
Doc. Math. 28 (2023), 827–856
DOI 10.4171/DM/925

© 2023 Deutsche Mathematiker-Vereinigung
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Cubic fourfolds, Kuznetsov components,
and Chow motives

Lie Fu and Charles Vial

Abstract. We prove that the Chow motives of two smooth cubic fourfolds whose Kuznetsov com-
ponents are Fourier–Mukai equivalent are isomorphic as Frobenius algebra objects. As a corollary,
there exists a Galois-equivariant isomorphism between their `-adic cohomology Frobenius algebras.
We also discuss the case where the Kuznetsov component of a smooth cubic fourfold is equivalent
to the derived category of a K3 surface.

1. Introduction

In [17], we asked whether the bounded derived category of coherent sheaves on a hyper-
Kähler varietyX encodes the intersection theory onX and its powers. Precisely, given two
hyper-Kähler varieties X and X 0 that are derived-equivalent, i.e., Db.X/ ' Db.X 0/, we
asked whether the Chow motives with rational coefficients of X and X 0 are isomorphic
as algebra objects. The main result of [17] establishes this in the simplest case where
X and X 0 are K3 surfaces. The above expectation refines, in the special case of hyper-
Kähler varieties, a general conjecture of Orlov [35], predicting that two derived-equivalent
smooth projective varieties have isomorphic Chow motives with rational coefficients.

Like hyper-Kähler varieties, the so-called K3-type varieties also behave in many ways
like K3 surfaces. By definition [16], those are Fano varietiesX of even dimension 2n with
Hodge numbers hp;q.X/D 0 for all p ¤ q except for hn�1;nC1.X/D hnC1;n�1.X/D 1.
Some basic examples of such varieties are cubic fourfolds, Gushel–Mukai fourfolds and
sixfolds [27, 32], and Debarre–Voisin 20-folds [13]. As an important interplay between
Fano varieties of K3 type and hyper-Kähler varieties, many hyper-Kähler varieties are
constructed as moduli spaces of stable objects on some admissible subcategories of the
derived categories of such Fano varieties [4, 28, 29, 31]. Due to these links, in [16], we
asked whether the Chow motives, considered as algebra objects, of Fano varieties of
K3 type had similar properties as K3 surfaces (and what is expected for hyper-Kähler
varieties).

Based on the above, we may ask whether two derived-equivalent Fano varieties of K3
type have isomorphic Chow motives as algebra objects. However, this question is unin-
teresting: due to the celebrated result of Bondal–Orlov [7], any two derived-equivalent
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Fano varieties are isomorphic. In the case of a cubic fourfold X , Kuznetsov [24] has
identified an interesting admissible subcategory AX of Db.X/, called the Kuznetsov com-
ponent, consisting of objects E such that Hom.OX .i/; EŒm�/ D 0 for i D 0; 1; 2 and any
m 2 Z. The Kuznetsov component is a K3-like triangulated category, see Section 4.1. Our
first main result gives the correct analog of the aforementioned results on K3 surfaces
for cubic fourfolds: two cubic fourfolds with Fourier–Mukai equivalent Kuznetsov com-
ponents have isomorphic Chow motives as algebra objects. More precisely, we have the
following.

Theorem 1. Let X and X 0 be two smooth cubic fourfolds over a field K with Fourier–
Mukai equivalent Kuznetsov components AX ' AX 0 . Then X and X 0 have isomorphic
Chow motives, as Frobenius algebra objects, in the category of rational Chow motives
over K.

We refer to Section 5.4 for the notion of Fourier–Mukai equivalence for Kuznetsov
components. By [30], ifK D C and if AX and AX 0 are equivalent as C-linear triangulated
categories, then they are automatically Fourier–Mukai equivalent.

Following our previous work [17, Section 2], a Frobenius algebra object in a rigid
tensor category is an algebra object together with an extra structure, namely an isomor-
phism to its dual object (which we call a non-degenerate quadratic space structure, see
Section 2.3) with a compatibility condition. The Chow motive of any smooth projective
variety carries a natural structure of Frobenius algebra object in the category of Chow
motives, lifting the classical Frobenius algebra structure on the cohomology ring (which
essentially consists of the cup-product ^ together with the degree map

R
X

). We refer to
Section 2 for more details. An immediate concrete application of Theorem 1 is the follow-
ing result.

Corollary 1. Let X and X 0 be two smooth cubic fourfolds over a field K. Assume that
their Kuznetsov components are Fourier–Mukai equivalent AX ' AX 0 . Then there exists
a correspondence � 2 CH4.X �K X 0/˝ Q such that for any Weil cohomology H� with
coefficients in a field of characteristic zero,

�� W H�.X/
�
�! H�.X 0/

is an isomorphism of Frobenius algebras. In particular,

(i) for any prime number ` ¤ charK, there exists a Galois-equivariant isomor-
phism H�.X xK ;Q`/ ' H�.X 0

xK
;Q`/ of `-adic cohomology Frobenius algebras;

(ii) there exists an isocrystal isomorphism H�cris.X/' H�cris.X
0/ of crystalline coho-

mology Frobenius algebras;

(iii) if K D C, there exists a Hodge isomorphism H�.X;Q/ ' H�.X 0;Q/ of Betti
cohomology Frobenius algebras.

We note that item (iii) can also be directly deduced from arguments due to Addington–
Thomas [1] and Huybrechts [20]; see Remark 6.2. The proof of Theorem 1 is given in



Cubic fourfolds, Kuznetsov components, and Chow motives 829

Section 6 and employs essentially two different sources of techniques. On the one hand,
we proceed to a refined Chow–Künneth decomposition (Section 5.2), thereby cutting the
motive of a cubic fourfold into the sum of its transcendental part and its algebraic part.
The transcendental part, as well as its relation to the algebraic part, is then dealt with via
a weight argument (Section 5.3), while the algebraic part is dealt with via considering
the Chow ring modulo numerical equivalence (Proposition 6.1). On the other hand, our
proof also relies on some cycle-theoretic properties of cubic fourfolds, in particular those
recently established in [15,16]. First, the so-called Franchetta property for cubic fourfolds
and their squares (Proposition 3.2) is used to establish the following.

Theorem 2 (Theorem 5.6). Let X and X 0 be two smooth cubic fourfolds over a field
K with Fourier–Mukai equivalent Kuznetsov components AX ' AX 0 . Then the transcen-
dental motives h4tr .X/.2/ and h4tr .X

0/.2/, as defined in Section 5.2, are isomorphic as
quadratic space objects in the category of rational Chow motives over K.

Concretely, this involves exhibiting an isomorphism �tr W h
4
tr.X/!h4tr.X

0/with inverse
given by its transpose. Precisely, we show in Theorem 5.6 that such an isomorphism is
induced by the degree-4 part of the Mukai vector of the Fourier–Mukai kernel inducing
the equivalence AX ' AX 0 . Such an isomorphism is then upgraded in Proposition 6.1 to
an isomorphism � W h.X/! h.X 0/ with inverse given by its transpose, or equivalently, to
a quadratic space object isomorphism � W h.X/.2/! h.X 0/.2/.

The next step towards the proof of Theorem 1 consists in showing that this iso-
morphism � W h.X/! h.X 0/ respects the algebra structure. This is achieved in Propo-
sition 6.3, the proof of which relies on the recently established multiplicative Chow–
Künneth relation (3) for cubic fourfolds (Theorem 3.1).

To make the analogy with our previous work [17] even more transparent, we also
investigate the case of cubic fourfolds with associated (twisted) K3 surfaces, resulting in
the following strengthening of [10, Theorem 0.4].

Theorem 3 (Theorem 7.2). Let X be a smooth cubic fourfold over a field K and let S be
a K3 surface over K equipped with a Brauer class ˛. Assume that AX and Db.S; ˛/ are
Fourier–Mukai equivalent. Then the transcendental motives h4tr.X/.2/ and h2tr.S/.1/ are
isomorphic as quadratic space objects in the category of rational Chow motives over K.

Note that by Orlov’s result, any equivalence between AX and Db.S; ˛/ is a Fourier–
Mukai equivalent, at least when ˛ D 0.

In a similar vein to Corollary 1, one obtains from Theorems 2 and 3 respectively, after
passing to any Weil cohomology theory H� (e.g., Betti, `-adic, crystalline), isomorphisms

H�tr.X/
�
�! H�tr.X

0/;

H�tr.X/
�
�! H�tr.S/

that are compatible with the natural extra structures (e.g., Hodge, Galois, Frobenius) and
with the quadratic form .˛; ˇ/ 7!

