
�−→ Lg−1h0(JC)(g− 1) := (JC, 1

g!Θ×Θg−1, g− 1); the latter is

a direct summand of h2g−2(JC)(g−1) in the Lefschetz decomposition

constructed by Künnemann in [28],

where L is the Lefschetz operator (see [28]). Indeed, all these morphisms are

in the Kimura category M ab (see [26]). The functor M ab → M ab is therefore

conservative (cf. [3, Corollary 3.16]). One easily checks that these morphisms

are isomorphisms modulo homological, thus a fortiori numerical, equivalence.

Putting them together, we have a marking for C:

φ := ι∗ : h(C)
�−→ M := (JC, JC × [O] + π2g−1 +

1

g!
Θ×Θg−1, g − 1).

Let us show (�Mult): since the inclusion of the direct summand M into h(JC)

is clearly symmetrically distinguished, to show that φ⊗3
∗ (δC) is symmetrically

distinguished, it suffices to show that ι3∗ : CH1(C
3) → CH1(JC

3) sends the

small diagonal δC to a symmetrically distinguished cycle of JC × JC × JC.

However, by the following commutative diagram

C � � δC ��� �

ι

��

C × C × C� �

ι3

��
JC � � δJC �� JC × JC × JC

we have that ι3∗(δC) = δJC,∗(ι(C)) is symmetrically distinguished by the as-

sumption and Theorem 1.8.

The condition (�Chern) on Chern classes follows from (�Mult) since C is a

curve (Corollary 3.16). �
Corollary 5.4. All hyperelliptic curves satisfy condition (�).

Proof. For a hyperelliptic curve C, choose any Weierstrass point to de-

fine the Abel–Jacobi embedding. Then the involution [−1] on JC preserves

C and acts on C by the hyperelliptic involution. By [46, Proposition 2.1],

in the Beauville decomposition of CHg−1(JC), the class of C belongs to

CHg−1(JC)(0). On the other hand, CHg−1(JC)(0) is the Fourier transform [7]

of CH1(JC)(0) which maps isomorphically to CH
1
(JC). Therefore, the nat-

ural cycle class map CHg−1(JC)(0) → CH
g−1

(JC) is also an isomorphism.

Consequently, all cycles in CHg−1(JC)(0), in particular the class of C, are

symmetrically distinguished. One can now conclude by invoking Proposition

5.3. �
Remark 5.5. The case of hyperelliptic curves is mentioned in [38, §6.3].
Remark 5.6 (Hilbert schemes of a hyperelliptic curve). Recall that the

Hilbert scheme of length-n subschemes on a smooth curve C is nothing but

the nth symmetric power C(n) of C. Now if C satisfies (�Mult), then by
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Proposition 4.1, Cn satisfies (�Mult), and by Proposition 4.12, C(n) satisfies

(�Mult). By Corollary 3.16, C also satisfies (�Chern), and the same computation

as in [43, p. 95] shows that C(n) satisfies (�Chern). Therefore, it follows from

Corollary 5.4 that the Hilbert schemes of a hyperelliptic curve satisfy (�).

5.3. Fermat hypersurfaces. An important class of (higher-dimensional)

varieties whose motive is known to be of abelian type is provided by the Fermat

hypersurfaces, by using the inductive structure discovered by Shioda–Katsura

[45]. Note that Proposition 5.2 implies that smooth quadric hypersurfaces

satisfy (�) since their Chow groups are finite-dimensional vector spaces.

In the sequel of this subsection, we fix a degree d ≥ 3 and, for any r ∈ N,
we let Xr denote the Fermat hypersurface of degree d in Pr+1:

Xr := {(x0, . . . , xr+1) | xd
0 + · · ·+ xd

r+1 = 0} ⊂ Pr+1.

Recall the inductive structure (cf. [45, Theorem 1]): let ε be a (fixed) dth

root of −1 and let ζ be a (fixed) dth root of unity. For any r, s ∈ N, we have

the following commutative diagram:

(7)

E

�

� � ��

��

Z ��

ψ

����
���

���
���

β

��

Z/μd

�τ

��

Xr−1 × Ps
∐

Pr ×Xs−1
� ���

��
Xr−1 ×Xs−1

� � ir×is �� Xr ×Xs
ϕ ����� Xr+s Xr−1

∐
Xs−1

� ���

where ir :Xr−1 ↪→Xr is the embedding given by (x0, . . . , xr) �→(x0, . . . , xr, 0);

ϕ : ((x0, . . . , xr+1), (y0, . . . , ys+1)) �→(ys+1x0, . . . , ys+1xr, εxr+1y0, . . . , εxr+1ys);

β and τ are blow-ups; the action of μd on the blow-up Z is induced by

its action on Xr and Xs given by (x0, . . . , xr+1) �→ (x0, . . . , xr, ζxr+1) and

(y0, . . . , ys+1) �→ (y0, . . . , ys, ζys+1), respectively.

The main result of this subsection is the following.

