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The generalized Franchetta conjecture for hyper-Kähler varieties predicts that an 
algebraic cycle on the universal family of certain polarized hyper-Kähler varieties 
is fiberwise rationally equivalent to zero if and only if it vanishes in cohomology 
fiberwise. We establish Franchetta-type results for certain low (Hilbert) powers of 
low degree K3 surfaces, for the Beauville–Donagi family of Fano varieties of lines on 
cubic fourfolds and its relative square, and for 0-cycles and codimension-2 cycles for 
the Lehn–Lehn–Sorger–van Straten family of hyper-Kähler eightfolds. We also draw 
many consequences in the direction of the Beauville–Voisin conjecture as well as 
Voisin’s refinement involving coisotropic subvarieties. In the appendix, we establish 
a new relation among tautological cycles on the square of the Fano variety of lines 
of a smooth cubic fourfold and provide some applications.
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r é s u m é

La conjecture généralisée de Franchetta pour les variétés hyper-Kählériennes prédit 
que la restriction à une fibre d’un cycle algébrique défini sur la famille universelle de 
certaines variétés hyper-Kählériennes est rationnellement triviale si et seulement si 
elle est homologiquement triviale. Nous établissons des résultats de type Franchetta 
pour certaines puissances de bas degré de surfaces K3 de bas degré, pour la famille 
de Beauville–Donagi des variétés de Fano de droites sur les cubiques lisses de dimen-
sion 4 et leur carré relatif, et pour les 0-cycles et les cycles de codimension 2 pour 
la famille de variétés hyper-Kählériennes de Lehn–Lehn–Sorger–van Straten. Nous 
en déduisons également de nombreuses conséquences concernant la conjecture de 
Beauville–Voisin, ainsi que sa généralisation due à Voisin incluant les sous-variétés 
co-isotropes. Dans l’appendice, nous établissons une nouvelle relation parmi les 
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cycles tautologiques sur le carré de la variété de Fano des droites d’une hypersurface 
cubique lisse de dimension 4 et fournissons des applications.

© 2019 Elsevier Masson SAS. All rights reserved.

1. Introduction

The original Franchetta conjecture [14] (proven in [21], see also [29] and [2]) states the following:

Theorem 1.1 ([14], [21], [29], [2]). For an integer g ≥ 2, let Mg be the moduli stack of smooth projective 
curves of genus g, and let C → Mg be the universal curve. Then for any line bundle L on C and any closed 
point b ∈ Mg, the restriction of L to the fiber Cb is a multiple of the canonical bundle of Cb.

In the case of the universal family of K3 surfaces S → Fg, where Fg is the moduli stack of polarized K3 
surfaces of genus g, O’Grady proposed in [37] the following analogue of the Franchetta conjecture. Recall 
that the Beauville–Voisin class ([7]) of a projective K3 surface S is the degree-1 0-cycle class oS with support 
any closed point lying on a rational curve of the K3 surface. It enjoys the property that the intersection 
of any two divisors, as well as the second (Chow-theoretic) Chern class of S, are multiples of oS. In the 
sequel, the Chow groups of stacks are the ones defined in Vistoli [45] (see also Kresch [24]) and are always 
considered with rational coefficients.

Conjecture 1.2 (O’Grady [37]). Notation is as above. Then for any algebraic cycle z ∈ CH2(S) and any 
point b ∈ Fg, the restriction of z to the fiber K3 surface Sb is a multiple of the Beauville–Voisin class of Sb.

Using Mukai models, Conjecture 1.2 is verified in [38] for K3 surfaces of genus g ≤ 10 and g =
12, 13, 16, 18, 20. Otherwise, Conjecture 1.2 is still wide open.

The main goal of the paper is to investigate the following higher-dimensional analogue of O’Grady’s 
Conjecture 1.2 concerning projective hyper-Kähler varieties. Recall that a smooth projective variety is 
called hyper-Kähler or irreducible holomorphic symplectic, if it is simply connected and H2,0 is generated 
by a nowhere degenerate holomorphic 2-form.

Conjecture 1.3 (Generalized Franchetta conjecture, cf. [8]). Let F be the moduli stack of a locally complete 
family of polarized hyper-Kähler varieties, and let X → F be the universal family. For any z ∈ CH∗(X )Q, 
if its restriction to a very general fiber is homologically trivial then its restriction to any fiber is (rationally 
equivalent to) zero.

Here, F and X are assumed to exist in the category of smooth Deligne–Mumford stacks. If one prefers 
to avoid stacks, one can add some level structure and obtain a universal family in the category of quasi-
projective varieties, cf. [8, Section 3.4].

We note that a cycle is homologically trivial when restricted to a very general fiber if and only if it is 
homologically trivial when restricted to any fiber. Given any smooth family of projective varieties X → F
with F smooth, we will say that X → F satisfies the Franchetta property if for any z ∈ CH∗(X )Q which is 
fiberwise homologically trivial, its restriction to any fiber is (rationally equivalent to) zero.

Although it would seem optimistic2 that Conjecture 1.3 could hold more generally for self-products of 
hyper-Kähler varieties – i.e., X ×F · · · ×F X → F satisfies the Franchetta property in the sense above – 
we may nevertheless ask, given a locally complete family X → F of polarized hyper-Kähler varieties, for 

2 When g ≥ 4, the relative square of the universal curve of genus g does not satisfy the Franchetta property because the degree-0 
0-cycle p∗

1KC · p∗
2KC − deg(KC)p∗

1KC · ΔC is not rationally trivial for C very general of genus g ≥ 4; see [20].
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which integers n does Xn/F satisfy the Franchetta property. We provide some results in that direction in 
Theorems 1.4, 1.5, 1.10 and 1.11 below.

Recently, Bergeron and Li [8, Theorem 8.1.1] have proven the cohomological version of the generalized 
Franchetta Conjecture 1.3 for relative 0-cycles when the second Betti number is sufficiently large, which is 
an important support in favor of the conjecture, at least for 0-cycles.

Let us also mention that Conjecture 1.3 is closely related to the so-called Beauville–Voisin conjecture 
and its refinement (see Conjectures 2.3 and 2.4). On the one hand, the proof of some of our main results 
actually uses some known cases of the Beauville–Voisin conjecture (especially [47]); on the other hand, the 
generalized Franchetta conjecture implies the part of the Beauville–Voisin conjecture involving only Chern 
classes and the polarization, see Proposition 2.5.

We outline the main results of the paper, which provide more evidence for the generalized Franchetta 
conjecture.

1.1. Powers and Hilbert powers of some K3 surfaces

We can establish Franchetta-type results for the relative squares and cubes, as well as the relative Hilbert 
squares and Hilbert cubes, of the universal family of K3 surfaces which are complete intersections in pro-
jective spaces.

Theorem 1.4. Let M be the moduli stack of smooth K3 surfaces of genus g = 3, 4 or 5, and let S → M
be the universal family. Let X be S ×M S, S ×M S ×M S, Hilb2

M S, S ×M Hilb2
M S or Hilb3

M S. For any 
cycle z ∈ CH∗(X )Q and any point b ∈ M, the restriction of z to the fiber Xb is zero if and only if it is 
numerically trivial.

The proof will be given in §4 for squares and Hilbert squares and in §5.2 for the other cases. We note 
that, thanks to the result of de Cataldo and Migliorini [11], the crucial cases are the self-products S ×M S, 
S ×M S ×M S.

By pushing our techniques further (cf. §5.1), we can also treat some other cases of (Hilbert) powers of 
K3 surfaces:

Theorem 1.5. The following families satisfy the Franchetta property:

(i) S ×M S, Hilb2
M S, S ×M S ×M S, S ×M Hilb2

M S and Hilb3
M S, where S → M is the universal family 

of smooth K3 surfaces of genus 2 (double planes).
(ii) Hilbr1

M S ×M · · · ×M Hilbrm
M S, where S → M is the universal family of smooth quartic K3 surfaces 

and r1 + · · · + rm ≤ 5.
(iii) The relative square and relative Hilbert square of the universal family of K3 surfaces of genera 

6, 7, 8, 9, 10, 12.

The proof will be given in §5.3, where these results are just special cases of the more general but more 
technical Theorem 5.8. See also Remark 5.9 which explains that the ranges in Theorems 1.4 and 1.5 above 
are, at least most of them, already at the limit of our method.

As immediate consequences, we obtain some partial confirmation of Voisin’s refinement of the Beauville–
Voisin conjecture involving coisotropic subvarieties (Conjecture 2.4):

Corollary 1.6. Let S be a general K3 surface of genus g ≤ 10 or 12, and let X be the Hilbert square 
X = Hilb2(S). Let R∗(X) ⊂ CH∗(X)Q denote the Q-subalgebra generated by the polarization class h, the 
Chern classes ci, and the Lagrangian surface T ⊂ X constructed in [22, Proposition 4]. Then R∗(X) injects 
into cohomology by the cycle class map.
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Corollary 1.7. Let S ⊂ P3 be a quartic K3 surface, and let X = Hilb5 S, Hilb2 S×Hilb2 S×S, Hilb2 S×S3 or 
Hilb2 S×Hilb3 S. Let R∗(X) ⊂ CH∗(X)Q denote the Q-subalgebra generated by the polarization class h, the 
Chern classes ci, the coisotropic subvarieties Eμ of [50, 4.1 item 1)], the Lagrangian surface T ⊂ Hilb2 S

constructed in [22, Proposition 4], and the surface of bitangents U ⊂ Hilb2 S. Then R∗(X) injects into 
cohomology by the cycle class map.

These two corollaries are proven in §5.3 and also partially extended to products of Hilbert schemes in 
Corollary 5.10. A similar application to a 19-dimensional family of double EPW sextics is given in §5.5.

Another consequence, whose proof as well as the background is in §5.6, concerns the Bloch conjecture 
for the anti-symplectic involution on Hilbert squares of quartic surfaces constructed by Beauville [3]:

Corollary 1.8. Let X = Hilb2 S be the Hilbert square of a quartic K3 surface S, and let ι : X → X be the 
anti-symplectic involution of Beauville [3]. Then

ι∗ = − id : CHi(X)(2) → CHi(X)(2) (i = 2, 4) ,

ι∗ = id: CH4(X)(j) → CH4(X)(j) (j = 0, 4) .

(Here, the notation CH∗(X)(∗) refers to the Fourier decomposition of CH∗(X)Q constructed by Shen–Vial 
[40].)

1.2. The Beauville–Donagi family

For the universal family of Fano varieties of lines of cubic fourfolds, which form a locally complete family 
of projective hyper-Kähler fourfolds of K3[2]-type ([6]), we have the following slightly stronger result than 
predicted by Conjecture 1.3:

Theorem 1.9. Let C be the moduli stack of smooth cubic fourfolds, X → C the universal family and F → C be 
the universal family of Fano varieties of lines of the fibers of X/C. Then for any i ∈ N, any z ∈ CHi(F)Q
and any b ∈ C, the restriction of z to the fiber Fb is numerically trivial if and only if it is (rationally 
equivalent to) zero.3

In order to study the next case (Theorem 1.11), we also prove the following analogous result on the 
relative square of the universal family of Fano varieties of lines:

Theorem 1.10. Notation is as in Theorem 1.9. Then for z ∈ CHi(F ×C F)Q and any b ∈ C, the restriction 
of z to the fiber Fb × Fb is numerically trivial if and only if it is (rationally equivalent to) zero.4

The proof of Theorem 1.9 (resp. Theorem 1.10) consists of two steps. First we show that cycles that 
belong to the image of the restriction map CHi(F)Q → CHi(Fb)Q (resp. CHi(F ×C F)Q → CHi(Fb×Fb)Q) 
are tautological in the sense of Remark 3.3 (resp. Definition 6.2). Second we show that relations among 
tautological cycles modulo numerical equivalence in fact hold modulo rational equivalence. More precisely, 
we determine completely in terms of generators and relations the rings of tautological cycles for Fb and 
Fb × Fb. In the case of Fb × Fb, all relations but one had been established in [47] and [40]. The remaining 

3 In fact, we show that the restriction of CH∗(F)Q to CH∗(Fb)Q is the tautological subring, which is defined as the Q-subalgebra 
generated by the Plücker polarization of Fb and by the Chern classes of Fb, see Remark 3.3.
4 We actually show that the restriction of CH∗(F ×C F)Q to CH∗(Fb × Fb)Q is the tautological subring, which is defined as the 

Q-subalgebra generated by the tautological subrings of the two factors together with the classes of the diagonal and the incidence 
subvariety; see Proposition 6.3.
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relation is established in a joint appendix with Mingmin Shen, where we also draw some consequences 
concerning the multiplicative properties of the Chow motive of Fb.