R
X
˛ ^ ˇ.
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Conventions. From Section 3 onwards, CH�.�/ denotes the Chow group with rational
coefficients, CH

�
.�/ denotes its reduction modulo numerical equivalence, and motives

are with rational coefficients.

2. Chow motives and Frobenius algebra objects

In this section, we fix a commutative ring R.

2.1. Chow motives

We refer to [2, Section 4] for more details. Briefly, a Chow motive, or motive, over a field
K with coefficients in R, is a triple .X; p; n/ consisting of a smooth projective variety X
overK, an idempotent correspondence p 2 CHdimX .X �K X/˝R, and an integer n 2Z.
The motive of a smooth projective variety X over K is the motive h.X/ WD .X; �X ; 0/,
where �X is the class of the diagonal inside X �K X . A morphism � W .X; p; n/ !

.Y; q; m/ between two motives is a correspondence � 2 CHdimX�nCm.X �K Y / ˝ R

such that q ı � ı p D � . The composition of morphisms is given by the composition of
correspondences (as in [18, Section 16]). The category of Chow motives M.K/R over
K with coefficients in R forms a R-linear rigid ˝-category with unit 1 D h.SpecK/,
with tensor product given by .X; p; n/˝ .Y; q; m/ D .X �K Y; p � q; nCm/ and with
duality given by .X; p; n/_ D .X; tp; dimX � n/, where tp denotes the transpose of the
correspondence p.

Fix a homomorphism R! F to a field F and fix a Weil cohomology theory H� with
field of coefficients F , i.e., a ˝-functor H� WM.K/R ! GrVecF to the category of Z-
graded F -vector spaces such that Hi .1.�1// D 0 for i ¤ 2; see [2, Proposition 4.2.5.1].
We also call such a˝-functor an H-realization. One thereby obtains the category of homo-
logical motives MH.K/R (or Mhom.K/R, when H is clear from the context).

2.2. Algebra structure

We consider the general situation where C is an R-linear ˝-category with unit 1; cf. for
example, [2, Section 2.2.2]. An algebra structure on an object M in C is the data consist-
ing of a unit morphism " W 1!M and a multiplication morphism

� WM ˝M !M

satisfying the associativity axiom � ı .idM ˝ �/ D � ı .� ˝ idM / and the unit axiom
� ı .idM ˝ "/ D idM D � ı ."˝ idM /. The algebra structure is said to be commutative
if it satisfies the commutativity axiom � ı � D � where � W M ˝M ! M ˝M is the
morphism permuting the two factors.

In case C is the category of Chow motives over K, then the Chow motive h.X/ of
a smooth projective variety X over K is naturally endowed with a commutative algebra
structure: the multiplication � W h.X/˝ h.X/! h.X/ is given by pulling back along the
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diagonal embedding ıX W X ,! X � X , while the unit morphism � W 1! h.X/ is given
by pulling back along the structure morphism "X WX ! SpecK. Taking the H-realization,
this algebra structure endows H�.X/ with the usual super-commutative algebra structure
given by cup-product.

2.3. Quadratic space structure

We now consider the general situation where C is an R-linear rigid ˝-category with unit
1 and equipped with a ˝-invertible object denoted 1.1/. Let d be an integer. A degree-d
quadratic space structure, or by abuse a quadratic space structure, on an object M of C

consists of a morphism, called quadratic form,

q WM ˝M ! 1.�d/;

which is commutative q ı � D q, where � WM ˝M!M ˝M is the switching morphism.
We say that an objectM equipped with the quadratic form q above is a degree-d quadratic
space object in C , or by abuse a quadratic space object. The quadratic form q W M ˝

M ! 1.�d/ is said to be non-degenerate if the induced morphism M.d/! M_ is an
isomorphism. Here the morphism M.d/! M_ is obtained by tensoring q with idM_.d/
and pre-composing with idM.d/ ˝ coev, where coev W 1!M ˝M_ is the co-evaluation
map.

In case C is the category of Chow motives over K, then the Chow motive h.X/ of
a smooth projective variety X of dimension d over K is naturally endowed with a non-
degenerate degree-d quadratic space structure: the quadratic form

qX W h.X/˝ h.X/! 1.�d/

is simply given by the class of the diagonal�X . In relation to the natural algebra structure
on h.X/, we have

qX W h.X/˝ h.X/
�
�! h.X/

"
�! 1.�d/;

where " W h.X/ ! 1.�d/ is the dual of the unit morphism � W 1 ! h.X/. Taking the
H-realization, this degree-d quadratic structure endows H�.X/, as a super-vector space,
with the usual quadratic structure given by

qX W H�.X/˝ H�.X/
^
�! H�.X/

deg
��! F.�d/: (1)

Note that when d is odd the form is anti-symmetric on Hd .X/, while when d is even, the
form is symmetric on Hd .X/.

In what follows, if M D .X; p; d/ is a Chow motive with dimX D 2d , we view M

as a quadratic space object via

qM WM ˝M ,! h.X/.d/˝ h.X/.d/
�
�! h.X/.2d/

"
�! 1:
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Proposition 2.1. LetM D .X;p; d/ andM 0 D .X 0; p0; d 0/ be Chow motives in M.K/R.
Assume that p D tp, p0 D tp0, dimX D 2d and dimX 0 D 2d 0, so that M D M_ and
M 0 DM 0_. The following are equivalent:

(i) M and M 0 are isomorphic as quadratic space objects;

(ii) There exists an isomorphism � WM
�
�!M 0 of Chow motives with ��1 D t� .

Proof. The quadratic forms qM and qM 0 are the (non-degenerate) quadratic forms asso-
ciated to the identifications M D M_ and M 0 D M 0_, respectively. By definition, a
morphism � WM !M 0 is a morphism of quadratic space objects if and only if

qM 0 ı .� ˝ �/ D qM :

The latter is then equivalent to t� ı� D idM , where we have identified �_ with t� via the
identifications M DM_ and M 0 DM 0_. This shows that a morphism � WM !M 0 is a
morphism of quadratic space objects if and only if � is split injective with left-inverse t� .
This proves the proposition.

2.4. Frobenius algebra structure

This notion was introduced in [17, Section 2], as a generalization of the classical Frobenius
algebras (cf. [23]). Consider again the general situation where C is an R-linear rigid ˝-
category with unit 1 and equipped with a ˝-invertible object denoted 1.1/. Let d be
an integer. A degree-d (commutative) Frobenius algebra structure on an object M of C

consists of a unit morphism " W 1!M , a multiplication morphism � WM ˝M !M and
a non-degenerate degree-d quadratic form q WM ˝M ! 1.�d/ such that .M;�; "/ is an
algebra object, and the following compatibility relation, called the Frobenius condition,
holds:

.idM ˝ �/ ı .ı ˝ idM / D ı ı � D .�˝ idM / ı .idM ˝ ı/;

where ı W M ! M ˝M.d/ is the dual of the multiplication �, via the identification
M.d/ 'M_ provided by the non-degenerate quadratic form q.

In case C is the category of Chow motives over K, then the Chow motive h.X/

of a smooth projective variety X of dimension d over K is naturally endowed with a
degree-d Frobenius algebra structure. That the unit, multiplication and quadratic form
given in Sections 2.2–2.3 above do define such a structure on h.X/ is explained in [17,
Lemma 2.7]. Taking the H-realization and forgetting Tate twists, this degree-d Frobenius
algebra structure endows H�.X/ with the usual Frobenius algebra structure (consisting of
the cup-product together with the quadratic form qX of (1)); see [17, Example 2.5].

3. The Chow ring of powers of cubic fourfolds

In this section, we gather the cycle-theoretic results needed about cubic fourfolds; Propo-
sition 3.2 is used to obtain isomorphisms as quadratic space objects as in Theorem 2,
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and Theorem 3.1 is used in addition to upgrade those isomorphisms to isomorphisms of
algebra objects as in Theorem 1.

From now on, we fix a field K with algebraic closure xK, Chow groups and motives
are with rational coefficients (R D Q), and we fix a Weil cohomology theory H� with
coefficients in a field of characteristic zero.