Proposition 5.7 (Fermat cubics). If d = 3, then there exist, for all r ∈ N,

a marking φr : h(Xr)
�−→ Mr, for the cubic Fermat hypersurface Xr, such that:

(i) the embedding ir : Xr−1 ↪→ Xr is distinguished (Definition 3.14);

(ii) the action of μd on Xr is distinguished, i.e., φr satisfies (�μd
);

(iii) φr satisfies the condition (�) of Definition 3.7.

In particular, all Fermat cubic hypersurfaces satisfy condition (�).

Proof. We proceed by induction on r. For r = 1, X1 = {x3
0 + x3

1 + x3
2 = 0}

is a cubic curve in P2; by fixing an origin, it becomes an elliptic curve. We

fix (−1, 1, 0) as its origin. Trivially, X1 satisfies (�) (§5.1). The embedding

X0 ↪→ X1 is given by three points (−1, 1, 0), (−ζ, 1, 0), (−ζ2, 1, 0), which are of
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3-torsion,23 therefore distinguished. As for the action of μd, which is given by

(x0, x1, x2) �→ (x0, x1, ζx2), it is clearly an automorphism of abelian variety,

hence also distinguished.

Assuming the assertions (i)–(iii) for r ≤ n, let us establish them for

r = n + 1. We set in the sequel s = 1 in diagram (7) and also ε = −1.

By the induction hypothesis and the fact that distinguished morphisms are

stable under products, the embedding Xn−1 × X0 ↪→ Xn × X1 is distin-

guished. Therefore Z satisfies (�) by Proposition 4.8. Again by the induction

hypothesis, the action of μd on Xn ×X1 is distinguished with distinguished

ramification locus, which implies by Proposition 4.12 that Z/μd satisfies (�).

We now claim that the marking on Xn+1 defined via τ satisfies (�). We thank

the referee for providing the following argument. For (�Mult) it is enough by

Proposition 4.9 to show that

tΓτ ◦ Γτ = (τ × τ )∗(ΔXn+1
)

is distinguished. The exceptional divisors for τ are E0, E1, E2, E3 with

E0 = Xn−1 × P1 = Xn−1 × (X1/μ3)

and Ei for i > 0 a component Pn of Pn ×X0. We have

(τ × τ )∗(ΔXn+1
) = ΔZ/μ3

+ α0 + α,

where α0 is the push-forward along E0 × E0 → (Z/μ3)× (Z/μ3) of

E0 ×Xn−1
E0 = ΔXn−1

× P1 × P1,

and α is supported on
∐

i>0 Ei × Ei. Both ΔZ/μ3
and α0 are distinguished,

and α is distinguished because for i > 0 every cycle on Ei × Ei = Pn × Pn is

distinguished. Finally (�Chern) follows from [22, Theorem 15.4]. In particular,

(iii) for r = n+ 1 is proven.

23In fact, the nine 3-torsion points of the Fermat elliptic curve are exactly its intersection
with the coordinate axes (x0 = 0), (x1 = 0), and (x2 = 0). Indeed, these nine points lie
on 12 lines. Each line contains three of these points and each point lies on four lines. Now
use the fact that the sum of the three points in the intersection of any line with the elliptic
curve is the hyperplane section class. We easily deduce that 3 times any of the nine points

is the hyperplane section class. Hence they are all 3-torsion points if any one of them is
fixed as the origin.
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For (i), we have the following commutative diagram, where i is the embed-

ding determined by the point (1, 0,−ζ) ∈ X1:

Z

β

��

ψ

		��
���

���
���

Xn ×X1
ϕ ����� Xn+1

Xn

��

i

��

� �
in+1



����������

Since (1, 0,−ζ) is a torsion point of X1, i
∗ is distinguished. Therefore, with ψ

and β being distinguished by construction, i∗n+1 = i∗n+1 ◦ψ∗ ◦ψ∗ = i∗ ◦β∗ ◦ψ∗

is also distinguished.

Finally for (ii), the action of μd on Xn+1 comes, via the diagram (7), from

the action of μd on X1 which is given by (y0, y1, y2) �→ (y0, ζy1, y2). It is

clearly an automorphism of abelian variety, hence is distinguished. �
So far, we are not able to determine whether other Fermat hypersurfaces

satisfy (�), but we would like to make the following conjecture.

Conjecture 5.8. The Fermat hypersurfaces which are Calabi–Yau or Fano,

i.e., d ≤ r + 2, satisfy condition (�).

Remark 5.9. The conclusion of Conjecture 5.8 cannot hold in general

for Fermat hypersurfaces of general type; cf. Proposition 7.4 (together with

Proposition 6.1) below for counterexamples in the case of Fermat curves start-

ing from degree 4.

Remark 5.10. It is interesting to notice that for d = 4, we know that

the quartic Fermat surface satisfies (�) for a different reason: it is a Kummer

surface (cf. [25, Chapter 14, Example 3.18]), and Proposition 5.11 applies.