1.3. The Lehn–Lehn–Sorger–van Straten family

Similarly to the Fano varieties of lines of cubic fourfolds, Lehn–Lehn–Sorger–van Straten (LLSvS) consider 
in [27] the twisted cubic curves on a cubic fourfold not containing a plane and show that the base of the 
maximal rationally connected (MRC) quotient of the moduli space of such curves is a hyper-Kähler eightfold. 
Later Addington and M. Lehn show in [1] that this hyper-Kähler eightfold is of K3[4]-deformation type (cf.
also [28]). For the universal family of LLSvS hyper-Kähler eightfolds, we have the following result, which 
confirms the 0-cycle and codimension-2 cases of the generalized Franchetta conjecture.

Theorem 1.11. Let C◦ be the moduli stack of smooth cubic fourfolds not containing a plane and let Z → C◦

be the universal family of LLSvS hyper-Kähler eightfolds ([27]). Then

(i) for any b ∈ C◦ and for any γ ∈ CH8(Z) which is fiber-wise of degree 0, the restriction of γ to the fiber 
Zb is (rationally equivalent to) zero.

(ii) for any b ∈ C◦ and for any γ ∈ CH2(Z)Q, its restriction to the fiber Zb is zero if and only if its 
cohomology class vanishes.

As a consequence, we deduce a part of the Beauville–Voisin Conjecture 2.3 as well as the refined Conjec-
ture 2.4 for LLSvS eightfolds:

Corollary 1.12. Given any smooth cubic fourfold X which does not contain a plane, let Z be the LLSvS 
hyper-Kähler eightfold associated to X. Denote by h the polarization class. Then the classes

h8, c2h
6, c22h

4, c32h
2, c42, c4h

4, c2c4h
2, c22c4, c6h

2, c2c6, c
2
4, c8 ∈ CH0(Z)Q

are all proportional, where ci := ci(TZ) is the i-th (Chow-theoretic) Chern class of the tangent bundle 
of Z. We call the generator of degree 1 in this one-dimensional subspace the canonical 0-cycle class or the
Beauville–Voisin class of Z, denoted by oZ .

More strongly, let R∗(Z) be the Q-subalgebra generated by the polarization class h, the Chern classes ci
together with the following classes of coisotropic subvarieties of Z:

• the embedded cubic fourfold X ⊂ Z ([27]);
• the space of twisted cubics contained in a general hyperplane section of X ([42]);
• the coisotropic subvarieties of codimension 1, 2, 3, 4 constructed by Voisin [50, Corollary 4.9];
• the fixed locus of the anti-symplectic involution ι of Z ([25]);
• the images by ι of all the above subvarieties.

Then R8(Z) = Q · oZ .

Conventions. All algebraic varieties are over the field of complex numbers. We work with Chow groups with 
rational coefficients. For the m-th Hilbert scheme of a surface S, the two notations S[m] and Hilbm(S) are 
used interchangeably and similarly for the relative situation. Chow groups of Deligne–Mumford stacks are 
the ones defined with rational coefficients by Vistoli [45] (there is a definition with integer coefficients by 
Kresch [24]).
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2. General remarks

2.1. Generic fiber vs. geometric fibers

There is the following slightly different version of the generalized Franchetta conjecture for hyper-Kähler 
varieties:

Conjecture 2.1. Let F be the moduli stack of certain polarized hyper-Kähler varieties and let π : X → F
be the universal family. Denote by Xη the generic fiber of π, where η = Spec(C(F)). Then the group 
CH∗(Xη)hom is zero.

Here homological equivalence is with respect to some classical Weil cohomology; for instance, étale coho-
mology or de Rham cohomology.

Lemma 2.2. Conjecture 1.3 and Conjecture 2.1 are equivalent.

Proof. Let us start by assuming Conjecture 1.3. Using [43, Lemma 2.1], the hypothesis that the restriction 
of z to the geometric generic fiber is homologically trivial implies that the restriction of z to a very general 
geometric fiber is also trivial. Now the conclusion of Conjecture 1.3 says that the restriction of z to a very 
general geometric fiber is (rationally equivalent to) zero. By the standard argument of decomposition of the 
diagonal ([9], [46], [49]), this implies the existence of a Zariski open dense subset U ⊂ F , such that z|XU

is 
zero. In particular, zη is rationally equivalent to zero.

For the other direction, since we know that CH∗(Xη)hom = 0, by restriction we can show Conjecture 1.3
for general fibers. Then a standard specialization argument allows us to conclude for all fibers. �

Thanks to Lemma 2.2, we will focus in this paper on Conjecture 1.3.

2.2. Relation to the Beauville–Voisin conjecture

As is mentioned in the introduction, the generalized Franchetta Conjecture 1.3 is very much related to 
the following Beauville–Voisin conjecture:

Conjecture 2.3 (Beauville–Voisin [5], [47]). Let X be a projective hyper-Kähler variety. Let the Beauville–
Voisin subring 〈ci(X), Pic(X)〉 be the Q-subalgebra of CH∗(X) generated by line bundles and all (Chow-
theoretic) Chern classes of TX . Then the restriction of the cycle class map to the Beauville–Voisin subring is 
injective. In other words, any polynomial of line bundles and Chern classes of X is homologically equivalent 
to zero if and only if it is rationally equivalent to zero.

The original version due to Beauville in [5], under the name of weak splitting property, contains only 
line bundles; the Chern classes of the tangent bundle are introduced by Voisin in [47]. Some active progress 
towards this conjecture has recently been made: see [5], [47], [16], [51], [39], [18, Theorem 1.14] for the known 
results and more details. More recently, Voisin [50] proposed the following stronger version of Conjecture 2.3
involving certain types of coisotropic subvarieties. Recall that a subvariety is called coisotropic if the tangent 
space at each regular point of this subvariety is a coisotropic subspace (i.e. containing its orthogonal) with 
respect to the holomorphic symplectic form. We say that a subvariety of codimension i is strongly coisotropic
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if it can be swept out by i-dimensional subvarieties that are constant cycle subvarieties of the ambient 
hyper-Kähler variety. (Naturally, a strongly coisotropic subvariety is coisotropic.)

Conjecture 2.4 (Voisin’s refinement [50]). Let X be a projective hyper-Kähler variety. Then the restriction 
of the cycle class map to the Q-subalgebra of CH∗(X) generated by line bundles, Chern classes of TX and 
strongly coisotropic subvarieties, is injective.

We would like to point out that the generalized Franchetta conjecture implies the part of the Beauville–
Voisin conjecture involving only the Chern classes of the tangent bundle and the polarization class. More 
generally it actually implies part of the refined Conjecture 2.4 once taking into account strongly coisotropic 
subvarieties which are defined universally over the moduli space (see Corollaries 1.6, 1.7, 5.11 and 1.12 for 
examples):

Proposition 2.5. Let F be a moduli space of polarized hyper-Kähler varieties. If Conjecture 1.3 holds true 
for the universal family over F , then for any member X of this family, the cycle class map restricted to the 
Q-subalgebra generated by the polarization line bundle and the Chern classes of X, is injective.

More generally, still assuming Conjecture 1.3, for any member X of this family, the cycle class map 
restricted to the Q-subalgebra generated by the algebraic cycles of X that exist universally over the moduli 
space, is injective.

Proof. For any member X and any given polynomial in the polarization line bundle and the Chern classes 
of the tangent bundle z := P (h, ci(TX)) ∈ CH∗(X) such that the cohomology class of z vanishes, we want 
to show that z = 0. Consider γ := P (h, ci(TX/F )) ∈ CH∗(X ). Clearly γ|X = z and hence γ has fiber-wise 
vanishing cohomology class. Then the generalized Franchetta Conjecture 1.3 says exactly that z is rationally 
equivalent to zero. The last assertion is more or less tautological. �
2.3. Moduli space vs. parameter space

Remark 2.6. In order to establish the generalized Franchetta conjecture (or more generally the Franchetta 
property) in some cases, it will be convenient to work over some parameter space which dominates the 
moduli stack, instead of the moduli stack itself. More precisely, keep the same notation as in Conjecture 1.3
and let B → U be a surjective morphism from some smooth parameter space B (it will often be denoted by 
B◦ in concrete situations) to some smooth Zariski dense open subset U of the moduli stack F . Denote by 
Y → B the pulled-back family of the universal family X → F . Then the generalized Franchetta conjecture 
for Y → B implies the generalized Franchetta conjecture for X → F (but not conversely).

Y

�

XU

�

X

B U F

Indeed, for any z ∈ CH∗(X ), denote by z′ ∈ CH∗(Y) its pull-back image in Y. Obviously, the hypothesis 
that the restriction of z to a very general fiber of X/F is homologically trivial implies the same thing for the 
restriction of z′ to the fibers of Y/B. The generalized Franchetta conjecture for Y/B then implies that z′

restricts to zero on each fiber of Y/B. Hence so does z for each fiber of XU → U . A specialization argument 
shows that the same thing holds for each fiber of X → F .
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3. Fano varieties of lines on cubic fourfolds

In this section, we prove Theorem 1.9, which by Remark 2.6 confirms the generalized Franchetta con-
jecture for the 20-dimensional locally complete family of polarized hyper-Kähler fourfolds constructed by 
Beauville–Donagi in [6]. The key idea of the proof is as in [48] and [38]: the universal family has very simple 
Chow groups.

We start by setting up some notations. Let V be a 6-dimensional vector space and P5 = P(V ) be its 
projectivization. The parameter space of possibly singular cubic fourfolds is given by the following projective 
space:

B := P
(
H0(P5,O(3))

)
= P(Sym3 V ∨) 	 P55.

Let B◦ ⊂ B be the open subset parameterizing smooth cubic fourfolds. We thus have the universal family 
X → B as well as the smooth family X ◦ → B◦ by base-change.

Let G := Gr(P1, P5)(= Gr(2, 6)) be the Grassmannian variety parameterizing all projective lines in P5. 
Denote by S (resp. Q) the tautological rank 2 subbundle (resp. rank 4 quotient bundle), fitting into the 
following short exact sequences of vector bundles over G:

0 → S → OG ⊗ V → Q → 0.

Note that for any equation f ∈ Sym3 V ∨, the above short exact sequence gives a section sf of the vector 
bundle Sym3 S∨, whose zero locus (sf = 0) is exactly the Fano variety of lines of the cubic fourfold defined 
by f .

Consider the incidence subvariety F in B ×G defined by

F := {([f ], l) ∈ B ×G | f |l = 0} ,

together with the two natural projections:

F
pπ

B G

It is easy to see that π : F → B is the universal Fano variety of lines of fibers of X/B and that p : F → G

is a projective bundle whose fiber over a line l ∈ G parameterizes all (possibly singular) cubic fourfolds 
containing l.

As in [38, Lemma 2.1], we have the following:

Lemma 3.1. For any b ∈ B, the following two images of restriction maps are the same:

Im (CH∗(F) → CH∗(Fb)) = Im (CH∗(G) → CH∗(Fb)) .

Proof. The inclusion “⊇” is trivial (we have the factorization Fb ↪→ F → G).
Let us show the inverse inclusion. Given any cycle z ∈ CH∗(F), we have by the projective bundle formula

z =
∑
k≥0

p∗(zk) · ξk,

where zk ∈ CH∗(G) and ξ = c1 (Op(1)). As in [38, Lemma 2.1], we easily check that ξ is a linear combination 
of cycles pulled back from B by π and cycles pulled back from G by p. Hence z is a polynomial of cycles of 
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the form p∗(α) and π∗(β). The latter type being zero when restricted to any fiber Fb, the restriction of z
to Fb is therefore the restriction of some cycle of G. �
Lemma 3.2. For any b ∈ B◦,

Im (CH∗(G) → CH∗(Fb)) ⊆ 〈ci(Fb),Pic(Fb)〉,

where the right hand side is the Beauville–Voisin subring of CH∗(Fb) generated (as a Q-algebra) by line 
bundles and all Chern classes of the tangent bundle of Fb.