Recall that a Chow–Künneth decomposition, or weight decomposition, for a motive
M is a finite grading M D

L
i2ZM

i such that H�.M i / D Hi .M/. This notion was
introduced by Murre [34], who conjectured that every motive admits such a decomposi-
tion. Now, if M is a Chow motive equipped with an algebra structure (e.g., M D h.X/

equipped with the intersection pairing), then we say that a Chow–Künneth decomposition
M D

L
i2ZM

i is multiplicative if it defines an algebra grading, i.e., if the composition
M i ˝M j ,! M ˝M ! M factors through M iCj for all i; j . This notion was intro-
duced in [36, Section 8], where it was conjectured that the motive of any hyper-Kähler
variety admits a multiplicative Chow–Künneth decomposition.

Let B be the open subset of PH0.P5;O.3// parameterizing smooth cubic fourfolds,
let X!B be the universal family of smooth cubic fourfolds and ev WX!P5 be the eval-
uation map. IfH WD ev�.c1.OP5.1/// 2 CH1.X/ denotes the relative hyperplane section,
then

�0X D
1

3
H 4
�B X; �2X D

1

3
H 3
�B H;

�6X D
1

3
H �B H

3; �8X D
1

3
X �B H

4;

�4X D �X=B � �
0
X � �

2
X � �

6
X � �

8
X

(2)

defines a relative Chow–Künneth decomposition, in the sense that its specialization to any
fiber Xb over b 2 B gives a Chow–Künneth decomposition of Xb . Given a smooth cubic
fourfold X , we denote hX the restriction of H to X and we denote ¹�0X ; �

2
X ; �

4
X ; �

6
X ; �

8
Xº

the restriction of the above projectors to the fiber X .
In our previous work [16], we established the following two results:

Theorem 3.1. The Chow–Künneth decomposition ¹�0X ;�
2
X ;�

4
X ;�

6
X ;�

8
Xº is multiplicative.

Equivalently, in CH8.X �X �X/, we have

ıX D
1

3

�
p�12�X � p

�
3h
4
X C p

�
13�X � p

�
2h
4
X C p

�
23�X � p

�
1h
4
X

�
C P

�
p�1hX ; p

�
2hX ; p

�
3hX

�
; (3)

where P is an explicit symmetric rational polynomial in 3 variables.

Proof. That the Chow–Künneth decomposition ¹�0X ; �
2
X ; �

4
X ; �

6
X ; �

8
Xº is multiplicative

is [16, Corollary 1]. The identity (3) is due to Diaz [14]. That the two formulations are
equivalent is [15, Proposition 2.8]. The proof in loc. cit. is over C, but one can extend
the result to arbitrary base fields as follows. By the Lefschetz principle, (3) holds for any
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algebraically closed field of characteristic zero. Since the pull-back morphism CH.X3/!
CH.X3�/ associated with the field extension from K to a universal domain � is injective,
and all the terms in (3) are defined over K, we have the result in characteristic zero. If
char.K/ > 0, take a lifting X=W over some discrete valuation ring W with residue field
K and fraction field of characteristic zero. Then by specialization, the validity of (3) on
the generic fiber implies the same result on the special fiber.

Proposition 3.2. Let X ! B be the above-defined family of smooth cubic fourfolds and
let X D Xb be a fiber. For a positive integer n, define GDCH�B.X

n/, which stands for
generically defined cycles, to be the image of the Gysin restriction ring homomorphism

CH�.Xn
=B/! CH�.Xn/:

Then the map GDCH�B.X
n/ ,! CH�.Xn/ � CH �.Xn/ is injective for n � 2. We say

that Xn
=B

has the Franchetta property for n � 2.

Proof. This was established in [16, Proposition 5.6]. The proof in loc. cit. is given for
K D C but holds for any field K.

Remark 3.3. Proposition 3.2 was extended to n � 4 in [15, Theorem 2]. However, the
cases n D 3 and n D 4 are not needed for the proof of Theorem 1 and, besides, their
proofs are significantly more involved.

4. Kuznetsov components and primitive motives

4.1. Kuznetsov component and projectors

For the basic theory of Fourier–Mukai transforms, we refer to the book [19]. Let X � P5

be a smooth cubic fourfold defined over a base field K. Following [24], the Kuznetsov
component AX of X is defined to be the right-orthogonal complement of the triangulated
subcategory generated by the exceptional collection hOX ;OX .1/;OX .2/i in the bounded
derived category of coherent sheaves Db.X/:

AX WD
®
E 2 Db.X/ j Hom

�
OX .i/; EŒk�

�
D 0; for all i D 0; 1; 2 and k 2 Z

¯
:

By Serre duality, AX is also the left-orthogonal complement of the triangulated subcate-
gory generated by the exceptional collection hOX .�3/;OX .�2/;OX .�1/i in Db.X/:

AX D
®
E 2 Db.X/ j Hom

�
EŒk�;OX .i/

�
D 0; for all i D �1;�2;�3 and k 2 Z

¯
:

In other words, we have semi-orthogonal decompositions

Db.X/ D
˝
AX ;OX ;OX .1/;OX .2/

˛
and Db.X/ D

˝
OX .�3/;OX .�2/;OX .�1/;AX

˛
:
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As is pointed out by Kuznetsov [24] (see also [25, Proposition 1.4]), AX is a K3-like
category (or sometimes called a non-commutative K3 surface), in the sense that its Serre
functor SAX D Œ2� (see for example [26]) and its Hochschild homology, which is

HH�.AX / D KŒ2�˚K22 ˚KŒ�2�;

agrees with the Hochschild homology of a K3 surface, at least when char.K/ ¤ 2 or 3.
The latter, which will not be used in this work, can be established by using the additivity
of Hochschild homology, the HKR isomorphism [3,38] applied to the cubic fourfold, and
the computation of Hodge numbers of cubic fourfolds.

As AX is an admissible subcategory [8, 9], the inclusion functor

iX W AX ,! Db.X/

has both left and right adjoint functors; these are denoted by i�X and i ŠX WD
b.X/! AX ,

respectively. In addition, since iX is fully faithful, the adjunction morphisms

i�X ı iX
'
�! idAX

'
�! i ŠX ı iX

are isomorphisms. We then have the following basic property.

Proposition 4.1. The functors pLX WD iX ı i
�
X and pRX WD iX ı i

Š
X are idempotent endo-

functors of Db.X/, that is, ´
pLX ı p

L
X ' p

L
X I

pRX ı p
R
X ' p

R
X :

Moreover, we have ´
pLX ı p

R
X ' p

R
X I

pRX ı p
L
X ' p

L
X :

Note that pLX and pRX are mutation functors in the sense of Bondal [8]. More precisely,

pLX D LhOX ;OX .1/;OX .2/i D LOX ı LOX .1/ ı LOX .2/

is the left mutation through hOX ;OX .1/;OX .2/i and

pRX D RhOX .�3/;OX .�2/;OX .�1/i D ROX .�1/ ı ROX .�2/ ı ROX .�3/

is the right mutation through hOX .�3/;OX .�2/;OX .�1/i.
We denote PL

X and PR
X the respective Fourier–Mukai kernels in Db.X �K X/ of the

functors pLX and pLX . Recall that, given E 2 Db.X/ an exceptional object, the Fourier–
Mukai kernel of the left mutation functor LE is given by

cone
�
E_ �E ! O�

�
;

while the Fourier–Mukai kernel of the right mutation functor RE is given by

cone
�
O� ! RHom.E; !X Œd �/�E

�
Œ�1�:
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Here, d is the dimension of X and E1 �E2 WD p
�E1 ˝ q

�E2 with p; q W X �K X ! X

the two natural projections. Therefore the Fourier–Mukai kernel of pLX is given by the
convolution of the kernels of the mutation functors:

PL
X ' cone

�
OX�KX ! O�

�
� cone

�
OX .�1/� OX .1/! O�

�
� cone

�
OX .�2/� OX .2/! O�

�
: (4)

The Fourier–Mukai kernel PR
X of pRX admits a similar description.

Remark 4.2. Consider the universal family of smooth cubic fourfolds X ! B as in
Section 3. Since objects of the form OX .i/ are defined family-wise for X ! B , by the
formula (4), the Fourier–Mukai kernels PL

X (and similarly PR
X ) are defined family-wise.