One could therefore show Conjecture 5.8 for d = 4 by a similar induction

argument as in Proposition 5.7 once we know the case of the Fermat quartic

threefold (and some natural compatibilities with the Fermat quartic surface).

5.4. K3 surfaces with large Picard number. While K3 surfaces are

expected to have motive of abelian type via the Kuga–Satake construction,

this has only been established in scattered cases. This includes Kummer

surfaces, and [40, Theorem 2] K3 surfaces with Picard number ≥ 19.

5.4.1. Kummer surfaces. By definition the Kummer surface K1(A) at-

tached to the abelian surface A is the fiber over 0 of the morphism A[2] →
A(2) → A, which is the composition of the sum morphism A(2) → A with the

Hilbert–Chow morphism A[2] → A(2).

Proposition 5.11. A Kummer surface admits a marking that satisfies (�).
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Proof. The Kummer surface K1(A) has the following alternative descrip-

tion: the [−1]-involution on A induces an involution, denoted ι, on the blow-up

Ã of A along its subgroup of 2-torsion points, and K1(A) is the Z/2-quotient
of Ã for that action. By Proposition 4.8, (Ã,Z/2) has a marking that satisfies

(�). We can then conclude from Proposition 4.12 that K1(A) has a marking

that satisfies (�). �
Later on (cf. Proposition 5.14), we will generalize Proposition 5.11 by

establishing that generalized Kummer varieties admit a marking that satisfies

(�).

5.4.2. K3 surfaces with Picard number ≥ 19. Such K3 surfaces ad-

mit [35] a Nikulin involution (that is, a symplectic involution) with quotient

birationally equivalent to a Kummer surface.

Proposition 5.12. A K3 surface with Picard number ≥ 19 admits a mark-

ing that satisfies (�).

Proof. Let X be a K3 surface with a Nikulin involution; by [37, §5] X
has eight isolated fixed points, which we denote Q1, . . . , Q8. Let π : X →
X/ι be the quotient morphism; X/ι has ordinary double points at the points

Pi := π(Qi) so that if f : Y → X/ι denotes the minimal resolution, then the

exceptional divisors of f are smooth rational (−2)-curves Ci := f−1(Pi).

Let X now be a K3 surface with Picard number ≥ 19. According to [35,

Corollary 6.4], X admits a Shioda–Inose structure, meaning that X admits

a Nikulin involution ι such that Y is a Kummer surface and such that f∗π∗
induces a Hodge isometry TX(2)  TY , where TX refers to the transcendental

lattice of X. The latter was upgraded to an isomorphism of Chow motives

by Pedrini [40, Theorem 2]. Precisely, given S a K3 surface, let us denote

oS as the Beauville–Voisin zero-cycle; cf. [9]. We fix a basis {Dj} of CH1(S),

and denote {D∨
j } as the dual basis with respect to the intersection product.

We then define the idempotent correspondences π0
S := oS × S, π4

S := S × oS ,

π2,alg
S :=

∑
j D

∨
j × Dj , and π2,tr

S := ΔS − π0
S − π4

S − π2,alg
S . The motive

halg(S) := (S, π0
S + π2,alg

S + π4
S) is the algebraic motive of S (it is isomorphic

to a direct sum of Lefschetz–Tate motives), and the motive t2(S) := (S, π2,tr
S )

is the transcendental motive of S. Pedrini [40] showed that f∗π∗ induces an

isomorphism of motives t2(X)  t2(Y ) (with inverse 1
2π

∗f∗).

We fix a marking for the Kummer surface Y that satisfies (�); such a

marking does exist by Proposition 5.11. Since DCH1(Y ) = CH1(Y ), we have

that the classes of the smooth rational curves Ci are distinguished, and we

also have that the projectors π0
Y , π

4
Y , π

2,alg
Y , and π2,tr

Y are distinguished. Then

we claim that the marking given by the decomposition h(X)  π∗f∗t
2(Y ) ⊕

halg(X) satisfies (�). That it satisfies (�Chern) is obvious since c1(X) = 0

and since by [9], c2(X) is a multiple of oX and hence is mapped to zero in
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CH2(t2(Y )). By refined intersection [22], the cycle (f, f, f)∗(π, π, π)∗δX is

supported on (f, f, f)−1(π, π, π)(δX) = δY ∪
⋃

i Ci × Ci × Ci. Since Ci is a

smooth rational curve, we have that CH2(Ci × Ci × Ci) admits ci × Ci × Ci,

Ci × ci × Ci, and Ci × Ci × ci as a basis, where ci is any point on Ci. The

cycle (f, f, f)∗(π, π, π)∗δX is therefore a linear combination of δY and, for

1 ≤ i ≤ 8, of ci × Ci × Ci, Ci × ci × Ci and Ci × Ci × ci. By [9], the class

of ci in CH2(Y ) is the Beauville–Voisin zero-cycle oY ; thus ci ∈ DCH2(Y ).