Proof. Since CH∗(G) is generated (as a Q-algebra) by c1(S∨) and c2(S∨), it suffices to show that both of 
their restrictions to Fb lie in the Beauville–Voisin ring. The first one being a line bundle, it remains to show 
that c2(S∨|Fb

) ∈ 〈ci(Fb), Pic(Fb)〉. However, using the short exact sequence

0 → TFb
→ TG|Fb

→ Sym3 S∨|Fb
→ 0

together with the isomorphism TG 	 S∨ ⊗Q, one finds that

ch(TFb
) = ch(S∨|Fb

) (6 − ch(S|Fb
)) − ch

(
Sym3 S∨|Fb

)
,

and hence c2(TFb
) = −ch2(TFb

) = 5c1(S∨|Fb
)2 − 8c2(S∨|Fb

). Therefore c2(S∨|Fb
) also belongs to the 

Beauville–Voisin ring.5 �
We can now easily conclude:

Proof of Theorem 1.9. Let z be an element in CH∗(C). For any b ∈ B◦, thanks to Lemma 3.1, z|Fb
is the 

restriction of some cycle from G, which must lie in the Beauville–Voisin ring 〈ci(Fb), Pic(Fb)〉 by Lemma 3.2. 
Now the equivalence between homological triviality and rational triviality of z|Fb

is a consequence of Voisin’s 
result [47, Theorem 1.4(ii)] saying that the cycle class map restricted to the Beauville–Voisin ring is injective. 
Finally, numerical equivalence and homological equivalence coincide for Fano varieties of lines of cubic 
fourfolds by [10]. �
Remark 3.3. In fact, the above proof shows that the restriction of a cycle z ∈ CH∗(C) to a fiber Fano variety 
of lines F is in the so-called tautological ring R∗(F ), which is the Q-subalgebra of CH∗(F ), in general smaller 
than the Beauville–Voisin ring, generated by the Plücker polarization class g and the Chern classes of F . 
In particular,

• R1(F ) = Q · g;
• R2(F ) = Q · g2 ⊕ Q · c2;
• R3(F ) = Q · g3 (by [47, Lemma 3.5], gc2 and g3 are proportional);
• R4(F ) = Q · oF , where oF is the canonical 0-cycle class and c22, c4, g

4, g2c2 are all proportional to it by 
[47, Lemma 3.2].

4. Hilbert squares of complete intersection K3 surfaces

In this section, we prove Theorem 1.4 for squares and Hilbert squares. There are three families of com-
plete intersection K3 surfaces, namely, quartic surfaces in P3, complete intersections of quadric and cubic 
hypersurfaces in P4 and complete intersections of three quadric hypersurfaces in P5.

5 The classes c1(S∨|Fb
) and c2(S∨|Fb

) are the classes that Claire Voisin calls g and c respectively in [47].
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Let us fix some notations. In each of the three cases:

• P := P3, P4 resp. P5 is the ambient projective space;
• E := OP(4), OP(2) ⊕OP(3), resp. OP(2)⊕3 is the relevant vector bundle;
• B := PH0(P, E) is the parameter (projective) space and B◦ is the open subset parameterizing smooth 

K3 surfaces.
• S := {(x, [s]) ∈ P ×B | s(x) = 0} is the universal family.

We have therefore the two natural projections, where p is clearly a projective bundle;

S
p

π

P

B

(1)

Similarly, the relative square and the open complement of the relative diagonal in it fit into the following 
diagram

S ×B S\ΔS/B

q′

j

P × P\ΔP

S ×B S
q:=(p,p)

π2:=(π,π)

P × P

B

(2)

Note that although q itself is not a projective bundle, its restriction q′ is. Let ξ be the first Chern class of 
Oq′(1). The relative diagonal ΔS/B being of codimension 2, ξ extends uniquely to the whole of S ×B S, 
which we still denote by ξ by abuse of notation.

We can show the analogue of Lemma 3.1 in our case6:

Proposition 4.1. For any b ∈ B◦, we have:

Im (CH∗(S ×B S) → CH∗(Sb × Sb)) = Im (CH∗(P × P) → CH∗(Sb × Sb)) + Δ∗ Im (CH∗(P) → CH∗(Sb)) ,

where Δ : Sb ↪→ Sb × Sb is the diagonal embedding.

Proof. Notation is as in Diagrams (1) and (2). By base-change, it is easy to see that the right-hand side is 
contained in the left-hand side. Concerning the inverse inclusion, the projective bundle formula gives, for 
any z ∈ CH∗(S ×B S),

j∗(z) =
∑
k≥0

q′ ∗(zk) · ξk,

for some cycles zk ∈ CH∗(P ×P\ΔP). As in Lemma 3.1, it is easy to see that ξ = j∗π∗
2(h) + q′ ∗(α), where 

h = c1(OB(1)) and α ∈ CH∗(P × P\ΔP). For each k, we denote still by zk ∈ CH∗(P × P) its closure and 
similarly for α. Therefore, we have

6 Proposition 4.1 will be generalized for the so-called stratified projective bundle in §5.1.
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z −
∑
k

q∗(zk) · (π∗
2(h) − q∗(α))k ∈ Ker(j∗).

By the localization sequence, there exists γ ∈ CH∗(S), such that

z −
∑
k

q∗(zk) · (π∗
2(h) − q∗(α))k = Δ∗(γ), (3)

where Δ : S ↪→ S ×B S is the diagonal embedding.
Since p : S → P is also a projective bundle with c1(Op(1)) = π∗(h), we have

γ =
∑
l

p∗(γl) · π∗(h)l,

for some γl ∈ CH∗(P). Substituting this into (3), we get

z =
∑
k

q∗(zk) · (π∗
2(h) − q∗(α))k +

∑
l

Δ∗(p∗(γl) · π∗(h)l). (4)

Now for any b ∈ B◦, the restriction z|Sb×Sb
is of the desired form simply because the restrictions of π∗

2(h)
and p∗(h) to the fibers vanish. �

We can now prove the first two parts of Theorem 1.4.

Proof of Theorem 1.4 for relative squares. Keep the same notations as before. Thanks to Proposition 4.1, 
we only need to show that for any smooth complete intersection K3 surface S ⊂ P, the cycle class map 
restricted to

Im (CH∗(P × P) → CH∗(S × S)) + Δ∗ Im (CH∗(P) → CH∗(S))

is injective. Denote H := c1(OP(1)) and h := H|S . Since CH∗(P × P) is generated by pr∗1(H) and pr∗2(H), 
and Δ∗(h) = h × oS + oS × h (see [7]), it is enough to show that the cycle class map of S × S restricted 
to the subalgebra generated by pr∗1(h), pr∗2(h) and Δ is injective. This is the easiest case of Voisin’s [47, 
Proposition 2.2]. �
Proof of Theorem 1.4 for relative Hilbert squares. Consider the blow-up of S◦ ×B◦ S◦ along the relative 
diagonal ΔS◦/B◦ ; the natural involution switching the two factors lifts to the blow-up. It is well-known that 
the Hilbert square is the quotient of this lifted involution and that

CH∗(Hilb2
B◦(S◦)) 	 CH∗(BlΔ (S◦ ×B◦ S◦))inv 	 CH∗(S◦ ×B◦ S◦)inv ⊕ CH∗−1(S◦),

where all isomorphisms are compatible with the restriction to the fibers. Therefore, for any b ∈ B◦, the 
restriction z|

S
[2]
b

of any z ∈ CH∗(Hilb2
B◦(S◦)) to the fiber over b, viewed as an element in CH∗(Sb×Sb)inv ⊕

CH∗−1(Sb), lives in Im(CH∗(S◦ ×B◦ S◦)inv → CH∗(Sb × Sb)inv) ⊕ Im(CH∗−1(S◦) → CH∗−1(Sb)). We can 
thus conclude thanks to the established cases of the Franchetta property for the relative squares S◦×B◦ S◦

and for S◦. �
5. Some more cases of Hilbert schemes of K3 surfaces

In this section, we push the results and methods of §4 to higher (Hilbert) powers and to K3 surfaces of 
higher genera. Let us first provide some technical tool for that purpose.
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5.1. Stratified projective bundles

As one can observe, Lemma 3.1 and Proposition 4.1 (but also Proposition 6.1 below) share some similarity. 
The goal of this technical subsection is to summarize these situations.

Definition 5.1 (Stratified projective bundle). A projective morphism q : X → Y is called a stratified projective 
bundle if there exists a commutative cartesian diagram

Xr

qr �

· · ·

�

X1

q1 �

X0 = X

q0=q

Yr · · · Y1 Y0 = Y

(5)

where all horizontal morphisms are closed immersions, such that for any 0 ≤ i ≤ r, the restriction of qi

q′i : Xi\Xi+1 → Yi\Yi+1

is a projective bundle (Xr+1 = Yr+1 = ∅). The above diagram is called a stratification of q.

Now we can state the following generalization of Lemma 3.1 and Proposition 4.1 (see also Proposition 6.1
for an example).

Proposition 5.2. Let q : X → Y be a stratified projective bundle with a given stratification (5) and π : X → B

be a surjective morphism. Assume moreover that for any 0 ≤ i ≤ r, Yi is smooth projective, Xi is flat over a 
(common) smooth Zariski open subset B◦ ⊂ B, codimXi

(Xi+1) ≥ 2 and finally that there exists a line bundle 
on B whose restriction to fibers of the projective bundle q′i is non-trivial. Then for any b ∈ B◦

Im (CH∗(X ) → CH∗(Xb)) =
r∑

i=0
ιi∗ Im

(
q∗i,b : CH∗(Yi) → CH∗(Xi,b)

)
,

where Xb (resp. Xi,b) is the fiber of X (resp. the Zariski closure of Xi\Xi+1) over b, ιi : Xi,b ↪→ Xb is the 
natural inclusion and qi,b is the restriction of qi to Xi,b.

Proof. Since the Xi’s are flat over B◦, by base-change, the right-hand side is clearly contained in the 
left-hand side. We use induction on r to prove the other inclusion. For any z ∈ CH∗(X ), the projective 
bundle formula shows that

j∗(z) =
∑
k≥0

q′ ∗0 (zk) · ξk,

for some cycles zk ∈ CH∗(Y0\Y1) where j : X\X1 ↪→ X is the open immersion and ξ = c1(Oq′0(1)). By 
hypothesis, ξ = j∗π∗(h) + q′0

∗(α), where h is a divisor on B and α ∈ CH∗(Y0\Y1). We extend zk and α
to Y0, keeping the same notation for the classes on Y0. Therefore

z −
∑
k

q∗(zk) · (π∗(h) − q∗(α))k ∈ Ker(j∗).

By the localization sequence, there exists γ ∈ CH∗(X1), such that
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z =
∑
k

q∗(zk) · (π∗(h) − q∗(α))k + ι∗(γ), (6)

where ι : X1 ↪→ X is the natural inclusion.
Noting that the restriction of π∗(h) to Xb vanishes, we have that

z|Xb
∈ Im (q∗ : CH∗(Y ) → CH∗(Xb)) + Im (ι∗ : CH∗(X1) → CH∗(X )) |Xb

,

where the second term is ι1,∗ Im (CH∗(X1) → CH∗(X1,b)) by flat base-change. Observing that q1 : X1 → Y1
is again a stratified projective bundle verifying all the conditions, the induction hypothesis allows us to 
conclude. �
5.2. Cubes and Hilbert cubes of complete intersection K3 surfaces

We prove Theorem 1.4 for cubes and Hilbert cubes in this subsection. Notation is as in §4.
The geometry is quite close7 to the one considered in [15]; in particular, we will study collinear triples 

in the projective space P. For three points in P there are four types of relative positions: non-collinear, 
collinear and distinct, two coincide but not with the third, all coincide. As a result, the evaluation map of 
the relative cube of the universal family

q : S ×B S ×B S → P × P × P

is not a projective bundle but is a stratified projective bundle (Definition 5.1) with the following stratification:

S = δS/B

p �

Δ12 ∪ Δ13 ∪ Δ23

�

Δ12 ∪ Δ13 ∪ Δ23 ∪ I

�

S ×B S ×B S
π3

q

B

P = δP Δ12 ∪ Δ13 ∪ Δ23 J P × P × P

(7)

where in the first row, Δi,j : S ×B S ↪→ S ×B S ×B S are the three big (relative) diagonals and I is the 
Zariski closure of

I◦ := {(x, y, z) ∈ S ×B S ×B S | x, y, z collinear and distinct} ;

in the second row, Δi,j : P ×P ↪→ P × P ×P are the three big diagonals and

J := {(x, y, z) ∈ P × P × P | x, y, z collinear} .