Now we turn to the study of cohomological or Chow-theoretic Fourier–Mukai trans-
forms. Recall that for E 2 Db.X/, its Mukai vector is defined as

v.E/ WD ch.E/
p

td.TX / 2 CH�.X/;

and we denote its cohomology class by Œv.E/� 2H�.X/ and its numerical class by Nv.E/ 2
CH
�
.X/, where CH

�
.X/ WD CH�.X/=� is the Q-algebra of cycles onX modulo numer-

ical equivalence. The Mukai pairing on CH�.X/ is given as follows: for any v; v0 2
CH�.X/,

hv; v0i WD

Z
X

v_ � v0 � exp
�
c1.X/=2

�
; (5)

where v_ WD
PdimX
iD0 .�1/

ivi , where vi 2 CHi .X/ is the codimension i component of v.
The same formula defines the Mukai pairing on H�.X/ and CH

�
.X/. Note that the Mukai

pairing is bilinear but in general not symmetric, hence we need to distinguish between
the notions of left and right orthogonal complements. Recall that for a vector space V
equipped with a bilinear form h�;�i, the left (resp. right) orthogonal complement of a
subspace U is by definition

?U WD
®
v 2 V j hv; ui D 0; for all u 2 U

¯
;

resp.U? WD ¹v 2 V j hu;viD 0; for all u2U º. When the bilinear form is non-degenerate,
we define the orthogonal projection from V onto ?U (resp. U?) as the projection with
respect to the decomposition V D U ˚ ?U (resp. V D U? ˚ U ).

Lemma 4.3. The cohomological (resp. numerical) Fourier–Mukai transform

Œv.PL
X /�� W H

�.X/! H�.X/;

Nv.PL
X /� W CH

�
.X/! CH

�
.X/

are respectively the orthogonal projections onto hv.O/; v.O.1//; v.O.2//i?, which is
the right orthogonal complement of the linear subspace spanned by the cohomological
(resp. numerical) Mukai vectors of OX ;OX .1/, and OX .2/, with respect to the Mukai
pairing.
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Proof. We only show the statement for the cohomology. The proof for CH
�

is the same.
We first show a general result: for a smooth projective variety X and an exceptional
object E in Db.X/, the cohomological action of the left mutation functor LE on H�.X/
is the orthogonal projection onto the subspace Œv.E/�?, with respect to the Mukai pair-
ing. Indeed, the Fourier–Mukai kernel of LE , denoted by F 2 Db.X � X/, fits into the
distinguished triangle:

E_ �E ! O� ! F
C1
��! :

Hence
v.F / D v.O�/ � v.E

_ �E/ D �X � v.E
_/ � v.E/:

Thus, for any ˛ 2 H�.X/,�
v.F /

�
�
.˛/ D �X;�.˛/ �

�Z
X

�
v.E_/

�
^ ˛

��
v.E/

�
D ˛ �

˝�
v.E/

�
; ˛
˛�
v.E/

�
;

which is exactly the orthogonal projector to Œv.E/�?, where we used in the last step the
relation

v.E_/ D v.E/_ ^ exp
�
c1.X/=2

�
I

see [19, Lemma 5.41]. Now back to the case of cubic fourfolds: since PL
X is the composi-

tion of the kernels of three left mutations (4), applying the above general result three times,
we see that the cohomological transform Œv.PL

X /�� on H�.X/ is the successive orthogonal
projections onto Œv.OX .2//�?, Œv.OX .1//�? and Œv.OX /�?. Since˝�

v
�
OX .i/

��
;
�
v
�
OX .j /

��˛
D 0

for all 0 � j < i � 2, the composition of the three projections is the orthogonal projection
onto hŒv.OX /�; Œv.OX .1//�; Œv.OX .2//�i?.

Definition 4.4. The cohomology and the Chow group modulo numerical equivalence of
the Kuznetsov component AX are defined, respectively, as the vector spaces

H.AX / WD Im
��
v.PL

X /
�
�
W H�.X/! H�.X/

�
;

CH.AX / WD Im
�
Nv.PL

X /� W CH
�
.X/! CH

�
.X/

�
D
®
Nv.E/ j E 2 AX

¯
:

Unlike the Mukai pairing on H�.X/ or CH
�
.X/, the restriction of the Mukai pairing to the

above spaces becomes symmetric. This holds essentially because the Serre functor SAX

of AX is the double shift:˝
Nv.E/; Nv.E 0/

˛
D �.E;E 0/ D �.E 0;SAE/ D �.E

0; E/ D
˝
Nv.E 0/; Nv.E/

˛
;

see [1, pp. 1891–1892]. This can also be checked directly by applying the Mukai pairing to
the projections of two vectors. Thus the Mukai pairing endows both H.AX / and CH.AX /
with a non-degenerate quadratic form.
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4.2. Kuznetsov components and primitive classes

Definition 4.5. Let X be a smooth cubic fourfold with hyperplane class hX . The primi-
tive cohomology and the primitive Chow group modulo numerical equivalence of X are
defined, respectively, to be

H4prim.X/ WD hh
2
X i
?
� H4.X/;

CH 2
prim.X/ WD hh

2
X i
?
� CH 2.X/:

Here, hh2X i
? denotes the orthogonal complement of h2X inside H4.X/ with respect to the

intersection product. We also have the following alternative description for the space of
primitive classes as the right orthogonal complement of all powers of the hyperplane class:

H4prim.X/ D h1X ; hX ; h
2
X ; h

3
X ; h

4
X i
?
� xH�.X/;

CH 2
prim.X/ D h1X ; hX ; h

2
X ; h

3
X ; h

4
X i
?
� CH �.X/:

The restriction of the Mukai pairing on H4prim.X/ and on CH 2
prim.X/ endows those spaces

with a non-degenerate quadratic form that coincides with the intersection pairing. (As can
readily be observed from (5), the Mukai pairing and the intersection pairing already agree
on H4.X/ and on CH 2.X/.)

Proposition 4.6. We have the inclusions:

H4prim.X/ � H.AX /; (6)

CH 2
prim.X/ � CH.AX /: (7)

Proof. We only prove (6) as the proof of (7) is similar. By Lemma 4.3, the right-hand
side of (6) coincides with the right orthogonal complement of the Mukai vectors of OX ,
OX .1/, and OX .2/, with respect to the Mukai pairing on H�.X/. Therefore, it suffices to
check that H4prim.X/ is right orthogonal to Œv.OX /�, Œv.OX .1//� and Œv.OX .2//�. As the
Mukai vector of the sheaf OX .i/ and exp.c1.X/=2/ are all polynomials in the hyperplane
section class hX , we have that for any i there is some rational number �i such that˝�

v
�
OX .i/

��
; ˛
˛
D

Z
X

˛ ^ �ih
2
X D 0; 8˛ 2 H4prim.X/:

The inclusion (6) is proved.

Remark 4.7. Over the complex numbers (K D C), following Addington–Thomas [1],
define the Mukai lattice of AX as its topological K-theory:

zH.AX ;Z/ WD Ktop.AX / WD
®
˛ 2 Ktop.X/ j

˝�
OX .i/

�
; ˛
˛
D 0 for i D 0; 1; 2

¯
;

where h�;�i is the Mukai pairing on Ktop.X/ given by

hv; v0i WD �.v; v0/:
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A weight-2 Hodge structure on zH.AX ;Z/ is induced from the isomorphism

v W Ktop.X/˝Q! H�.X;Q/

given by the Mukai vector. The cohomological action of the projector PL
X recovers the

Mukai lattice rationally:

zH.AX ;Q/ D Im
��
v.PL

X /
�
�
WH�.X;Q/! H�.X;Q/

�
:

Hence Proposition 4.6 says that H4prim.X;Q/ �
zH.AX ;Q/. See [1, Proposition 2.3] for an

alternative argument.

The following relation between CH
2

prim.X/ and CH.AX/ is essentially due to Addington
and Thomas [1, Proposition 2.3].

Proposition 4.8. There are canonical polynomials �1; �2 2 QŒT � such that we have or-
thogonal decompositions˝

�1
�
ŒhX �

�
; �2

�
ŒhX �

�˛
H4prim.X/ D H.AX /; (8)˝

�1.hX /; �2.hX /
˛

CH 2
prim.X/ D CH.AX /: (9)

with respect to (the restriction of) the Mukai pairing (5).
Moreover, the Z-lattice h�1.hX /; �2.hX /i equipped with the Mukai pairing is an A2-

lattice.