The cycles ci × Ci × Ci, Ci × ci × Ci and Ci × Ci × ci therefore belong to

DCH(Y ×Y ×Y ) by Proposition 3.5. Since δY is distinguished, this establishes

(�Mult), i.e., that δX is distinguished. �
5.5. (Nested) Hilbert schemes of surfaces, generalized Kummer

varieties. In this subsection, we produce a series of varieties satisfying (�).

The first series of examples is given by the Hilbert schemes and (two-step)

nested Hilbert schemes of points on a surface that satisfies (�), e.g., an abelian

surface, a Kummer surface (Proposition 5.11), a K3 surface with Picard rank

≥ 19 (Proposition 5.12), or the product of two hyperelliptic curves (Corol-

lary 5.4). Note that by a result of Cheah [13] the only nested Hilbert schemes

of a smooth surface S that are smooth are the Hilbert schemes S[n] and the

nested Hilbert schemes S[n,n+1] for n ∈ N.

Proposition 5.13. Let S be a smooth projective surface that satisfies (�).

Then, for any n ∈ N, the Hilbert scheme of length-n subschemes on S, denoted

S[n], and the nested Hilbert scheme S[n,n+1], satisfy condition (�).

The second series of example is built from an abelian surface A: the asso-

ciated Kummer K3 surface as well as its higher-dimensional generalizations.

Recall that the nth generalized Kummer variety (see [6]) is the symplectic

resolution of the quotient An+1
0 /Sn+1, where An+1

0 is the abelian variety

ker
(
+ : An+1 → A

)
, upon which the symmetric group acts naturally by per-

mutations.

Proposition 5.14. For any n ∈ N, the generalized Kummer variety Kn(A)

associated to an abelian surface A satisfies condition (�).

The proofs of Propositions 5.13 and 5.14 will be given concomitantly in full

in §5.5.2. Note that the case of Kummer surfaces (which are the generalized

Kummer varieties of dimension 2) was already treated in Proposition 5.11. We

start by recalling some results of de Cataldo and Migliorini [15] concerning the

motives of Hilbert schemes of surfaces, or more generally that of a semismall

resolution.

5.5.1. The motive of semismall resolutions. Recall that a morphism

f : Y → X is called semismall if for all integer k ≥ 0, the codimension of the

locus
{
x ∈ X : dim f−1(x) ≥ k

}
is at least 2k. In particular, f is generically

finite. In [15], assuming f : Y → X is a semismall resolution with Y smooth
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and projective, de Cataldo and Migliorini computed the Chow motive of Y in

terms of the Chow motives of projective compactifications of relevant strata

of f provided these are finite group quotients of smooth varieties; we refer

to [15] for a precise statement. In our case of interest, this has the following

consequence. Suppose S is a smooth projective surface and suppose A is an

abelian surface. Let us make some standard construction and fix the notation.

Given a partition λ = (λ1 ≥ · · · ≥ λ|λ|) = (1a1 · · ·nan) of a positive integer

n where ai = #{j : 1 ≤ j ≤ n;λj = i} and where |λ| := a1 + · · ·+ an denotes

the length of λ, we define Sλ := Sa1
× · · · ×San

. We define Sλ to be S|λ|,

equipped with the natural action of Sλ and with the natural morphism to

S(n) by sending (x1, . . . , x|λ|) to
∑|λ|

j=1 λj [xj ]. We denote the quotient

S(λ) := Sλ/Sλ  S(a1) × · · · × S(an)

and we define the incidence correspondence

Γλ := (S[n] ×S(n) Sλ)red ⊂ S[n] × Sλ.

The correspondence Γ(λ) ⊂ S[n]×S(λ) is then the quotient Γλ/Sλ. Similarly,

the correspondence Γ
(λ,j)
1 ⊂ S[n,n+1] × S(λ) × S is defined to be the incidence

subvariety

Γ
(λ,j)
1 :=

{
(ξ ⊂ ξ′, z, x) | (ξ, z) ∈ Γ(λ) ;x = ξ′/ξ has multiplicity ≥ j in ξ

}
.

For an integer a ≥ 0, the motive of the quotient S(a) is thought of as the di-

rect summand of the motive of Sa with respect to the idempotent 1
a!

∑
σ∈Sa

σ.

When S = A is an abelian surface, this idempotent is symmetrically distin-

guished, while in the case when S is a smooth projective surface satisfying

(�) it is also distinguished (see Remark 4.2). In the case S = A is an abelian

surface, taking the fiber over 0 of the sum map An → A and of the sum map

composed with the Hilbert–Chow morphism A[n] → A(n) → A, we define

likewise Aλ
0 , A

(λ)
0 ,Γλ

0 , and Γ
(λ)
0 .