Proposition 5.3. We have for any b ∈ B◦

Im (CH∗(S ×B S ×B S) → CH∗(Sb × Sb × Sb))

= Im (CH∗(P × P × P) → CH∗(Sb × Sb × Sb))

+
∑

1≤i<j≤3
Δi,j∗ Im (CH∗(P × P) → CH∗(Sb × Sb))

+ δ∗ Im (CH∗(P) → CH∗(Sb)) ,

7 In fact, complete intersection K3 surfaces are special cases of the Calabi–Yau complete intersections considered in [15] and so 
all results in [15] apply.
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where Δi,j : S2
b ↪→ S3

b are the inclusions of the big diagonals and δ : Sb ↪→ S3
b is the inclusion of the small 

diagonal.

Proof. It is straight-forward to check that (7) indeed stratifies q into projective bundles and that the 
codimension of I in S ×B S ×B S is dim(P) − 1 (cf. [15, Lemma 1.2]), which is ≥ 2. Moreover, it is clear 
that π∗

3OB(1) restricts to the relative ample tautological line bundle on fibers of all projective bundles. All 
assumptions of Proposition 5.2 being satisfied, it implies that for any b ∈ B◦

Im (CH∗(S ×B S ×B S) → CH∗(Sb × Sb × Sb))

= Im (CH∗(P × P × P) → CH∗(Sb × Sb × Sb)) + ι∗ Im (CH∗(J) → CH∗(Ib))

+
∑

1≤i<j≤3
Δi,j∗ Im (CH∗(P × P) → CH∗(Sb × Sb)) + δ∗ Im (CH∗(P) → CH∗(Sb)) ,

where ι : Ib ↪→ S3
b is the inclusion of the Zariski closure of the locus of collinear and distinct triples. We only 

have to show that the second term on the right-hand side is redundant. Indeed, for any b ∈ B◦, consider 
the cartesian square

Δ12 ∪ Δ13 ∪ Δ23 ∪ Ib

�

Sb × Sb × Sb

J P × P × P

Here the intersection is transversal along Ib\ ∪ Δi,j (without excess intersection) and codimS3
b
Ib =

codimP×3(J) = dimP − 1, while along Δi,j the intersection has excess dimension dimP − 3 (cf. [15, 
Lemma 1.2]) with excess normal bundle 

pr∗1(E|Sb
)

O(1)�O(−1) (cf. [15, Lemma 1.5]).8 The excess intersection class 
on Δi,j = Sb × Sb is therefore a polynomial in h1 and h2 with hi := pr∗i (c1(O(1)|Sb

)), hence is the pull-
back of an element in CH∗(P × P). As a result, by the excess intersection formula (cf. [19, §6.3]) applied 
to the above cartesian square, any element in the second term ι∗ Im (CH∗(J) → CH∗(Ib)), up to an ele-
ment in the third term 

∑
1≤i<j≤3 Δi,j∗ Im (CH∗(P × P) → CH∗(Sb × Sb)), is an element in the first term 

Im (CH∗(P × P × P) → CH∗(Sb × Sb × Sb)), thus is redundant. �
We are now ready to prove the remaining cases of Theorem 1.4:

Proof of Theorem 1.4 for relative cubes. Denote by h = c1(OP(1)|Sb
) and hi := pr∗i (h). Thanks to Propo-

sition 5.3, for any z ∈ CH∗(S ×B S ×B S) and any b ∈ B◦, the restriction z|Sb×Sb×Sb
is a polynomial in 

h1, h2, h3, Δ12, Δ13, Δ23 (and δ = Δ12Δ23). We can conclude by the m = 3 case of Voisin’s [47, Proposi-
tion 2.2], where the essential point is the decomposition of the small diagonal δ due to Beauville–Voisin [7, 
Proposition 3.2]. �
Proof of Theorem 1.4 for relative Hilbert cubes. To simplify the notation, we denote S[m] := Hilbm(S) and 
similarly S [m]/B := Hilbm

B S. Let us first recall the result of de Cataldo–Migliorini [11] in the special case 
of Chow groups of Hilbert cubes of surfaces: for any surface S, denote by ρ : S[3] → S(3) the Hilbert–
Chow morphism which sends a 0-dimensional subscheme to its support 0-cycle. We have the incidence 
subvarieties

8 So there is no excess intersection in the case of quartic surfaces.
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U :=
{

(z, x1, x2, x3) ∈ S[3] × S3 | ρ(z) = x1 + x2 + x3

}
;

V :=
{

(z, x1, x2) ∈ S[3] × S2 | ρ(z) = 2x1 + x2

}
;

W :=
{

(z, x) ∈ S[3] × S | ρ(z) = 3x
}

;

and the main result of [11] says that together they induce an injective morphism

(U∗, V∗,W∗) : CH∗(S[3]) ↪→ CH∗(S3) ⊕ CH∗(S2) ⊕ CH∗(S).

Note that the above correspondences have natural family counterparts, denoted by U , V, W.
Let z ∈ CH∗(S [3]/B) be such that the cohomology class of z|

S
[3]
b

vanishes. By the above injectivity, it is 

enough to show that for any b ∈ B◦, U∗
(
z|

S
[3]
b

)
, V∗

(
z|

S
[3]
b

)
and W∗

(
z|

S
[3]
b

)
are zero. To this end, observe 

that U∗
(
z|

S
[3]
b

)
= U∗(z)|S3

b
is the restriction of a cycle of the total family S ×B S ×B S with trivial coho-

mology class, hence is zero by the relative cube case of Theorem 1.4 just proven. Similarly, the vanishing 
of V∗

(
z|

S
[3]
b

)
and W∗

(
z|

S
[3]
b

)
follow from the relative square case proven in §4 and [38] respectively.

Finally, the proof of the case of S×B S [2]/B is similar (in fact, easier) by using the motivic decomposition 
for Hilbert squares. �
5.3. Beyond complete intersection K3 surfaces

The techniques we utilized above in order to prove Theorem 1.4 for (Hilbert) squares and cubes of 
complete intersection K3 surfaces can also be employed to attack the generalized Franchetta Conjecture 1.3
for families of K3 surfaces for which Mukai models are available. In this subsection, we give a sufficient 
condition for the Franchetta property to hold for Hilbert schemes of K3 surfaces in a certain range. It is 
convenient to introduce the following notion:

Definition 5.4 (Tautological ring). Let (S, H) be a polarized K3 surface and r ∈ N. Denote h := c1(H) ∈
CH1(S). The tautological ring R∗(Sr) is the subring of the (rational) Chow ring CH∗(Sr) generated by the 
big diagonals Δi,j (1 ≤ i < j ≤ r), the polarization classes hi := pr∗i (h) and the Beauville–Voisin classes 
oi := pr∗i (oS) (1 ≤ i ≤ r).

Remark 5.5. Using [7, Proposition 2.6], we see that the tautological rings of different powers of a K3 surface 
are closed under push-forwards and pull-backs along all kinds of (partial) diagonal inclusions.

Recall that for a natural number g, we say that a Mukai model for K3 surfaces of genus g exists, if there 
exist an ambient homogeneous space G = Gg (often a Grassmannian) and a globally generated homogeneous 
vector bundle E = Eg on G such that the zero locus of a general section of E gives a general K3 surface of 
genus g. For the available constructions of Mukai models and the corresponding G and E, we refer to [38]
as well as the original sources [30], [31], [32], [33]. Accordingly, we have a universal family

S
p

π

G

B = H0(G,E)

and we denote B◦ ⊂ B the locus parameterizing smooth K3 surfaces of genus g.
The crucial condition for our techniques to work is the following:
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Definition 5.6. For an r ∈ N∗, we say that the Mukai model (G, E) satisfies the condition (�r) if
(�r): for any x1, · · · , xr distinct points of G, the following evaluation map is surjective

H0(G,E) →
r⊕

i=1
Exi

.

Or equivalently, H0(G, E ⊗ Ix1 ⊗ · · · ⊗ Ixr
) is of codimension r · rank(E) in H0(G, E).

Clearly, (�r) implies (�k) for all k < r.

Proposition 5.7. The notation is as above. Fix a genus g for which a Mukai model exists for K3 surfaces of 
genus g and fix such a Mukai model which satisfies condition (�r). Assume that

Im (CH∗(S) → CH∗(Sb)) = R∗(Sb),

for any b ∈ B◦. Then

Im
(
CH∗(Sr/B) → CH∗(Sr

b )
)

= R∗(Sr
b ),

for any b ∈ B◦.

Proof. The proof is to rephrase every step of §5.2 in the general setting. We proceed by induction on r. 
Consider the evaluation map q : Sr/B → Gr, which is a stratified projective bundle (Definition 5.1) with 
the stratification on Gr given by the different types of incidence relations for r points of G:

Xn = S

qn=p �

· · ·

�

X1

q1 �

X0 = Sr/B

q0=q

B

Yn = G · · · Y1 Y0 = Gr

(8)

By Proposition 5.2, for any b ∈ B◦,

Im
(
CH∗(Sr/B) → CH∗(Sr

b )
)

=
n∑

i=0
ιi,∗ Im

(
CH∗(Yi) → CH∗(Xi

′
b)
)
, (9)

where X ′
i is the Zariski closure of Xi\Xi+1. Let us show that each term of (9) is in the tautological ring 

R∗(Sb) by ascending order for 0 ≤ i ≤ n:

• If i = 0, since the Chow ring of G satisfies the Künneth formula, we only need to show that

Im (CH∗(G) → CH∗(Sb)) ⊂ R∗(Sb),

which is true by assumption.
• If a general point of Yi is parameterizing r points of G where at least two of them coincide, then the 

contribution of the i-th term of (9) factors through R∗(Sr−1
b ) (via the diagonal push-forward) by the 

induction hypothesis, hence is contained in R∗(Sr
b ) (Remark 5.5).

• If a general point of Yi is parameterizing r different points of G, then the hypothesis (�r) means precisely 
that any r different points of G impose independent conditions on B, each of codimension rank(E). 
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Therefore, X ′
i , the Zariski closure of Xi\Xi+1, has codimension in Xi−1 equal to codimYi−1(Yi). The 

excess intersection formula ([19, §6.3]) applied to the cartesian diagram

Xi = Xi+1 ∪ X ′
i

�

Xi−1

Yi Yi−1

tells us that modulo the (i + 1)-th term of (9), the contribution of the i-th term is contained in the 
(i − 1)-th term. �

Theorem 5.8. Fix a genus g for which a Mukai model exists for K3 surfaces of genus g, and fix such a Mukai 
model. Assume that

(i) the Mukai model satisfies the condition (�r);
(ii) Conjecture 1.2 is true for the universal family S → B of K3 surfaces of genus g;

(iii) the cycle class map restricted to the tautological ring R∗(Sr) is injective for the very general K3 surface 
S of genus g.

Then the Franchetta property holds for S [r1]/B ×B · · · ×B S [rm]/B, for any r1, · · · , rm whose sum is ≤ r.

Proof. The case of relative powers Sk/B, for any k ≤ r, is a direct consequence of Proposition 5.7 and the 
hypothesis on the injectivity of the cycle class map on the tautological ring. The other cases reduce to the 
cases of Sk/B for all 1 ≤ k ≤ r by making use of de Cataldo–Migliorini’s result [11] for Chow motives of 
Hilbert schemes of surfaces. �

We apply Theorem 5.8 to some Mukai models to get concrete unconditional results:

Proof of Theorem 1.5. Assumption (ii) is proven for g ∈ {2, . . . , 10} ∪{12} in [38]. Assumption (iii) is taken 
care of for r ≤ 43 by Voisin’s [47, Proposition 2.2]. It remains to check assumption (i) of Theorem 5.8; we 
proceed by a case-by-case analysis of the positivity of the homogeneous bundle in the Mukai model. See 
Mukai’s series of papers [30], [31], [32], [33] for more information on the geometry of these models.