Proof. The decomposition (8) is established in [1, Proposition 2.3]. We sketch the proof
of (9) for the convenience of the reader. We define the polynomials (see [21, pp. 176–177])

�1 D 3C
5

4
T �

7

32
T 2 �

77

384
T 3 C

41

2048
T 4I

�2 D �3 �
1

4
T C

15

32
T 2 C

1

384
T 3 �

153

2048
T 4:

We write �i for �i .hX / in the sequel; �i clearly defines an algebraic cycle defined overK.
Let us mention that, geometrically (after a finite base-change), �i agrees with the Mukai
vector of pLX .Ol .i//, where l is any line contained in X . It is easy to compute that �21 D
�22 D �2 and h�1; �2i D 1. Now for any element in CH.AX /, which is necessarily of the
form Nv.E/ for some E 2 AX , the condition that h�1; �2i ? Nv.E/ is equivalent to Nv.E/
being right orthogonal in CH

�
.X/ to˝

Nv.OX /; Nv
�
OX .1/

�
; Nv
�
OX .2/

�
; �1; �2

˛
D
˝
Nv.OX /; Nv

�
OX .1/

�
; Nv
�
OX .2/

�
; Nv
�
OX .3/

�
; Nv
�
OX .4/

�˛
D h1X ; hX ; h

2
X ; h

3
X ; h

4
X i:

However, h1X ; hX ; h2X ; h
3
X ; h

4
X i
? D CH2prim.X/.
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4.3. Kuznetsov components and primitive motives

Let X ! B be the universal family of smooth cubic fourfolds. We may refine the relative
Chow–Künneth decomposition (2) and define the relative idempotent correspondence

�4X;prim WD �
4
X �

1

3
H 2
�B H

2:

We have
�4X;prim ı �

4
X D �

4
X ı �

4
X;prim D �

4
X;prim

and the restriction of �4
X;prim to any fiber X defines an idempotent �4prim2CH4.X�KX/

which cohomologically defines the orthogonal projector on the primitive cohomology
H4prim.X/.

Using the Franchetta property for X � X of Proposition 3.2, we can show that the
Fourier–Mukai kernels PL

X and PR
X enjoy the following property relatively to the projec-

tor �4prim. For an object F 2 Db.X �X/, we denote by

v.F / WD ch.F / �
p

td.X �X/

its Mukai vector and vi .F / the component of v.F / in CHi .X �X/, for all 0 � i � 8.

Lemma 4.9. The following relations hold in CH4.X �X/:

�4prim ı v4.P
L
X / ı �

4
prim D �

4
prim and �4prim ı v4.P

R
X / ı �

4
prim D �

4
prim:

Proof. We only prove the relation involving PL
X ; the proof of the relation involving PR

X

is similar. We have to show that the composition

h4prim.X/ ,! h.X/
v.PL

X /

����!

M
i

h.X/.i/ � h4prim.X/ (10)

is the identity map. Observe that �4prim is defined family-wise (which is the reason for
focusing on �4prim, rather than on �4tr , in this section) and the Fourier–Mukai kernel PL

X is
also defined family-wise (Remark 4.2), by the Franchetta property for X �K X in Propo-
sition 3.2, we are reduced to showing that the composition (10) is the identity map modulo
homological (or numerical) equivalence. This follows directly from Proposition 4.6.

Remark 4.10. It is maybe possible to prove Lemma 4.9 by a direct but tedious computa-
tion without using the Franchetta property. We leave the details to the interested reader.

5. Equivalent Kuznetsov components and transcendental motives

5.1. Rational and numerical equivalence on codimension-2 cycles on cubic fourfolds

Recall that a universal domain is an algebraically closed field of infinite transcendence
degree over its prime subfield. The following lemma applies in particular to cubic four-
folds:
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Lemma 5.1. Let X be a smooth projective variety over a field K and let � be a uni-
versal domain containing K. Assume that CH0.X�/ is supported on a curve and that
H3.X xK ;Q`/ D 0 for some prime ` ¤ charK. Then rational and numerical equivalence
agree on Z2.X/, where Z2 denotes the group of algebraic cycles of codimension 2 with
rational coefficients.

Proof. By a push-pull argument, we may assume that K is algebraically closed. The
proof is classical and goes back to [5]. By [5, Proposition 1], there exists a positive inte-
ger N , a 1-dimensional closed subscheme C � X , a divisor D � X and cycles �1; �2 in
CHdimX

Z .X �K X/ with respective supports contained in C �X and X �D, such that

N�X D �1 C �2 2 CHdimX
Z .X �K X/;

where CH�Z denotes the Chow group with integral coefficients. Let zD ! D be an alter-
ation, say of degree d , with zD smooth overK. The multiplication byNd map on CH2Z.X/
then factors as

CH2Z.X/! CH1Z. zD/! CH2Z.X/; (11)

where the arrows are induced by correspondences with integral coefficients. Since numeri-
cal and algebraic equivalence agree for codimension-1 cycles on zD, we find that numerical
and algebraic equivalence agree on CH2Z.X/. It remains to show that the group of alge-
braically trivial cycles CH2Z.X/alg is zero after tensoring with Q. For that purpose, we
consider the diagram (11) restricted to algebraically trivial cycles. We obtain a commuta-
tive diagram

CH2Z.X/alg CH1Z. zD/alg CH2Z.X/alg

Ab2X . xK/ Pic0
zD
. xK/ Ab2X . xK/

'

where the composition of the horizontal arrows is given by multiplication by Nd , and
where the vertical arrows are Murre’s algebraic representatives [33] (these are regular
homomorphisms to abelian varieties that are universal). A diagram chase shows that
CH2Z.X/alg ! Ab2X . xK/ is injective after tensoring with Q. We conclude with [33, Theo-
rem 1.9] which gives the upper bound

dim Ab2X �
1

2
dimQ` H3.X xK ;Q`/:

5.2. Refined Chow–Künneth decomposition

Fix a smooth cubic fourfold X overK. We are going to produce a refined Chow–Künneth
decomposition for X that is similar to that for surfaces constructed in [22, Section 7.2.2],
and extending the construction in [6] to arbitrary base fields. Refining the primitive motive
to the transcendental motive is an essential step towards the proof of Theorem 1 as it makes
it possible to use the “weight argument” of Lemma 5.5 below. For that purpose, recall from
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Lemma 5.1 that CH2.X xK/ D CH
2
.X xK/. This way we can complete hh2X i � CH2.X/ to

an orthogonal basis ¹h2X ; ˛1; : : : ; ˛rº of CH2.X xK/with respect to the intersection product.
The correspondence

�4alg WD
1

3
h2X � h

2
X C

rX
iD1

1

deg.˛i � ˛i /
˛i � ˛i (12)

then defines an idempotent in CH4.X xK � xK X xK/. On the one hand, the correspondence
�4alg comes from CH2.X xK/ ˝ CH2.X xK/ and is Galois-invariant as it defines the inter-
section pairing on CH2.X xK/, and the latter is obviously Galois-invariant. Since we are
working with rational coefficients, by [18, Example 1.7.6] and the fact that any cycle is
defined over a finite Galois extension of K, it follows that �4alg is defined over K, i.e.,
is in the image of CH4.X �K X/ after base-change to xK. On the other hand, �4alg com-
mutes with �4X and �4prim and is cohomologically the orthogonal projector on the subspace
Im.CH2.X xK/! H4.X// spanned by xK-algebraic classes. In addition, we have

�4alg ı �
4
X D �

4
X ı �

4
alg D �

4
alg:

We then define
�4tr WD �

4
X � �

4
alg:

It is an idempotent correspondence in CH4.X �K X/ which cohomologically is the or-
thogonal projector on the transcendental cohomology H4tr.X/, i.e., by definition of tran-
scendental cohomology, the orthogonal projector on the orthogonal complement to the
xK-algebraic classes in H4.X/. In addition, �4tr commutes with �4prim and we have

�4prim ı �
4
tr D �

4
tr ı �

4
prim D �

4
tr : (13)

Note that, while �4prim is defined family-wise for the universal cubic fourfold X ! B , �4tr
and �4alg are not.

Denote by hi.X/, h4tr.X/ and h4alg.X/ the Chow motives .X;� iX /, .X;�
4
tr /, and .X;�4alg/

respectively. From the above, we get the following refined Chow–Künneth decomposition:

h.X/ D h0.X/˚ h2.X/˚ h4alg.X/˚ h4tr.X/˚ h6.X/˚ h8.X/; (14)

where h2i .X/ ' 1.�i/ for i D 0; 1; 3; 4, the base-change to xK of h4alg.X/ is a direct sum
of copies of 1.�2/, and h4tr.X/ is a direct summand of h4prim.X/.