Then the strata associated to the semismall resolutions

S[n] → S(n), Kn−1(A) → A
(n)
0 , and S[n,n+1] → S(n) × S

are indexed by the set P(n) of partitions of n in the first two cases and∐
λ∈P(n) Iλ with Iλ = {0}

∐
{j | aj �= 0} in the last case; and we have

morphisms (in fact, isomorphisms by Theorem 5.15 below) of Chow motives

(8) Γ :=
⊕

λ∈P(n)

Γ(λ)
h(S[n]) −→

⊕
λ∈P(n)

h(S(λ))(|λ| − n),

(9) Γ0 :=
⊕

λ∈P(n)

Γ
(λ)
0 h(Kn−1(A)) −→

⊕
λ∈P(n)

h(A
(λ)
0 )(|λ| − n),
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(10) Γ1 :=
⊕

λ∈P(n)

⊕
j∈Iλ

Γ
(λ,j)
1 h(S[n,n+1])

−→
⊕

λ∈P(n)

⊕
j∈Iλ

h(S(λ) × S)(|λ| − n− δ0,j),

where δ0,j is 0 if j = 0 and is 1 if j �= 0.

Theorem 5.15 (de Cataldo and Migliorini). The morphisms of Chow mo-

tives Γ, Γ0, and Γ1 are isomorphisms with inverses given, respectively, by

Γ′ :=
∑

λ∈P(n)

1

mλ

tΓ(λ), Γ′
0 :=

∑
λ∈P(n)

1

mλ

tΓ
(λ)
0

and

Γ′
1 :=

∑
λ∈P(n)

∑
j∈Iλ

1

mλ,j

tΓ
(λ,j)
1 ,

where the superscript “ t” indicates transposition, and also where mλ :=

(−1)n−|λ| ∏|λ|
i=1 λi and mλ,j := (−1)n−|λ|aj

∏|λ|
i=1 λi are nonzero constants,

where aj = 1 if j = 0 and aj = #{i : 1 ≤ i ≤ n ;λi = j} if j �= 0.

Proof. The proof that the morphism (8) is an isomorphism with inverse

given by Γ′ can be found in [14] (or [15]), the proof that the morphism (9) is an

isomorphism with inverse given by Γ′
0 can be found in [20, Corollary 6.3], and

the proof that the morphism (10) is an isomorphism in [15, Theorem 3.3.1],

while the fact that its inverse is given by Γ′
1 follows from the proof of [15,

Theorem 2.3.8]. �
5.5.2. Proof of Propositions 5.13 and 5.14. The argument is based

on Voisin’s universally defined cycle theorem on self-products of surfaces [51,

Theorem 5.12]. Let us write X for either (i) the Hilbert scheme of length-

n subschemes on a surface S satisfying (�) (Proposition 5.13), (ii) the nth

nested Hilbert scheme of a surface S satisfying (�) (Proposition 5.13), or (iii)

a generalized Kummer variety Kn(A) (Proposition 5.14). We are going to

show that the markings given by (8), (9), and (10) satisfy (�). For that

purpose, we have to show that the class of the small diagonal δX (resp., the

Chern classes of X) are mapped in cases (i) and (ii) to a distinguished cycle

on self-products of S under the correspondences Γ⊗ Γ⊗ Γ and Γ1 ⊗ Γ1 ⊗ Γ1

(resp., Γ and Γ1), where Γ (resp., Γ1) is the isomorphism (8) (resp., (10)),

and in case (iii) to a symmetrically distinguished cycle on an a.t.t.s. under the

correspondence Γ0 ⊗ Γ0 ⊗ Γ0 (resp., Γ0), where Γ0 is the isomorphism (9).

In cases (i) and (ii), one argues as in [48, §3.2] or as in [20, Proposition 5.7].

The main idea is that, thanks to Voisin’s theorem [51, Theorem 5.12], Γ∗ci(X)

and (Γ⊗ Γ⊗ Γ)∗δX (resp., Γ1,∗ci(X) and (Γ1 ⊗ Γ1 ⊗ Γ1)∗δX) are cycles that

are polynomials in pull-backs along projections of Chern classes of S and the
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diagonal ΔS . Since S is assumed to satisfy (�), diagonals and Chern classes

are distinguished, and hence the above cycles are all distinguished.

In case (iii), this is achieved for the small diagonal by arguing as in the

proof of [20, Proposition 6.12] and for the Chern classes as in the proof of

[20, Proposition 7.13]. A key point to establish (�Mult) is that the small

diagonal δKn(A) is the restriction of the small diagonal δA[n+1] under the 3-

fold product of the inclusion Kn−1(A) → A[n]. The proof of (�Chern) is similar

once one has observed that the Chern classes ci(Kn−1(A)) are the restrictions

of the Chern classes ci(A
[n]). One cannot invoke Voisin’s theorem directly

here, and one has to utilize the commutativity of the following diagram, whose

squares are all cartesian and without excess intersections:

(A[n])3

�

Γλ × Γμ × Γν

�

p′′
�� q′′ �� Aλ ×Aμ ×Aν

(A[n])3/A

�

��

��

Γλ ×A Γμ ×A Γν

�

p′
�� q′ ��

��

��

Aλ ×A Aμ ×A Aν
��

j

��

Kn−1(A)3
��

��

Γλ
0 × Γμ

0 × Γν
0

��

��

p�� q �� Aλ
0 ×Aμ

0 ×Aν
0

��
i

��

Here λ, μ, ν are partitions of n; all fiber products in the second row are over

A; the second row is the base change by the inclusion of the small diagonal

A ↪→ A3 of the first row; the third row is the base change by {OA} ↪→ A of

the second row.