• K3 surfaces of genus g = 2 are9 smooth degree 6 hypersurfaces in the weighted projective space P :=
P(1, 1, 1, 3). The Mukai model for this family is thus (G, E) = (P, O(6)). Note that the K3 surfaces in 
this family all avoid the singular point O := [0, 0, 0, 1]. Let us check the condition (�3), i.e., that the 
evaluation map

H0(P,O(6)) →
3⊕

i=1
Cxi

is surjective for distinct x1, x2, x3 �= O, where Cx denotes the fiber of O(6) at x. It is easy to see that 
P(1, 1, 1, 3) is isomorphic to the projective cone over the third Veronese embedding of P2 (cf. [13]) and 
O is the vertex. By upper-semicontinuity, it is enough to treat the most degenerate case for three distinct 
points of P\{O}, which is when they lie in the same ruling of the projective cone. In this case, as the 
restriction of O(6) to the ruling is O(2), the condition (�3) follows from the surjections:

9 Equivalently, these K3 surfaces are also double covers of P2 ramified along smooth sextic curves.
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H0(P,O(6)) � H0(P1,OP1(2)) �
3⊕

i=1
Cxi

,

where P1 is the ruling which contains xi’s.
• For quartic surfaces (g = 3), let us first show that (P3, O(4)) satisfies (�5), i.e., that the evaluation map

H0(P3,O(4)) →
5⊕

i=1
Cxi

is surjective for distinct xi’s. Again, it is enough to treat the most degenerate cases, namely:
– when x1, · · · , x5 are collinear, then this follows from the surjectivity of the restriction and the evalu-

ation

H0(P3,O(4)) � H0(P1,O(4)) �
5⊕

i=1
Cxi

,

where P1 is the line containing these points.
– when x1, · · · , x5 are in a conic C. Then the Koszul resolution provides an exact sequence

0 → OP3(−3) → OP3(−1) ⊕OP3(−2) → OP3 → OC → 0,

which allows us to see that the restriction map H0(P3, O(4)) → H0(C, OC(8)) is surjective. Since 
H0(C, OC(8)) →

⊕5
i=1 Cxi

is clearly surjective, we are done.
The condition (�5) is proven.

• For g = 6, the Mukai model is (G, E) = (Gr(2, 5), O(1)⊕3⊕O(2)), where O(1) is the Plücker line bundle. 
It is clear that the condition (�2) is equivalent to the surjectivity of

H0(G,O(1)) → Cx1 ⊕ Cx2

for any two distinct points x1, x2 ∈ G. This last condition follows from the very ampleness of the Plücker 
line bundle O(1).

• For g = 7, the Mukai model is (G, E) =
(
OGr(5, 10), U⊕8), where OGr(5, 10) is the orthogonal Grass-

mannian parameterizing isotropic subspaces of dimension 5 in a vector space of dimension 10 equipped 
with a non-degenerate quadratic form and U is a line bundle corresponding to the half spinor represen-
tation. The proof is similar to the previous case: one uses the very ampleness of U .

• For g = 8, the Mukai model is (G, E) =
(
Gr(2, 6),O(1)⊕6), where O(1) is the Plücker line bundle. The 

proof goes as for g = 6 by the very ampleness of the Plücker line bundle.
• For g = 9, the Mukai model is (G, E) =

(
LGr(3, 6),O(1)⊕4), where LGr(3, 6) is the symplectic 

Grassmannian parameterizing Lagrangian subspaces in a 6-dimensional vector space equipped with 
a symplectic form and O(1) is the restriction of the Plücker line bundle of Gr(3, 6). The proof goes as 
before: one uses the very ampleness of O(1).

• For g = 10, the Mukai model is (G, E) = (G2/P, O(1)⊕3), where G is the 5-dimensional quotient of the 
simply-connected semi-simple algebraic group of type G2 by a maximal parabolic subgroup P and O(1)
is the line bundle associated to the adjoint representation of G2; in other words, G = G2/P ↪→ P(g∨2 ). 
Again, we can conclude by the very ampleness of O(1).

• For g = 12, we use a slight variant of the above argument. Indeed, the general K3 surface of genus 12 
can be constructed as an anti-canonical section in a smooth prime Fano threefold X of genus 12 (cf. [4], 
[22, Section 3.1]). The Fano threefold X has very ample anti-canonical bundle, and H3(X, Q) = 0
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([23, Corollary 4.3.5]) so that X has trivial Chow groups10 (this Fano threefold X is the variety denoted 
by X22 ⊂ P13 in [23, Propositions 4.1.11 and 4.1.12]; actually X is an intersection of quadrics). We 
now consider a variant of Theorem 5.8, replacing G by X and E by −KX . The very ampleness of −KX

ensures that condition (�2) holds. As X has trivial Chow groups, there is a Chow–Künneth formula for 
products of X, and so one is reduced to the statement for the K3 surface Sb, which is [38]. �

Remark 5.9 (Limit of our method). Given a Mukai model (G, E),

• the global generation of E corresponds to condition (�1), which essentially explains the reason why one 
can prove the generalized Franchetta conjecture for K3 surfaces with a Mukai model in [38].

• For K3 surfaces of genus 2, G = P(1, 1, 1, 3) and E = O(6), the condition (�4) is not satisfied: it is 
violated by three distinct points lying on the same ruling, away from the singular point.

• For the quartic K3 surfaces, G = P3 and E = O(4), the condition (�6) is not satisfied: it is violated by 
six collinear distinct points. Similarly, for the other two families of complete intersection K3 surfaces 
(genus 4 and 5), (�4) is violated by four collinear distinct points.

• For K3 surfaces of genus 6 and 8, whose Mukai model is (G, E) = (Gr(2, 5), O(1)⊕3 ⊕ O(2)) and 
(Gr(2, 6), O(1)⊕6) respectively, the condition (�3) is not satisfied. Indeed, it is equivalent to the surjec-
tivity of H0(G, O(1)) → Cx1 ⊕ Cx2 ⊕ Cx3 , which is violated by three distinct collinear points of G.

• For K3 surfaces of genus 13 and 20, the Mukai models are respectively

(G,E) =
(
Gr(3, 7), (∧2S∨)⊕2 ⊕ ∧3Q

)
and

(
Gr(4, 9), (∧2S∨)⊕3) .

where S is the tautological subbundle and Q is the tautological quotient bundle. We claim that none of 
them verifies the condition (�2). For example, in the genus 13 case, the condition (�2) is equivalent to 
the surjectivities of the following two evaluation maps

H0(G,∧2S∨) → ∧2S∨
x ⊕ ∧2S∨

y ,

H0(G,∧2Q) → ∧2Qx ⊕ ∧2Qy,

for any x �= y ∈ G, which, by Bott theorem, amount to say that for any two different 3-dimensional 
subspaces W1, W2 in a 7-dimensional vector space V , the natural maps

∧2V ∨ → ∧2(W∨
1 ) ⊕ ∧2(W∨

2 )
∧2V → ∧2(V/W1) ⊕ ∧2(V/W2)

are surjective. It is not true when dimW1 ∩W2 ≥ 2. The case of genus 20 is similar.
• For K3 surfaces of genus 18, the Mukai model is (G, E) = (OGr(3, 9), U⊕5), where U is the rank 2 vector 

bundle associated to the representation V associated to the fourth dominant weight ω4 = 1
2 (α1 + 2α2 +

3α3 + 4α4), of the (semi-simple part of the) maximal parabolic group P . We claim that (�2) does not 
hold, i.e., there exist two different points x, y ∈ G such that H0(G, U) → Ux ⊕ Uy is not surjective.11
Let x = P/P and y = wP/P where w = sα3 , as an element in the Weyl group W , is the reflection with 
respect to the third simple root. Clearly, w does not belong to the Weyl group of P , which is generated 
by sα1 , sα2 , sα4 . A direct computation shows that the representation H0(G, U) has multiplicity one for 
all weights. On the other hand, ω4 is a common weight for V and its conjugate by w (since w.ω4 = ω4). 
Hence H0(G, U) → Ux ⊕ Uy cannot be surjective.

10 Following Voisin [48], we say a smooth projective variety has trivial Chow groups if the cycle map cli : CHi(X)Q → H2i(X, Q)
is injective for any i.
11 We thank Nicolas Ressayre for his kind help on the proof.
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• If one wants to follow the same strategy of this paper to establish the Franchetta property for (Hilbert) 
powers beyond the range stated in Theorem 1.4 and Theorem 1.5, one has to deal with some essentially 
new universal cycles, which may not belong to the tautological ring, or rather, the tautological ring 
should be enlarged to include some more incidence classes from projective geometry than just the 
polarization class.

5.4. Applications towards the Beauville–Voisin conjecture

Let us now turn to the consequences of our results in the direction of the Beauville–Voisin conjecture 
(and its refined version Conjecture 2.4):

Proof of Corollaries 1.6 and 1.7. The strongly coisotropic subvarieties Eμ, and the Lagrangian surfaces T
and U , can all be defined over (suitable relative powers of) the universal family, and so these are just special 
cases of Proposition 2.5, combined with Theorems 1.4 and 1.5. �

One can also prove a version of Corollaries 1.6 and 1.7 for product varieties of arbitrarily high dimension, 
but the statement is now restricted to 0-cycles and 1-cycles:

Corollary 5.10. Let X be a product

X = X1 ×X2 × · · · ×Xs, dimX = 2m,

where Xj is a Hilbert scheme S[r] with S a K3 surface. Let R̃∗(X) ⊂ CH∗(X) denote12 the Q-subalgebra 
generated by (pullbacks of) divisors on Xj, the Chern classes ci(TXj

), plus the following coisotropic subva-
rieties:

• the strongly coisotropic subvarieties Eμ of [50, 4.1 item 1)];
• the Lagrangian surfaces T ⊂ Xj constructed in [22, Proposition 4] (if Xj = S[2] and S is of genus 

g ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 12});
• the surface of bitangents U ⊂ Xj (if Xj = S[2] and S is a quartic K3 surface).

Then R̃2m(X) and R̃2m−1(X) inject into cohomology via the cycle class map.

Proof of Corollary 5.10. This uses the fact that the Xj have a multiplicative Chow–Künneth decomposition
{πk

Xj
}, in the sense of [40, Chapter 8], [41]; see also Appendix A.2. This induces a bigrading of the Chow 

ring of Xj , given by

CHi(Xj)(k) := (π2i−k
Xj

)∗ CHi(Xj).

It is readily seen that the projectors πk
Xj

are universally defined (i.e., they exist as a relative cycle for the 
family X ◦

j ×B◦ X ◦
j ). Theorem 5.8 applied to the relative cycle T − (π2

Xj
)∗(T ) (where we use the formalism 

of relative correspondences as in [35, Section 8.1]), thus implies that

T ∈ CH2(Xj)(0).

Similarly, we find that U ∈ CH2(Xj)(0). The fact that Eμ belongs to CH∗(Xj)(0) is true for Hilbert schemes 
of arbitrary K3 surfaces, cf. [50, Lemma 4.3].

12 In this paper, the notation R∗(X) is reserved for the tautological ring of a power of K3 surface, see Definition 5.4.
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The product X also has a multiplicative Chow–Künneth decomposition, and hence there is a bigrading of 
the Chow ring CH∗(X) by [40, Theorem 8.6]. Since divisors and Chern classes of Xj are also in CH(Xj)(0), 
and pullback under any projection X → Xj preserves the bigrading [41, Corollary 1.6], we see that there is 
an inclusion

R̃∗(X) ⊂ CH∗(X)(0).