As an immediate consequence of (13), we can deduce the following from Lemma 4.9:

Lemma 5.2. The following relations hold in CH4.X �K X/:

�4tr ı v4.P
L
X / ı �

4
tr D �

4
tr and �4tr ı v4.P

R
X / ı �

4
tr D �

4
tr :

In other words, the correspondences v4.PL
X / and v4.PR

X / act as the identity on the tran-
scendental motive h4tr.X/.
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5.3. A weight argument

One defines a notion of weight on the Chow motives appearing in the decomposition (14)
in the following way: for any i 2 Z, the Tate motive 1.�i/ has weight 2i ; h4tr.X/.�i/

and h4alg.X/.�i/ have weight 4C 2i . As a first step towards our weight argument below
(Lemma 5.5), we need the following property of the refined Chow–Künneth decomposi-
tion (14).

Proposition 5.3. Let X and X 0 be two smooth cubic fourfolds over a field K.

(i) There is no non-zero morphism from a motive of given weight to a motive of
strictly bigger weight among the motives 1, h4tr.X/, h4alg.X/, h4tr.X

0/ and h4alg.X
0/

and their Tate twists.

(ii) 1.�2/ and h4tr.X/ are orthogonal:

Hom
�
h4tr.X/;1.�2/

�
D 0 and Hom

�
1.�2/; h4tr.X/

�
D 0:

(ii0) h4alg.X
0/ and h4tr.X/ are orthogonal:

Hom
�
h4tr.X/; h

4
alg.X

0/
�
D 0 and Hom

�
h4alg.X

0/; h4tr.X/
�
D 0:

Proof. Since pull-back by base-change of fields gives injective maps on Chow groups
with rational coefficients (by a push-pull argument; see, e.g., [18, Example 1.7.4]), we
may assume h4alg.X/ and h4alg.X

0/ are a direct sum of copies of 1.�2/.
The proposition is straightforward to check if one of the motives involved is a Tate

motive: since CHl .X/ D CHl .h2l .X// for l D 0; 1 and CH2.X/ D CH2.h4alg.X// by
construction, we deduce that for l � 2, the group CHl .h4tr.X// D 0, i.e.,

Hom
�
1.�l/; h4tr.X/

�
D 0:

Since h4tr.X/
_ D h4tr.X/.4/, we deduce by dualizing that Hom.h4tr.X/; 1.�l// D 0 for

l � 2.
It remains to deal with the case where both motives are Tate twists of h4tr.X/ and

h4tr.X
0/. Since CH0.h4tr.X�// D 0 and �4tr D

t�4tr , we get from [37, Corollary 2.2] that
h4tr.X/.1/ is isomorphic to a direct summand N of the Chow motive of a surface S . Sim-
ilarly, h4tr.X

0/.1/ is isomorphic to a direct summand of the Chow motive of a surface S 0.
As such, we have

Hom
�
h4tr.X/; h

4
tr.X

0/.�l/
�
D Hom

�
1.l � 2/;N ˝N 0

�
:

SinceN˝N 0 is effective with cohomology concentrated in degree 4, we can then conclude
thanks to Lemma 5.4 below, which is a more general version of [17, Theorem 1.4 (ii)]
(which states that Hom.h2.S/; h2.S 0/.�l// D 0 for all l > 0).

Lemma 5.4. Let H� be `-adic cohomology with ` ¤ char.K/. Let M be an effective
Chow motive such that Hi .M/ D 0 for i � 1 and such that HomMhom.1.�1/; M/ D 0

(e.g., H2.M/ D 0). Then CHl .M/ WD HomM.1.�l/;M/ D 0 for l < 2.
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Proof. By definition of an effective motive, there exists a smooth projective varietyX and
an idempotent r 2 EndM.h.X// such thatM ' .X; r; 0/. By assumption, r acts as zero on
H0.X/, so that CH0.M/ WD r�CH0.X/D 0. Further, we have CH1.M/ WD r�CH1.X/D 0
since by assumption r acts as zero both on Im.CH1.X/! H2.X// and on H1.X/ (hence
on Pic0X .K/).

We will need the following simple observation, which is an abstraction of [17, Sec-
tion 1.2.3].

Lemma 5.5 (Weight argument). Let � WD ¹Ni ; i 2 I º be a collection of Chow motives
whose objects Ni are all equipped with an integer ki called weight such that any mor-
phism from an object of smaller weight to an object of larger weight is zero. For r D
0; : : : ; n, letMr be a Chow motive isomorphic to a direct sum of objects in � . Suppose we
have a chain of morphisms of Chow motives

M DM0 !M1 !M2 ! � � � !Mn DM
0; (15)

such that M and M 0 are both of (pure) weight k for some integer k, i.e., such that M and
M 0 are direct sums of objects of � all of weight k. Then the composition of morphisms
in (15) is equal to the following composition

M DM0 !MwDk
1 !MwDk

2 ! � � � !MwDk
n�1 !Mn DM

0;

where MwDk
i means the direct sum of the summands (in �) of Mi of weight k.

Proof. The composition in (15) is clearly the sum of all compositions of the form

M DM0 !M
wDk1
1 !M

wDk2
2 ! � � � !M

wDkn�1
n�1 !Mn DM

0;

for ki 2 Z. However, this composition is non-zero only if k � k1 � k2 � � � � � kn�1 � k
by assumption. Therefore the only non-zero contribution is given by the case where ki D k
for all 1 � i � n � 1.

5.4. Main result

Let X and X 0 be two smooth cubic fourfolds over a field K. Assume that their Kuznetsov
components AX and AX 0 are Fourier–Mukai equivalent, this means there exists an object
E 2 Db.X �K X 0/ such that

F WAX
iX
,�! Db.X/

ˆE
��! Db.X 0/

i�
X 0� AX 0

is an equivalence. HereˆE WDb.X/! Db.X 0/ is the Fourier–Mukai transform associated
to the Fourier–Mukai kernel E; explicitly,

ˆE.E/ WD pX 0;�
�
p�X .E/˝ E

�
;
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where pX and pX 0 are the natural projections from X �K X
0 to X and X 0 respectively.

Note that by Li–Pertusi–Zhao [30], over K D C, any equivalence of triangulated cate-
gories between AX and AX 0 is a Fourier–Mukai equivalence.

Adding the right adjoints, we get a diagram

F W AX Db.X/ Db.X 0/ AX 0 W F
R

iX

i ŠX

ˆE

ˆ
ER

i�
X 0

iX 0

where FR WD i ŠX ıˆER ı iX 0 denotes the right adjoint functor of F WD i�X 0 ıˆE ı iX and
where ER D E_ ˝L p�X!X Œ4� denotes the right adjoint of E . Since F is an equivalence
by assumption, FR is in fact the inverse of F , hence we have

FR ı F ' idAX and F ı FR ' idAX 0
:

More explicitly,

i ŠX ıˆER ı iX 0 ı i
�
X 0 ıˆE ı iX ' idAX I

i�X 0 ıˆE ı iX ı i
Š
X ıˆER ı iX 0 ' idAX 0

:

These imply that

iX ı i
Š
X ıˆER ı iX 0 ı i

�
X 0 ıˆE ı iX ı i

�
X ' iX ı i

�
X I

iX 0 ı i
�
X 0 ıˆE ı iX ı i

Š
X ıˆER ı iX 0 ı i

Š
X 0 ' iX 0 ı i

Š
X 0 :

By definition of the projection functors pLX and pRX in Section 4, we have�
pRX ıˆER ı p

R
X 0

�
ı
�
pLX 0 ıˆE ı p

L
X

�
' pLX I (16)�

pLX 0 ıˆE ı p
L
X

�
ı
�
pRX ıˆER ı p

R
X 0

�
' pRX 0 ; (17)

where we have used the isomorphisms pRX 0 ı p
L
X 0 ' p

L
X 0 and pLX ı p

R
X ' p

R
X of Proposi-

tion 4.1.
Recall that we have defined in Sections 4.3–5.2 the projectors

�4prim; �
4
tr ; �

4
alg 2 CH4.X �K X/

for a cubic fourfold X . In the sequel, when dealing with two cubic fourfolds X and X 0,
we keep the same notation for X and use �4prim0 ; �

4
tr0 ; �

4
alg0 2 CH4.X 0 �K X 0/ for the cor-

responding projectors for X 0. The following is the key step of our proof.