We need to show that (Γλ
0 ×Γμ

0 ×Γν
0)∗(δKn−1(A)) = q∗p

∗(δKn−1(A)) is sym-

metrically distinguished on the a.t.t.s. Aλ
0 ×Aμ

0 ×Aν
0 for all partitions λ, μ, ν

of n.

As in the proof of [20, Proposition 6.12], we have, thanks to [20, Lemma

6.6], that Aλ ×A Aμ ×A Aν and Aλ
0 × Aμ

0 × Aν
0 are naturally disjoint unions

of a.t.t.s.’s and the inclusions i and j are morphisms of a.t.t.s.’s on each

component in the sense of Definition 1.10.

Denote δA[n]/A the small diagonal inside the relative fiber product (A[n])3/A.

Now by functorialities and the base change formula (cf. [22, Theorem 6.2]),

we have

j∗ ◦ q′∗ ◦ p′∗(δA[n]/A) = q′′∗ ◦ p′′∗(δA[n]),

which is a polynomial of big diagonals of A|λ|+|μ|+|ν| by Voisin’s result [51,

Proposition 5.6], thus symmetrically distinguished in particular. By [20,

Lemma 6.10], q′∗ ◦ p′∗(δA[n]/A) is symmetrically distinguished on each
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component of Aλ ×A Aμ ×A Aν . Again by functorialities and the base change

formula, we have

q∗ ◦ p∗(δKn−1(A)) = i∗ ◦ q′∗ ◦ p′∗(δA[n]/A).

Since i is a morphism of an a.t.t.s. on each component, one concludes that

q∗ ◦ p∗(δKn−1(A)) is symmetrically distinguished on each component, which

concludes the proof. �
Remark 5.16 (Self-dual multiplicative Chow–Künneth decomposition for

nested Hilbert schemes). The arguments of the proof of Proposition 5.13 can

be used to show that if a smooth projective surface S has a self-dual multi-

plicative Chow–Künneth decomposition (see Section 6 for the definition), then

so do the nested Hilbert schemes S[n,n+1]. Thus one may add the operation

of taking nested Hilbert schemes of surfaces to [44, Theorem 2].

6. Link with multiplicative Chow–Künneth decompositions

A Chow–Künneth decomposition on a smooth projective variety X of di-

mension d is a set {πi
X : 0 ≤ i ≤ 2d} of mutually orthogonal idempotent

correspondences in X ×X that add up to ΔX and whose cohomology classes

in H2d(X ×X) are the components of the diagonal in H2d−i(X)⊗Hi(X) for

the Künneth decomposition. The notion of Chow–Künneth decomposition

was introduced by Murre, who conjectured that all smooth projective vari-

eties should admit such a decomposition [36]. Murre’s conjecture is intimately

linked to the conjectures of Beilinson and Bloch; cf. [2].

The notion of multiplicative Chow–Künneth (MCK) decomposition was

introduced in [43] and further studied in [20], [44], [48], and [19]. A Chow–

Künneth decomposition {πi
X : 0 ≤ i ≤ 2d} on a smooth projective variety

X of dimension d induces a bigrading decomposition of the Chow groups of

self-powers of X via the formula

(11) CHi(Xn)(j) := (π2i−j
Xn )∗CH

i(Xn),

where by definition Xn is endowed with the product Chow–Künneth decom-

position

πk
Xn :=

∑
k1+···+kn=k

πk1

X ⊗ · · · ⊗ πkn

X .
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A Chow–Künneth decomposition {πi
X : 0 ≤ i ≤ 2d} is multiplicative if δX

belongs to CH2d(X × X × X)(0). As pointed out by the referee, this multi-

plicative condition implies24 that the diagonal ΔX belongs to CHd(X×X)(0),

or, equivalently, that the Chow–Künneth decomposition {πi
X : 0 ≤ i ≤ 2d}

is self-dual, meaning that πi
X = tπ2d−i

X for all i. (In particular, the above

remark makes it possible to simplify some of the arguments of [44, §3].) The

existence of a multiplicative Chow–Künneth decomposition forX ensures that

CH∗(X)(0) defines a graded subalgebra of CH∗(X). Finally, a natural condi-

tion that appeared in [44] is that the Chern classes of X belongs to CH∗(X)(0).

As is apparent from the above and from the previous sections, the theory for

DCH∗ is in every way similar to that of CH∗(−)(0) (compare with [44]).

According to Murre’s conjecture (D), for any choice of a Chow–Künneth

decomposition {πi
X : 0 ≤ i ≤ 2d}, we should have that the restriction of

the projection morphism CH∗(X) → CH
∗
(X) to CH∗(X)(0) is an isomor-

phism; see [36]. Thus conjecturally the existence of a self-dual multiplicative

Chow–Künneth decomposition for X provides a splitting to the algebra ho-

momorphism CH∗(X) → CH
∗
(X), in the same that a marking that satisfies

(�) does.