The corollary now follows, since it is known that CHi(X)(0) injects into cohomology for i ≥ dim(X) − 1, 
see [44, Introduction]. �
5.5. Double EPW sextics

The interested reader will have no trouble finding further applications in the flavor of Corollaries 1.6 and 
1.7. For instance, consider the Hilbert square X = S[2], where S is a general K3 surface of genus 6. As shown 
by O’Grady [36, Section 4], X is isomorphic to a small resolution Xε

A of a singular double EPW sextic XA

(notation is as in [36]). Let ε : X → XA denote the small resolution, and let fA : XA → YA denote the 
double cover to the associated EPW sextic YA. The surface S being general corresponds to the fact that the 
Lagrangian vector space A is general (in the precise sense given in [36, §4]) in the divisor Δ ⊂ LGr(∧3V )
studied in [36]. This construction produces Lagrangian surfaces in X: the surface

P := ε−1(Sing(XA))

(which is isomorphic to P2 since XA has only one singular point), and the surface

Fix := ε−1(Fix(ι)),

where Fix(ι) denotes the fixed point locus of the (anti-symplectic) covering involution ι of XA.
These Lagrangian surfaces are easily seen to be universally defined. Indeed, as shown in [36], there is a 

stratification

YA[3] ⊂ YA[2] ⊂ YA[1] = YA

of the EPW sextic YA. Here the surface YA[2] is the singular locus of YA and the point YA[3] is the unique 
singularity of YA[2]. One has

Fix = (fA ◦ ε)−1(YA[2]) and P = (fA ◦ ε)−1(YA[3]).

On the other hand (as explained in [36, Section 3]), there exist family versions Y[i] of the subvarieties YA[i]
over the base Δ. One can perform a base change

XB◦ → X
↓ ↓

YB◦ → Y
↓ ↓
B◦ → Δ

where B◦ ⊂ B is an open such that the rational map B ��� Δ of [36, Section 4] is defined, and X is the 
tautological family of singular double EPW sextics over Δ. One obtains relative versions of P and of Fix
by pulling back Y[i] under the birational morphism XB◦ → XB◦ .

Thus, applying Theorem 1.5 one obtains the following:
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Corollary 5.11. Let X = S[2], where S is a general K3 surface of genus 6. The Q-subalgebra

< D1, D2, ci(TX), P,Fix, T > ⊂ CH∗(X)

injects into cohomology via the cycle class map. (Here D1, D2 are two divisors generating the Picard group 
of X, and T is the Lagrangian surface of [22, Proposition 4].)

5.6. An application to Bloch’s conjecture

Given a quartic K3 surface S, Beauville [3] constructed an interesting involution ι on X := S[2], which, 
generically, sends {x1, x2} to {x3, x4}, where x1, . . . , x4 are the four intersection points of the line x1, x2
with S. The involution ι is anti-symplectic. According to the generalized Bloch conjecture (cf. [46, §11.2]), 
which roughly says that CH0 is “controlled” by the holomorphic forms, the action of ι on CH0(X) should 
be the identity on Gr0F CH0(X) and on Gr4F CH0(X) (just as on H0(X) and H4,0(X)) and should be − id
on Gr2F CH0(X) (just as on H2,0(X)), where F · is the conjectural Bloch–Beilinson filtration. On the other 
hand, as conjectured in [5] by Beauville and worked out by Shen–Vial in [40] in the case of Hilbert squares 
of K3 surfaces, we have a canonical splitting of this filtration for X, giving a direct sum decomposition:

CH4(X) = CH4(X)(0) ⊕ CH4(X)(2) ⊕ CH4(X)(4).

Hence the action of ι on the three summands should be id, − id and id, respectively. Our results allow us 
to confirm this expectation.

Proof of Corollary 1.8. Let S◦ → B◦ be the universal family of smooth quartic K3 surfaces and X ◦ → B◦ be 
the relative Hilbert square. As noted above, the bigrading CH∗(X)(∗) is induced by a self-dual multiplicative 
Chow–Künneth decomposition {πk

X} that is universally defined. The anti-symplectic involution ι can also be 
defined on the level of the universal family; let us denote Γι ∈ CH4(X ◦ ×B◦ X ◦) the graph of the involution 
ι : X ◦ → X ◦.

The relative correspondence

πi
X ◦ Γι ◦ πj

X ∈ CH4(X ◦ ×B◦ X ◦)

is fiberwise homologically trivial for i �= j. Theorem 1.5 (ii) for Hilb2
B S ×B Hilb2

B S implies that

(
πi
X ◦ Γι ◦ πj

X

)
|Xb×Xb

= 0 in CH4(Xb ×Xb), ∀i �= j ∀b ∈ B◦ , (10)

i.e., Γιb belongs to CH4(Xb ×Xb)(0), and thus ιb preserves the bigrading CH∗(Xb)(∗).
Next, the fact that ιb is anti-symplectic means that for any b ∈ B◦ there exists a divisor Db ⊂ Xb, and 

a cycle γb supported on Db ×Db, such that
(
(ΔX + Γι) ◦ π2

X

)
|Xb×Xb

= γb in H8(Xb ×Xb).

Using a Hilbert schemes argument as in [48, Proposition 3.7], the Db and γb can be spread out, i.e., there 
exist a divisor D ⊂ X and a relative cycle γ supported on D ×B◦ D such that

(
(ΔX + Γι) ◦ π2

X − γ
)
|Xb×Xb

= 0 in H8(Xb ×Xb) ∀b ∈ B◦.

Applying Theorem 1.5 once more, we find that
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(
(ΔX + Γι) ◦ π2

X − γ
)
|Xb×Xb

= 0 in CH4(Xb ×Xb) ∀b ∈ B◦. (11)

For general b ∈ B◦, the restriction γ|Xb×Xb
will be supported on (divisor)×(divisor), and so γ|Xb×Xb

will 
act as 0 on CH2(Xb)(2). It follows that

(ιb)∗ = − id : CH2(Xb)(2) → CH2(Xb)(2) for general b ∈ B◦.

To extend this to all b ∈ B◦, one notes that the above construction can be done with a divisor D ⊂ X in 
general position with respect to Xb.

The statement for CH4(Xb)(2) follows upon taking the transpose of relation (11), and using the rela-
tion (10). The remaining statements are proven similarly. �
Remark 5.12. Corollary 1.8 was proven in a more convoluted way in [26].

6. Lehn–Lehn–Sorger–van Straten hyper-Kähler eightfolds

In this section we first show Theorem 1.10 and then deduce from it Theorem 1.11.
Keep the same notation as in §3. We still have a correspondence:

F ×B F
q:=(p,p)π2:=(π,π)

B G×G

However the problem is that q is no longer a projective bundle: the fiber of q over a pair of lines (l, l′) is 
the subspace of cubic fourfolds containing both l and l′, whose dimension depends therefore on the relative 
position of (l, l′). To adapt the same strategy to this case, we use similar techniques as in [48], [17] by 
studying the various strata of the morphism q. There are three possible relative positions between two 
projective lines in P5: identical, intersecting but not identical, not intersecting.

On the one hand, for a (general) cubic fourfold X with Fano variety of lines F , let

I := {(l, l′) ∈ F × F | l ∩ l′ �= ∅}

be the 6-dimensional incidence subvariety of F ×F . The incidence subvariety I has two natural projections 
to F with fiber over l ∈ F the surface Sl parameterizing lines inside X meeting l. Similarly, we consider the 
family version of this incidence subvariety inside F ×B F :

I := {(b, l, l′) ∈ F ×B F | l ∩ l′ �= ∅} = {(b, l, l′) ∈ B ×G×G | l, l′ ⊂ Xb ; l ∩ l′ �= ∅} .

On the other hand, we define J := {(l, l′) ∈ G×G | l ∩ l′ �= ∅} to be the incidence subvariety of G ×G.
These incidence subvarieties, together with the diagonals, give the stratification:

F = ΔF/B

p

I

q|I

F ×B F

q

π2
B

G = ΔG J G×G

where q is a projective bundle outside of I and q|I is also a projective bundle outside of ΔF ; in other words, 
q is a stratified projective bundle in the sense of Definition 5.1.
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Let B◦ be the Zariski open subset of B parameterizing smooth cubic fourfolds. Applying Proposition 5.2
to q, we have the following analogue of Lemma 3.1 and Proposition 4.1 in our case:

Proposition 6.1. For any b ∈ B◦, we have

Im (CH∗(F ×B F) → CH∗(Fb × Fb))

= Im (CH∗(G×G) → CH∗(Fb × Fb)) + i∗ Im (CH∗(J) → CH∗(Ib)) + Δ∗ Im (CH∗(G) → CH∗(Fb)) ,

where i : Ib ↪→ Fb × Fb and Δ : Fb ↪→ Fb × Fb are the inclusions.

As the incidence subvariety J is singular along the smaller stratum ΔG, it is more convenient to work 
with a natural resolution of singularities. To this end, we define

Ĩ :=
{
(b, x, l, l′) ∈ B × P5 ×G×G | l, l′ ⊂ Xb ; x ∈ l ∩ l′

}
;

J̃ :=
{
(x, l, l′) ∈ P5 ×G×G | x ∈ l ∩ l′

}
;

P :=
{
(b, x, l) ∈ B × P5 ×G | l ⊂ Xb ; x ∈ l

}
;

Q :=
{
(x, l) ∈ P5 ×G | x ∈ l

}
,

where Ĩ (resp. J̃) admits a natural birational morphism to I (resp. J), which contracts P (resp. Q) to F
(resp. G). We summarize the situation in the following diagram whose squares are all cartesian:

F

p �

P

q′|P �

Ĩ

q′ �

I

q|I �

F ×B F

q

G Q J̃ J G×G

Recall that G = Gr(P1, P5), S is the tautological rank-2 subbundle, g := c1(S∨|F ) ∈ CH1(F ) is the 
Plücker polarization class, and c := c2(S∨|F ) ∈ CH2(F ). We computed in Lemma 3.2 that c2(F ) = 5g2−8c. 
In CH∗(F × F ), gi := pr∗i (g) and ci := pr∗i (c) for i = 1, 2.

Definition 6.2 (Tautological ring of F × F ). Let X be a smooth cubic fourfold and F be its Fano variety of 
lines. We define the tautological ring of F×F , denoted by R∗(F×F ), to be the Q-subalgebra of CH∗(F×F )
generated by the classes c1, c2, g1, g2, Δ, I, where Δ and I are the classes in CH∗(F ×F ) of the diagonal ΔF

and the incidence subvariety I respectively.

Proposition 6.3. For any point b ∈ B◦, we have

Im (CH∗(F ×B F) → CH∗(Fb × Fb)) = R∗(Fb × Fb).

Proof. To simplify the notation, let us leave out the subscript b. Thanks to Proposition 6.1, we only need 
to deal with the following three cases:

• For Im (CH∗(G×G) → CH∗(F × F )), it is enough to observe that CH∗(G × G) satisfies the Künneth 
formula (since the cycle class map CH∗(G ×G) → H∗(G ×G, Q) is an isomorphism).
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• For i∗ Im (CH∗(J) → CH∗(I)), consider

Ĩ := {(x, l, l′) ∈ X × F × F | x ∈ l ∩ l′} and

J̃ :=
{
(x, l, l′) ∈ P5 ×G×G | x ∈ l ∩ l′

}

fitting into the diagram

Ĩ
τ ′

�

I
i

�

F × F

J̃
τ

π

J
j

G×G

P5

Denote by ĩ = τ ′ ◦ i and j̃ = τ ◦ j. Then any cycle in J can be written as τ∗(α) for some α ∈ CH∗(J̃). 
Observe that J̃ is a P4 ×P4-bundle over P5 such that the two relative O(1) on the fibers are given by 
j̃∗(g1) and j̃∗(g2), respectively. Therefore α is a linear combination of cycles of the form π∗(hk)j̃∗(gl1gm2 )
where k, l, m ∈ N and h = OP5(1). We have

i∗(τ∗(π∗(hk)j̃∗(gl1gm2 ))|I)

= i∗ ◦ τ ′∗
(
π∗(hk)j̃∗(gl1gm2 )|Ĩ

)

= ĩ∗
(
π∗(hk)|Ĩ · ĩ

∗(gl1gm2 )
)

= gl1g
m
2 · i∗(τ∗π∗(hk)|I)

= gl1g
m
2 · Γhk ,

where Γhk , defined in [40, Appendix A], is the cycle of F × F represented by the subvariety

{(l, l′) ∈ F × F | ∃x ∈ H1 ∩ · · · ∩Hk such that x ∈ l ∩ l′} ,

where H1, · · · , Hk are k general hyperplanes in P5. It is proven in [40, Appendix A] that when k ≥ 1, 
Γhk is actually a polynomial in c1, c2, g1, g2, while Γh0 = I.