Theorem 5.6. The correspondence �tr WD �
4
tr0 ı v4.E/ ı �

4
tr in CH4.X �K X 0/ defines an

isomorphism
�tr W h

4
tr.X/

'
�! h4tr.X

0/

with inverse given by its transpose. In other words, via Proposition 2.1, the transcendental
motives h4tr.X/ and h4tr.X

0/ are isomorphic as quadratic space objects.
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Proof. From the isomorphism of Fourier–Mukai functors (16), it is not clear whether one
can deduce an isomorphism between their Fourier–Mukai kernels in Db.X � X/, i.e.,
whether one has an isomorphism .PR

X � ER � PR
X 0/ � .P

L
X 0 � E � PL

X / ' PL
X , where �

stands for the convolution of Fourier–Mukai kernels. Nonetheless, by Canonaco–Stellari
[12, Theorem 1.2], the two sides have the same cohomology sheaves, and hence have the
same class inK0.X �X/. By taking Mukai vectors, one obtains the following equality in
CH�.X �K X/:

v.PR
X / ı v.E

R/ ı v.PR
X 0/ ı v.P

L
X 0/ ı v.E/ ı v.P

L
X / D v.P

L
X /:

The above equality implies that the composition

h4tr.X/ ,! h.X/
v.PL

X /

����!

M
i

h.X/.i/
v.E/
���!

M
i

h.X 0/.i/
v.PL

X 0
/

����!

M
i

h.X 0/.i/

v.PR
X 0
/

����!

M
i

h.X 0/.i/
v.ER/
����!

M
i

h.X/.i/
v.PR

X /

����!

M
i

h.X/.i/ � h4tr.X/

is equal to the composition

h4tr.X/ ,! h.X/
v.PL

X /

����!

M
i

h.X/.i/ � h4tr.X/:

Here the ranges of the (finite) direct sums are not specified since they are irrelevant.
By the “weight argument” Lemma 5.5, combined with Proposition 5.3 (i), we obtain

that the composition

h4tr.X/ ,! h4.X/
v4.P

L
X /

�����! h4.X/
v4.E/
���! h4.X 0/

v4.P
L
X 0
/

�����! h4.X 0/

v4.P
R
X 0
/

�����! h4.X 0/
v4.E

R/
����! h4.X/

v4.P
R
X /

�����! h4.X/ � h4tr.X/ (18)

is equal to the composition h4tr.X/ ,! h4.X/
v4.P

L
X /

�����! h4.X/� h4tr.X/, which is the iden-
tity map of h4tr.X/ by Lemma 5.2. Writing h4 D h4tr ˚ h4alg and using Proposition 5.3 (ii0),
we deduce that each map in (18) factors through h4tr or h4tr0 . In other words, we have the
following equality:

�4tr ı v4.P
R
X / ı �

4
tr ı v4.E

R/ ı �4tr0 ı v4.P
R
X 0/ ı �

4
tr0

ı v4.P
L
X 0/ ı �

4
tr0 ı v4.E/ ı �

4
tr ı v4.P

L
X / ı �

4
tr D �

4
tr :

By Lemma 5.2, we get

�4tr ı v4.E
R/ ı �4tr0 ı v4.E/ ı �

4
tr D �

4
tr : (19)

Similarly, from (17), together with the weight argument, we obtain

�4tr0 ı v4.E/ ı �
4
tr ı v4.E

R/ ı �4tr0 D �
4
tr0 : (20)
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The equalities (19) and (20) say nothing but that �4tr0 ı v4.E/ ı �
4
tr and �4tr ı v4.E

R/ ı �4tr0

define inverse isomorphisms between h4tr.X/ and h4tr.X
0/.

It remains to show that

t
�
�4tr0 ı v4.E/ ı �

4
tr

�
D �4tr ı v4.E

R/ ı �4tr0 ;

or equivalently that
�4tr ı v4.E/ ı �

4
tr0 D �

4
tr ı v4.E

R/ ı �4tr0 : (21)

We will actually show the following stronger equality

�4prim ı v4.E/ ı �
4
prim0 D �

4
prim ı v4.E

R/ ı �4prim0 : (22)

To see that (22) indeed implies (21), it is enough to compose both sides of (22) on the left
with �4tr and on the right with �4tr0 , and then to use (13).

Let us show (22). Denoting hX ;hX 0 2CH1.X �K X 0/ the pull-backs of the hyperplane
section classes on X and X 0 via the natural projections, we have (see [19, Lemma 5.41])

v.ER/ D v
�
E_ ˝ p�X!X Œ4�

�
D v.E_/ � exp.�3hX / D v.E/_ � exp

�
3

2
.hX 0 � hX /

�
:

This yields the identity

v4.E
R/ D v4.E/C v3.E/ �

3

2
.hX � hX 0/C v2.E/ �

.3
2
/2

2Š
.hX � hX 0/

2

C v1.E/ �
.3
2
/3

3Š
.hX � hX 0/

3
C v0.E/ �

.3
2
/4

4Š
.hX � hX 0/

4:

Therefore, to establish (22), it suffices to show the following lemma.

Lemma 5.7. For any Z 2 CH3.X �K X 0/, we have

�4prim ı .Z � hX / D 0 and .Z � hX 0/ ı �
4
prim0 D 0:

Proof. We only show the first vanishing; the second one can be proved similarly. Note
that �4prim ı .Z � hX / D �

4
prim ı ..�X /�.hX // ı

tZ. However, by applying the excess inter-
section formula [18, Theorem 6.3] to the following cartesian diagram with excess normal
bundle OX .3/:

X

��

�X // X �K X

��

P5 // P5 �K P
5;

we obtain that
.�X /�.3hX / D �P5 jX�X D

X
i

hiX � h
5�i
X ;

where the latter equality uses the relation�P5 D
P5
iD0 h

i � hj in CH5.P5 �P5/, where
h is a hyperplane class of P5. We can conclude by noting that for any i , we have �4prim ı

.hiX � h
5�i
X / D 0 by construction of �4prim.
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With Lemma 5.7 being proved, the equality (22), hence also (21), is established. The
proof of Theorem 5.6 is complete.

6. Proof of Theorem 1

Proposition 6.1 below, in particular, upgrades the quadratic space object isomorphism of
Theorem 5.6 to a quadratic space object isomorphism h.X/ ' h.X 0/.

Proposition 6.1. Let X and X 0 be two smooth cubic fourfolds over a field K, whose
Kuznetsov components are Fourier–Mukai equivalent. Then their Chow motives are iso-
morphic. More precisely, there exists a correspondence � 2 CH4.X �K X 0/ such that

��h
i
X D h

i
X 0

for all i � 0 which in addition induces an isomorphism of Chow motives

� W h.X/
'
�! h.X 0/

with inverse given by its transpose t� .

Proof. As a first step, we construct an isomorphism �4alg W h
4
alg.X/! h4alg.X

0/ of quadratic
space objects. Let ˆ W AX ! AX 0 be the Fourier–Mukai equivalence. It induces a homo-
morphism

CH.AX xK /
'
�! CH.AX 0

xK
/; Nv.E/ 7! Nv

�
ˆ.E/

�
which is clearly an isometry with respect to the Mukai pairings�˝

Nv.E/; Nv.E 0/
˛
D �.E;E 0/ D �

�
ˆ.E/;ˆ.E 0/

�
D
˝
Nv
�
ˆ.E/

�
; Nv
�
ˆ.E 0/

�˛�
and is equivariant with respect to the action of the absolute Galois group of K (since the
Fourier–Mukai kernel is defined over K). Recall from Proposition 4.8 that we have an
orthogonal decomposition with respect to the Mukai pairing:

CH.AX xK / D
˝
�1.hX /; �2.hX /

˛
CH 2

prim.X xK/:

Since the planes h�1.hX /; �2.hX /i and h�1.hX 0/; �2.hX 0/i consist of Galois-invariant
elements and are isometric to one another, we obtain from Theorem A.2, which is an
equivariant Witt theorem, a Galois-equivariant isometry

� W CH 2
prim.X xK/

'
�! CH 2

prim.X
0
xK
/:

(Note that Theorem A.2 is stated for finite groups, but it indeed applies here: all the numer-
ical Chow groups involved are finitely generated, hence the Galois group action factors
through the Galois group of some common finite extension K 0=K.) Let then ¹˛1; : : : ; ˛rº
be an orthogonal basis of CH 2

prim.X xK/. Having in mind that the Mukai pairing agrees with
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the intersection pairing on CH 2.X xK/ and that CH2.X xK/ D CH 2.X xK/, we see, together
with the construction and definition of h4alg (see (12)), that the correspondence

�4alg WD
1

3
h2X � h

2
X 0 C

rX
iD1

1

deg.˛2i /
˛i � �.˛i / 2 CH4.X xK � xK X

0
xK
/ (23)

is defined over K and defines an isomorphism h4alg.X/
'
�! h4alg.X

0/ with inverse given by
its transpose t�4alg.