Proposition 6.1 ((�) and MCK decomposition). Let X be a smooth pro-

jective variety with a marking φ that satisfies (�Mult). Then X has a self-dual

multiplicative Chow–Künneth decomposition with the property that

DCH∗
φ⊗n(Xn) ⊆ CH∗(Xn)(0). Moreover, equality holds if Murre’s conjecture

(D) in [36] is true.

Proof. The proof of Proposition 4.1 shows that if X and Y are two smooth

projective varieties each endowed with markings satisfying (�Mult), then the

product marking on X × Y also satisfies (�Mult). Moreover, the graphs of the

projection morphisms are distinguished for the product markings. Therefore,

the composition of distinguished correspondences is distinguished.

Let A be an abelian variety, and let p ∈ DCH(A × A) be a symmet-

rically distinguished projector. The Deninger–Murre Chow–Künneth pro-

jectors πi
A in [16] of A are symmetrically distinguished. Since the Chow–

Künneth projectors are central modulo homological equivalence, we see that

p◦πi
A = πi

A◦p ∈ CH∗(A×A) and in particular that these provide distinguished

Chow–Künneth projectors for (A, p).

24Indeed, if a is the structural morphism of X, we have a∗◦π2d
X ∗ = a∗, so that projecting

δX = (π4d
X3)∗δX onto X × X gives ΔX = (π2d

X2 )∗ΔX . From the latter, it follows that

πi
X = (ΔX ⊗πi

X)∗ΔX = (π2d−i
X ⊗πi

X)∗ΔX = (π2d−i
X ⊗ΔX)∗ΔX = tπ2d−i

X ; and conversely

from πi
X = tπ2d−i

X for all i, it follows that ΔX =
∑

i π
i
X ◦ πi

X =
∑

i(
tπi

X ⊗ πi
X)∗ΔX =

∑
i(π

2d−i
X ⊗ πi

X)∗ΔX = (π2d
X2 )∗ΔX .
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It follows that, assuming X has a marking φ that satisfies (�Mult), X ad-

mits a distinguished Chow–Künneth decomposition. We conclude that X has

a self-dual multiplicative Chow–Künneth decomposition by noting that since

a Künneth decomposition is always self-dual and multiplicative, any distin-

guished Chow–Künneth decomposition is self-dual and multiplicative.

Finally, the inclusion DCH∗
φ⊗n(Xn) ⊆ CH∗(Xn)(0) is due to the follow-

ing three facts: the product Chow–Künneth decomposition {πi
Xn} is distin-

guished, the cycle (πi
Xn)∗α is homologically trivial (and hence numerically

trivial) for all α ∈ CHj(Xn) and all i �= 2j, and (πi
Xn)∗α is distinguished if α

is as well. Murre’s conjecture (D) forXn stipulates that CHi(Xn)(0) should in-

ject in cohomology via the cycle class map, and in particular that the surjective

quotient morphism CHi(Xn) → CH
∗
(Xn) is an isomorphism when restricted

to CHi(XN )(0). Since the quotient morphism is surjective when restricted to

DCH∗
φ⊗n(Xn), Murre’s conjecture implies DCH∗

φ⊗n(Xn) = CH∗(Xn)(0). �

7. Varieties with motive of abelian type that do not satisfy (�)

The previous sections raise the question of determining a natural class of

varieties which satisfy condition (�) of Definition 3.7 or, more weakly, the

Section Property. Beyond the case of hyper-Kähler varieties, which we expect

to satisfy the Section Property, the answer is unfortunately not clear to us

at this stage. To give some hint, in this section we provide some examples of

varieties with motive of abelian type (i.e., in M ab) which fail to satisfy (�)

and/or the Section Property.

7.1. The Ceresa cycle and condition (�). Let C be a smooth projec-

tive curve. In this section we give a necessary condition on the Ceresa cycle

of C for C to admit a marking that satisfies (�). In fact, we give a necessary

condition on the Ceresa cycle of C for C to admit a self-dual multiplicative

Chow–Künneth decomposition; see Proposition 6.1.

Fix a zero-cycle α of degree 1 on C, and denote ι : C → J(C) as the

Abel–Jacobi map which maps a point c ∈ C to the divisor class [c] − α. We

denote [C] as the class of the image of C under ι. Denote [k] : J(C) → J(C)

as the multiplication-by-k homomorphism. The Ceresa cycle is then the one-

cycle [C] − [−1]∗[C]; it is numerically trivial, and its class modulo algebraic

equivalence does not depend on the choice of the degree 1 zero-cycle α.