• For Δ∗ Im (CH∗(G) → CH∗(F )), let us remark that for any α ∈ CH∗(F ), we have Δ∗(α) = Δ · pr∗1(α). 
Thus it suffices to recall that Im (CH∗(G) → CH∗(F )) is generated by g and c. �

Consequently, in order to prove Theorem 1.10, we need to study the injectivity of the cycle class map 
restricted to the tautological ring R∗(F × F ).

Proposition 6.4. Let X be a smooth cubic fourfold and let F be its Fano variety of lines. Then the cycle 
class map restricted to the tautological ring R∗(F × F ) is injective.

Proof. It suffices to show the proposition for general cubic fourfolds, in which case

cl : R∗(F × F ) → Hdg2∗(F × F )Q

is surjective. Let us show it is injective.
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First it is not hard to count the dimensions of the spaces of Hodge classes:

i 0 1 2 3 4 5 6 7 8
dimHdg2i 1 2 6 8 12 8 6 2 1

It is enough to show that the Ri(F × F ) have the same dimensions.
The following relations in R∗(F × F ) are at our disposal.

(i) g1 · Δ = g2 · Δ ; c1 · Δ = c2 · Δ.
(ii) For i = 1, 2, we have 12gici = 5g3

i ; 4 c2i = g4
i .

(iii) Voisin’s relation [47]13:

I2 = 2Δ + I · (g2
1 + g1g2 + g2

2) + Γ2(g1, g2, c1, c2),

where Γ2 is a polynomial of weighted degree 4.
(iv) In [40, Proposition 17.5], one finds

Δ · I = 6c1Δ − 3g2
1Δ.

(v) In [40, Lemma 17.6], there is a polynomial P of weighted degree 4 such that

c1 · I = P (g1, g2, c1, c2) ;
c2 · I = P (g2, g1, c2, c1).

Using these relations, we easily get for each degree a list of generators (as vector-spaces):

• R0 = 〈1〉;
• R1 = 〈g1, g2〉;
• R2 = 〈g2

1 , g1g2, g2
2 , c1, c2, I〉;

• R3 = 〈g3
1 , g

2
1g2, g1g

2
2 , g

3
2 , g1c2, g2c1, g1I, g2I〉;

• R4 = 〈g4
1 , g

3
1g2, g2

1g
2
2 , g1g

3
2 , g

4
2 , g

2
1c2, g

2
2c1, c1c2, g

2
1I, g

2
2I, g1g2I, Δ〉;

• R5 = 〈g4
1g2, g3

1g
2
2 , g

2
1g

3
2 , g1g

4
2 , g

3
1c2, g

3
2c1, g

2
1g2I, g1g

2
2I, g1Δ〉;

• R6 = 〈g4
1g

2
2 , g

3
1g

3
2 , g

2
1g

4
2 , g

4
1c2, g

4
2c1, g

2
1g

2
2I, g

2
1Δ〉;

• R7 = 〈g4
1g

3
2 , g

3
1g

4
2〉;

• R8 = 〈g4
1g

4
2〉.

Observe that we have the same number of generators as the dimension of Hdg2i for i �= 5 or 6. Therefore 
the cycle class map Ri(F × F ) → H2i(F × F, Q) is injective for i = 0, 1, 2, 3, 4, 7, 8.

(vi) As for i = 5 (resp. i = 6), we use the following (new) tautological relation established in the Appendix 
Theorem A.1:

6Δ∗(g) + g1g2(g1 + g2) · I = Q(g1, g2, c1, c2),

where Q is a polynomial.

Therefore the generator g1Δ = Δ∗(g) (resp. g2
1Δ) is redundant, hence Ri(F × F ) → H2i(F × F ) is also 

injective in these two degrees. �
13 The coefficients are made precise by [40, Proposition 17.4].
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Remark 6.5. As a manifestation of the same principle as in §5.3, the extra difficulty encountered here 
(excess dimension of I, the new tautological relation etc.) can be traced back to the lack of positivity of the 
vector bundle E = Sym3 S∨ on G = Gr(P1, P5), namely it satisfies only (�1) but not (�2), where S is the 
tautological subbundle on G.

We can now easily conclude the proof of Theorem 1.10:

Proof of Theorem 1.10. As the standard conjecture is proven for Fb in [10] (this can also be seen more 
elementarily by noting that the incidence correspondence I induces an isomorphism from H6(Fb, Q) to 
H2(Fb, Q)), numerical equivalence coincides with homological equivalence on powers of Fb. Since the moduli 
stack C is dominated by the parameter space B◦ of smooth cubic fourfolds, by Remark 2.6, we only need 
to show the conclusion for the family F◦ ×B◦ F◦ → B◦. Since any cycle of F◦ ×B◦ F◦ is the restriction of 
a cycle of F ×B F , it is enough to show that for any b ∈ B◦, the restriction of a cycle γ ∈ CH∗(F ×B F) to 
Fb × Fb is zero if and only if it is homologically trivial, which is proven by combining Proposition 6.3 and 
Proposition 6.4. �

With Theorem 1.10 proven, we proceed to study the 0-cycles and codimension-2 cycles of the LLSvS 
hyper-Kähler eightfolds. The key input is Voisin’s degree 6 dominant rational map [50, Proposition 4.8]

F × F ��� Z.

Let B◦◦ be the Zariski open subset of B parameterizing smooth cubic fourfolds not containing a plane. 
Consider the family version of Voisin’s construction (over B◦◦): ψ : F◦◦ ×B◦◦ F◦◦ ��� Z.

Proof of Theorem 1.11. Take a resolution of indeterminacies:

˜F◦◦ ×B◦◦ F◦◦

τ
f

F◦◦ ×B◦◦ F◦◦
ψ

Z.

For (i), let γ ∈ CH8(Z) be a relative 0-cycle whose degree on fibers is zero. Then, for any b ∈ B◦◦,

(τ∗f∗(γ)) |Fb×Fb
= τb∗

(
f∗(γ)|

˜Fb×Fb

)
= τb∗f

∗
b (γ|Zb

) .

Thus τ∗f∗(γ) is a relative 0-cycle of fiber degree zero on F◦◦×B◦◦ F◦◦ and by Theorem 1.10, we know that

τb∗f
∗
b (γ|Zb

) = 0 in CH8(Fb × Fb).

For b ∈ B◦◦ general, τb is birational hence induces an isomorphism on CH0, hence f∗
b (γ|Zb

) = 0. Moreover, 
since fb is generically finite of degree 6 (still under the assumption that b is general), we have

γ|Zb
= 1

6fb∗f
∗
b (γ|Zb

) = 0.

A specialization argument shows that γ|Zb
= 0 for all b ∈ B◦◦.
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As for (ii), i.e., codimension-2 cycles: since H3(Zb, Q) = H3(Fb × Fb) = 0, any cycle in CH2(Zb) or in 
CH2(Fb × Fb) is homologically trivial if and only if its Abel–Jacobi invariant vanishes. Now the same proof 
as in (i) works because the Abel–Jacobi kernel for codimension-2 cycles CH2

AJ , just as CH0, is a birational 
invariant (for smooth projective varieties), hence

τb∗ : CH2(F̃b × Fb)hom → CH2(Fb × Fb)hom

is an isomorphism. �
Proof of Corollary 1.12. In view of Theorem 1.11, this is just a special case of Proposition 2.5. �
Remark 6.6. As above, let Yb be a smooth cubic fourfold not containing a plane, and Zb the associated 
LLSvS eightfold. Our argument to prove Theorem 1.11 breaks down for CHj(Zb) with 2 < j < 8, because 
Voisin’s map is not a morphism. It is known [34], [12] that the indeterminacy locus of Voisin’s map is the 
incidence subvariety I ⊂ Fb ×Fb, and a resolution of indeterminacy is obtained by blowing up I. To extend 
Theorem 1.11 to the full Chow ring CH∗(Zb), it remains to prove analogues of Propositions 6.3 and 6.4
for I, the family of incidence varieties.

Appendix A. On a new tautological relation

Let X be a smooth cubic fourfold and F be its Fano variety of lines, which is a hyper-Kähler fourfold 
by [6]. In this appendix, we establish a new relation (Theorem A.1), up to rational equivalence, among 
3-dimensional tautological cycle classes of F ×F . Some interesting applications of this tautological relation 
are also discussed. We try to keep the appendix as self-contained as possible.

Throughout this appendix, let us fix the following notation:

• P5 is the ambient space and X is a smooth cubic hypersurface in it.
• h := c1(OP5(1)); h|X is still denoted by h.
• G := Gr(P1, P5) 	 Gr(2, 6) is the Grassmannian of projective lines in P5.
• F := F (X) is the Fano variety of lines of X.
• S is the tautological subbundle on G.
• g := c1(S∨) is the Plücker polarization class; g|F is still denoted by g.
• c := c2(S); c|F is still denoted by c.
• hi := pr∗i (h), gi := pr∗i (g) and ci := pr∗i (c) where pri is the i-th projection.
• If P := P(S|F ) denotes the incidence variety in F ×X, then the natural projection p : P → F is the 

universal projective line and q : P → X is the evaluation map.
• I ⊂ F × F is the incidence subvariety parameterizing pairs of intersecting lines contained in X.
• Ĩ := P ×X P . Note that I is its image in F × F via the natural projection.

The main result of this appendix is the following.

Theorem A.1. There exists a polynomial Q (of weighted degree 5) such that the following equality holds in 
CH5(F × F ):

6Δ∗(g) + g1g2(g1 + g2) · I = Q(g1, g2, c1, c2), (12)

where Δ : F ↪→ F × F is the diagonal embedding.
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Remark A.2. The polynomial Q is not unique. A cohomological computation shows that

Q(g1, g2, c1, c2) = 1
4
(g4

1g2 + g1g
4
2) + 7

12
(g3

1g
2
2 + g2

1g
3
2)

is one possible choice of Q.

A.1. Proof of the tautological relation

We have the following diagram

Ĩ

i

X

ΔX

P × P
(q,q)

(p,p)

X ×X

F × F

(13)

Let us first introduce some natural cycles on F × F . For any i ∈ N, define

Γhi := (p, p)∗(q, q)∗(ΔX∗(hi)) ∈ CHi+2(F × F ).

Note that Γh0 is nothing but the incidence correspondence I. Geometrically, Γhi is represented by the locus 
of pairs of lines contained in X intersecting at a point which lies on the intersection of i general hyperplane 
sections of X.

Lemma A.3. For any i > 0, the cycle Γhi is a polynomial of g1, g2, c1, c2. Precisely,

Γh = 1
18(g3

1 + 6g2
1g2 + 6g1g

2
2 + g3

2 − 6g1c2 − 6g2c1) ;

Γh2 = 1
18(g3

1g2 + 6g2
1g

2
2 + g1g

3
2 − 6g2

1c2 − 6g2
2c1 + 6c1c2) ;

Γh3 = 1
18(g3

1g
2
2 + g2

1g
3
2 − g3

1c2 − g3
2c1) ;

Γh4 = 1
108g

3
1g

3
2 .

Proof. A slightly more complicated (but equivalent) form of the first two formulas is proven in [40, Proposi-
tion A.6]. For the convenience of the reader, we give a complete proof here. The excess intersection formula 
[19, §6.3] applied to the following cartesian diagram

X

ΔX �

P5

ΔP

X ×X P5 × P5

yields that, for any i ∈ N, we have in CH∗(X ×X)

3ΔX∗(hi+1) = ΔP∗(hi)|X×X .
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From ΔP∗(hi) = h5
1h

i
2 + · · · + hi

1h
5
2, we obtain

ΔX∗(hi) = 1
3
(
h4

1h
i
2 + · · · + hi

1h
4
2
)
.

Therefore

Γhi = (p, p)∗(q, q)∗(ΔX,∗(hi))

= 1
3(p, p)∗(q, q)∗

(
h4

1h
i
2 + · · · + hi

1h
4
2
)

= 1
3 (f4 × fi + · · · + fi × f4) ,

where fj := p∗q
∗(hj) and where × is the exterior product pr∗1(−) ·pr∗2(−). All the formulas in the statement 

then follow from the facts that f1 = 1, f2 = g, f3 = g2 − c and f4 = 1
6g

3 (cf. [40, Lemma A.4], [47, 
Lemma 3.2] and [47, Lemma 3.5]). �

Define I0 := I\ΔF to be the subvariety of F ×F parameterizing pairs of distinct intersecting lines in X. 
We then have a natural morphism

q0 : I0 → X

which sends two lines to their intersection point.

Lemma A.4. The inclusion I0 ↪→ F × F\ΔF is a local complete intersection and the Chern classes of the 
normal bundle N := NI0/F×F\ΔF

are given by

c1(N) = (g1 + g2)|I0 − q∗0(h) ;

c2(N) = (g2
1 + g1g2 + g2

2)|I0 − 3(g1 + g2)|I0 · q∗0(h) + 6q∗0(h2).

Proof. Note that Ĩ ⊂ P × P is a local complete intersection (since Ĩ ⊂ P × P is obtained from the local 
complete intersection ΔX ⊂ X×X via base change) and that Ĩ\ΔP ⊂ P ×P is a section of P ×P → F ×F

over I0. We apply [19, B.7.5] and see that I0 ⊂ F ×F\ΔF is a local complete intersection. Using the section 
Ĩ\ΔP , we view I0 as a subvariety of P × P . Then we get the following short exact sequence

0 → pr∗1TP/F ⊕ pr∗2TP/F → NI0/P×P → NI0/F×F → 0 .

Note that by construction, we have

NI0/P×P = q∗0TX .

The Chern classes of NI0/F×F are computed as follows:

c(N) = q∗0c(TX)
pr∗1c(TP/F ) · pr∗2c(TP/F )

= (1 + h)6

(1 + 3h)(1 + 2q∗0h− g1|I0)(1 + 2q∗0h− g2|I0)
.

The lemma follows from the expansion of the above equation. �
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Remark A.5. The previous lemma implies that

I2|F×F\ΔF
= I · (g2

1 + g1g2 + g2
2) − 3(g1 + g2)Γh + 6Γh2 .

Thus by Lemma A.3 there exists α ∈ Q and a polynomial Γ2 such that in CH4(F × F ) we have

I2 = α · ΔF + I · (g2
1 + g1g2 + g2

2) + Γ2(g1, g2, c1, c2),

for some α ∈ Q. This was proven by Voisin [47]. In fact, α = 2, as is computed in [40, Proposition 17.4].

Proof of Theorem A.1. Let us first prove the theorem for a general cubic fourfold X. Fix three general 
hyperplane sections H1, H2, H3 of X. For i = 1, 2, 3, let

Zi := {(l, l′) ∈ F × F | l ∩ l′ ∩H1 ∩ · · · ∩Hi �= ∅} .

On the one hand, as mentioned before, the class of Zi in CH2+i(F × F ) is equal to Γhi ; on the other hand, 
denoting Zo

i := Zi\ΔF the complement of the diagonal in Zi, the class of Zo
i in CHi(I0) is equal to q∗0(hi)

by definition. This yields the diagram

Zo
3 ⊂ Zo

2 ⊂ Zo
1 I0

q0

ι
F × F\ΔF

X

Denoting N the normal bundle of ι, we obtain

I · Γh|F×F\ΔF
= I0 · ι∗q∗0 (h)

= ι∗ (q∗0(h) · c2(N))

= ι∗
(
(g2

1 + g1g2 + g2
2)|I0 · q∗0(h) − 3(g1 + g2)|I0 · q∗0(h2) + 6q∗0(h3)

)
=

(
(g2

1 + g1g2 + g2
2) · Z1 − 3(g1 + g2) · Z2 + 6Z3

)
|F×F\ΔF

=
(
(g2

1 + g1g2 + g2
2) · Γh − 3(g1 + g2) · Γh2 + 6Γh3

)
|F×F\ΔF

,

where the third equality uses Lemma A.4. By Lemma A.3, there exists a polynomial P1 such that

I · Γh|F×F\ΔF
= P1(g1, g2, c1, c2)|F×F\ΔF

.

Here, more precisely, one can compute by Lemma A.3 and the relation 12gc = 5g3 that

P1(g1, g2, c1, c2) = 5
12

(
g4
1g2 + 4g3

1g
2
2 + 4g2

1g
3
2 + g1g

4
2 − 3g3

1c2 − 3g3
2c1

)
.

By the localization short exact sequence of Chow groups, there exists an element D ∈ CH1(F ) such that in 
CH5(F × F ) we have

I · Γh + Δ∗(D) = P1(g1, g2, c1, c2).

Since X is assumed (for now) to be general, CH1(F ) is generated by g, hence D = λg for some λ ∈ Q. This 
yields that in CH5(F × F ) we have
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I · Γh + λΔ∗(g) = P1(g1, g2, c1, c2). (14)

However, we know that I · c1, I · c2, I · g3
1 and I · g3

2 are polynomials in g1, g2, c1, c2 by [40, Lemma 17.6]
(cf. the known relations collected in the proof of Proposition 6.4). The first formula in Lemma A.3 then 
yields that

I · Γh = 1
3I ·

(
g2
1g2 + g1g

2
2
)

+ P2(g1, g2, c1, c2) (15)

for some polynomial P2.
Putting (14) and (15) together, we know that there exists a polynomial Q such that the following equality 

holds in CH5(F × F ):

3λ · Δ∗(g) + I ·
(
g2
1g2 + g1g

2
2
)

= Q(g1, g2, c1, c2).

By considering the action of both sides on the cohomology, we easily see that λ = 2 and that

Q(g1, g2, c1, c2) = 1
4(g4

1g2 + g1g
4
2) + 7

12(g3
1g

2
2 + g2

1g
3
2).

Therefore the desired relation is proven for a general cubic fourfold. As all the cycles appearing are universally 
defined in the universal Fano variety of lines, a specialization argument shows that this relation must also 
hold for any smooth cubic fourfold. �
A.2. Some applications to the Fourier decomposition of F

Our aim is to use Theorem 1.10, which is based on Theorem A.1, to complement the results of [40]
concerning the multiplicative structure of the Chow motive of the Fano variety of lines on a smooth cubic 
fourfold.

A.2.1. An explicit Chow–Künneth decomposition for F

Recall that a Chow–Künneth decomposition for a smooth projective variety X of dimension d is a 
decomposition of the diagonal ΔX ∈ CHd(X × X) into a sum ΔX = π0

X + · · · + π2d
X of mutually 

orthogonal idempotent correspondences πi
X ∈ CHd(X × X) whose action in cohomology is given by 

(πi
X)∗H∗(X, Q) = Hi(X, Q). It is a conjecture of Murre that all smooth projective varieties should ad-

mit a Chow–Künneth decomposition. In [40], it is shown that the Fano variety of lines on a smooth cubic 
fourfold admits a Chow–Künneth decomposition; see especially [40, Theorem 3.3]. Such a decomposition is 
obtained by modifying the following correspondences in CH4(F × F ):

π0
F = 1

23 · 25 l
2
1, π2

F = 1
25L · l1, π4

F = 1
2(L2 − 1

25 l1 · l2), π6
F = 1

25L · l2, π8
F = 1

23 · 25 l
2
2. (16)

Here, L := 1
3 (g2

1+ 3
2g1g2+g2

2−c1−c2) −I ∈ CH2(F×F ) is a (and in fact “the”, by Proposition 6.4) tautological 
cycle representing the Beauville–Bogomolov form; see [40, Proposition 19.1]. The cycle l ∈ CH2(F ) is the 
restriction of L to the diagonal, and, as before, a subscript i indicates the pull-back along the projection 
F × F → F to the i-th factor.

As was expected from [40, Conjecture 3], these correspondences already define a Chow–Künneth decom-
position:

Proposition A.6. The correspondences in (16) define a Chow–Künneth decomposition of F .
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Proof. The correspondences π2i
F of (16) are cycles on F ×F that belong to the image of the restriction map 

CH∗(F ×B F) → CH∗(F ×F ), and they define a Künneth decomposition of the diagonal in cohomology by 
[40, Corollary 1.7]. (Here F → B is the universal Fano variety of lines as defined in §3). It follows readily 
from Theorem 1.10 that they define a Chow–Künneth decomposition. �
A.2.2. A new multiplicativity statement

Using the Chow–Künneth decomposition (16) given by Proposition A.6, we can define, for all integers i
and j,

CHi(F )(j) := (π2i−j
F )∗ CHi(F ) .

Concretely, we have (cf. [40])

CH4(F ) = CH4(F )(0) ⊕ CH4(F )(2) ⊕ CH4(F )(4)
CH3(F ) = CH3(F )(0) ⊕ CH3(F )(2)
CH2(F ) = CH2(F )(0) ⊕ CH2(F )(2)
CH1(F ) = CH1(F )(0)
CH0(F ) = CH0(F )(0).

In [40], it was proven that for the Fano variety of lines on a very general cubic fourfold, the decomposition 
CHi(F )(j) defines a bigrading on the Chow ring CH∗(F ), in the sense that for all integers i, i′, j, j′ we have

CHi(F )(j) · CHi′(F )(j′) ⊆ CHi+i′(F )(j+j′).

In the case of the Fano variety of lines on a non-very general cubic fourfold, the following two relations 
could not be established (see [40, Remark 22.9]):

CH1(F ) · CH2(F )(0) ⊆ CH3(F )(0) ; (17)
CH2(F )(0) · CH2(F )(0) ⊆ CH4(F )(0) = Q · oF . (18)

Using Theorem 1.10, which is based on the new relation (12), we can now prove one of the missing two 
inclusions:

Proposition A.7. Let F be the Fano variety of lines on a smooth cubic fourfold. Then

CH1(F ) · CH2(F )(0) = CH3(F )(0).

Proof. We first show that CH3(F )(0) ⊆ CH1(F ) · CH2(F )(0). On the one hand, the cycle class map 
CH3(F )(0) → H6

alg(F, Q) is an isomorphism; on the other hand, the hard Lefschetz isomorphism implies that 
H6

alg(F, Q) is generated by g2 ·H2
alg(F, Q) = g2 ·CH1(F ). Hence CH3(F )(0) is generated by intersections of 

three divisors, which is contained in CH1(F ) ·CH2(F )(0) since we know that CH1(F ) ·CH1(F ) ⊆ CH2(F )(0).
For the reverse inclusion, which is (17), by [40, Proposition 22.7], we only need to show that if α is a 

cycle in CH2(F )(0), then g · α belongs to CH3(F )(0). To this end, we consider the correspondence

Γ := π4
F ◦ Γι ◦ tΓι ◦ π4

F ∈ CH5(F × F ) ,

where ι : H ↪→ F denotes the inclusion of a hyperplane with respect to the Plücker embedding. Clearly, Γ is 
homologically trivial. But Γ is universally defined, and so Theorem 1.10 implies that Γ is rationally trivial. 
The action of Γ on CH2(F )(0) is the same as
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CH2(F )(0)
·g−→ CH3(F ) −→ CH3(F )(2)

(where the second arrow is projection on a direct summand), and so we are done. �
With notations as in §6, it seems that the final missing inclusion (18) cannot be obtained from considering 

the subring Im (CH∗(F ×B F) → CH∗(Fb × Fb)). Rather, a streamlined proof of all inclusions CHi(F )(j) ·
CHi′(F )(j′) ⊆ CHi+i′(F )(j+j′) would follow from establishing that the Chow–Künneth decomposition (16)
is multiplicative in the sense of [40, §8], meaning that

πk
F ◦ δF ◦ (πi

F ⊗ πj
F ) = 0 in CH8(F × F × F ), for all k �= i + j,

where δF denotes the class of the small diagonal in F ×F ×F viewed as a correspondence from F ×F to F . 
This in turn would follow from establishing the Franchetta property for the relative cube of the universal 
Fano variety of lines, i.e. from showing that

Im (CH∗(F ×B F ×B F) → CH∗(Fb × Fb × Fb))

injects into cohomology by the cycle class map for all b. An approach would consist in first showing that 
this subring consists of “tautological cycles” and then in establishing enough “tautological relations”, as was 
done in Propositions 6.3 and 6.4 in the case of the relative square.
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