Proposition 7.1. Let C be a smooth projective curve. If C has a self-

dual multiplicative Chow–Künneth decomposition, then the Ceresa cycle is

algebraically trivial.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

DISTINGUISHED CYCLES AND THE SECTION PROPERTY 103

Proof. Since a smooth projective curve has finite-dimensional motive in the

sense of Kimura [26], any idempotent that is homologically equivalent to the

Künneth projector on H0(C) is rationally equivalent to α×C for some zero-

cycle α of degree 1. Thus if C has a self-dual multiplicative Chow–Künneth

decomposition, it must be of the form π0
C := α×C, π2

C := C×α, π1
C := ΔC −

π0
C−π2

C for some zero-cycle α of degree 1. According to [43, Proposition 8.14]

this decomposition is multiplicative if and only if the modified diagonal cycle

z := δC − {(x, x, α)} − {(x, α, x)} − {(α, x, x)}+ {(x, α, α)}
+ {(α, x, α)}+ {(α, α, x)}

is zero in CH1(C×C×C). Now we argue as in the proof of [9, Proposition 3.2].

Let ι : C → J(C) be the Abel–Jacobi map which maps a point c ∈ C to the

divisor class [c] − α, and let ι3 : C3 → J(C) be the map deduced from ι by

summation. We have

(ι3)∗(z) = [3]∗[C]− 3[2]∗[C] + 3[C] = 0 in CH1(J(C)).

According to the Beauville decomposition [7], we have

CH1(J(C)) = CH1(J(C))(0) ⊕ · · · ⊕ CH1(J(C))(g−1),

where g is the dimension of J(C), and where [k]∗ acts on CH1(J(C))(s) by

multiplication by k2+s. Since 32+s − 3 · 22+s + 3 > 0 for s > 0, we find

that [C] belongs to CH1(J(C))(0). In particular, taking k = −1, we see

that [C] − [−1]∗[C] = 0 in CH1(J(C)), and hence that the Ceresa cycle is

algebraically trivial. �
7.2. A very general curve of genus > 2 does not satisfy (�). Al-

though motives of curves are of abelian type, they do not necessarily have a

marking that satisfies (�).

Proposition 7.2. Let C be a curve, and let α be a degree 1 zero-cycle

on C. If C is very general of genus > 2, then the self-dual Chow–Künneth

decomposition π0
C := α × C, π2

C := C × α, π1
C := ΔC − π0

C − π2
C is not

multiplicative, and C does not satisfy (�).

Proof. Ceresa [12] proves that the Ceresa cycle of a very general curve

of genus > 2 is not algebraically trivial. The proposition then follows from

Proposition 7.1 (together with Proposition 6.1). �
Remark 7.3. This example involving the Ceresa cycle is mentioned in

[38, §6.3].
7.3. The Fermat quartic curve does not satisfy (�).

Proposition 7.4. Let C be a Fermat curve of degree d with d ≥ 4, and let

α be a zero-cycle of degree one on C. If d ≤ 1000, then the self-dual Chow–

Künneth decomposition π0
C := α × C, π2

C := C × α, π1
C := ΔC − π0

C − π2
C is

not multiplicative, and C does not satisfy (�).
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Proof. B. Harris [23] and S. Bloch [11] prove that the Ceresa cycle of quartic

Fermat curves is algebraically nontrivial, and Otsubo [39] proves that the

Ceresa cycle of Fermat curves of degree 4 ≤ d ≤ 1000 is not algebraically

trivial. We can now apply Proposition 7.1 (together with Proposition 6.1). �
7.4. Varieties with motive of abelian type that do not admit a

section. By considering a K3 surface of Picard rank ≥ 19, the following

proposition provides a simple example of a variety X whose motive is of

abelian type but for which the Q-algebra epimorphism CH(X) � CH(X)

does not admit a section. In particular, by Proposition 3.12, such a variety

X does not satisfy (�).

Proposition 7.5. Let S be a complex K3 surface, and let P be a point of

S not representing the Beauville–Voisin zero-cycle. Denote by S̃ the blow-up

of S along P . Then the Q-algebra epimorphism CH(S̃) � CH(S̃) does not

admit a section.

Proof. The theorem of Beauville–Voisin [9] asserts that

Im(CH1(S)⊗CH1(S) → CH2(S)) has rank one and is spanned by the class of

any point lying on a rational curve on S. Such a class is called the Beauville–

Voisin zero-cycle. Since dimQ CH2(S) = ∞, there exists a point P on S whose

class is not rationally equivalent to the Beauville–Voisin zero-cycle. It is then

straightforward to check that Im(CH1(S̃) ⊗ CH1(S̃) → CH2(S̃)) has rank 2

and is spanned by the class of P and the Beauville–Voisin zero-cycle. Since

CH1(S̃) � CH
1
(S̃) is an isomorphism, if CH(S̃) � CH(S̃) had a section, then

Im(CH1(S̃) ⊗ CH1(S̃) → CH2(S̃)) would have rank 1 (equal to rkCH
2
(S̃)).

This is a contradiction. �
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(French, with French summary), Astérisque 299 (2005), Exp. No. 929, viii, 115–145.
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