Finally, combining �4alg with �tr of Theorem 5.6, the cycle

� WD
1

3
h4X �X

0
C
1

3
h3X � hX 0 C �

4
alg C �tr C

1

3
hX � h

3
X 0 C

1

3
X � h4X 0 2 CH4.X �X 0/

induces an isomorphism between h.X/ and h.X 0/, and its inverse is t� . Furthermore, by
construction, we have ��.hiX / D h

i
X 0 for all i .

Remark 6.2. In the case where K D C and H� is Betti cohomology, the construction of
the isomorphism �4alg W h

4
alg.X/! h4alg.X

0/ in the proof of Proposition 6.1 is somewhat
simpler. As a consequence of Theorem 5.6, we have a Hodge isometry

H4tr.X;Q/ ' H4tr.X
0;Q/: (24)

(This Hodge isometry can also be obtained by considering the transcendental part of [20,
Proposition 3.4].) Since H4.X;Q/ and H4.X 0;Q/ are isometric for all smooth complex
cubic fourfolds, there is by Witt’s theorem an isometry

� W H4alg.X;Q/
'
�! H4alg.X

0;Q/ (25)

sending h2X to h2X 0 . Let ¹h2X ; ˛1; : : : ; ˛rº be an orthogonal basis of H4alg.X;Q/. The cor-
respondence �4alg of (23) then provides an isomorphism from h4alg.X/ to h4alg.X

0/, whose
inverse is given by its transpose t�4alg. Note that, by combining (24) and (25), we obtain a
Hodge isometry

H4.X;Q/ ' H4.X 0;Q/:

Theorem 1 then follows from combining Proposition 6.1 with the following proposi-
tion.

Proposition 6.3. Let X and X 0 be two smooth cubic fourfolds. Assume that there exists a
correspondence � 2 CH4.X �K X 0/ such that ��hiX D h

i
X 0 for all i � 0 which in addition

induces an isomorphism

� W h.X/
'
�! h.X 0/

with inverse given by its transpose. Then � is an isomorphism of Chow motives, as Frobe-
nius algebra objects.
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Proof. Recall in general [17, Proposition 2.11] that a morphism � W h.X/!h.X 0/ between
the Chow motives of smooth projective varieties of same dimension is an isomorphism of
Chow motives, as Frobenius algebra objects, if � is an isomorphism of Chow motives,
.� ˝ �/��X D �X 0 and .� ˝ � ˝ �/�ıX D ıX 0 , where ı denotes the small diagonal.
Let now � be as in the statement of the proposition. That � defines an isomorphism with
inverse given by its transpose is equivalent to � is an isomorphism and .� ˝ �/��X D
�X 0 . Therefore, we only need to check that

.� ˝ � ˝ �/�ıX D ıX 0 :

However, by Theorem 3.1, and using the assumption that ��hiX D h
i
X 0 for all i � 0, we

have

.� ˝ � ˝ �/�ıX D
1

3

�
p�12.� ˝ �/��X � p

�
3h
4
X 0 C perm:

�
C P

�
p�1hX 0 ; p

�
2hX 0 ; p

�
3hX 0

�
D
1

3

�
p�12�X 0 � p

�
3h
4
X 0 C perm:

�
C P

�
p�1hX 0 ; p

�
2hX 0 ; p

�
3hX 0

�
D ıX 0 ;

where in the second equality we have used the identity .� ˝ �/��X D �X 0 .

7. Cubic fourfolds with associated K3 surfaces

Let X be a smooth cubic fourfold over a field K and let AX be the Kuznetsov component
of Db.X/ as before. Assume that there exists a K3 surface S endowed with a Brauer class
˛ 2 Br.X/, such that AX is Fourier–Mukai equivalent to Db.S; ˛/. That is, there exists
an object E 2 Db.X � S; 1 � ˛/, such that the composition

A.X/
iX
,�! Db.X/

ˆE
��! Db.S; ˛/

is an equivalence of triangulated categories, where iX is the natural inclusion. The goal of
this section is to prove Theorem 3. The proof is similar to that of Theorem 2 and we will
only sketch the main steps. In the sequel, let us omit ˛ from the notation, since the proof
for the twisted case is the same as the untwisted case.

The right adjoint of the functor ˆE ı iX is i ŠX ı ˆER . Hence the hypothesis implies
that

i ŠX ıˆER ıˆE ı iX ' idAX I

ˆE ı iX ı i
Š
X ıˆER ' idDb.S/ :

By the definition of pLX and pRX in Section 4, we obtain

pRX ıˆER ıˆE ı p
L
X ' p

L
X I (26)

ˆE ı p
L
X ı p

R
X ıˆER ' idDb.S/ : (27)
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Recall that PL
X ;P

R
X 2 Db.X �K X/ are the Fourier–Mukai kernels of the functors pLX

and pRX respectively. As in the proof of Theorem 5.6, using [12, Theorem 6.4], we deduce
from (26) that in CH�.X �K X/,

v.PR
X / ı v.E

R/ ı v.E/ ı v.PL
X / D v.P

L
X /; (28)

where v denotes the Chow-theoretic Mukai vector map. Likewise, using [12, Theorem
6.4], or alternately by the uniqueness of the Fourier–Mukai kernel in the twisted version
of Orlov’s Theorem [11, Theorem 1.1], (27) implies that

v.E/ ı v.PL
X / ı v.P

R
X / ı v.E

R/ D �S : (29)

As in Section 5, we define a refined Chow–Künneth decomposition for S . The general
case of a smooth projective surface over K is due to [22, Section 7.2.2]. Since for a K3
surface rational and numerical equivalence agree on CH1.S xK/, we can in fact construct
such a refined Chow–Künneth decomposition in a more direct way. First, choose any
degree-1 zero-cycle o 2 CH0.S/, and define the Chow–Künneth decomposition

�0S WD o � S; �4S WD S � o; and �2S WD �S � �
0
S � �

4
S :

Let ¹ˇ1; : : : ; ˇsº be an orthogonal basis for CH1.S xK/. The correspondence

�2alg;S WD

sX
iD1

1

deg.ˇi � ˇi /
ˇi � ˇi

then defines an idempotent in CH2.S xK � xK S xK/ which descends to K, which commutes
with �2S and has cohomology class the orthogonal projector the subspace Im.CH1.S xK/!
H2.S// spanned by xK-algebraic classes in H2.S/. In addition, we have

�2alg;S ı �
2
S D �

2
S ı �

2
alg;S D �

2
alg;S :

We then define
�2tr;S WD �

2
S � �

2
alg;S :

It is an idempotent correspondence in CH2.S �K S/which cohomologically is the orthog-
onal projector on the transcendental cohomology H2tr.S/, i.e., by definition of transcen-
dental cohomology, the orthogonal projector on the orthogonal complement to the xK-
algebraic classes in H2.S/.

Denote by hi .S/, h2tr.S/, h2alg.S/ the Chow motives .S; � iS /, .S; �
2
tr;S /, .S; �

2
alg;S /,

respectively. From the above, we get the following refined Chow–Künneth decomposition:

h.S/ D h0.S/˚ h2alg.S/˚ h2tr.S/˚ h4.S/;

where h2i .X/ ' 1.�i/ for i D 0; 2 and the base-change to xK of h2alg.S/ is a direct sum
of copies of 1.�1/.

Now, as in the case of two cubic fourfolds, we want to apply the weight argument
(Lemma 5.5) to the equalities (28) and (29). To this end, we need the following comple-
ment to Proposition 5.3.
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Proposition 7.1. LetX be a cubic fourfold and S a projective surface. Then for all l > 1,

Hom
�
h4tr.X/; h

2
tr.S/.�l/

�
D 0:

Proof. As is pointed out in the proof of Proposition 5.3, h4tr.X/.1/ is a direct summand of
the motive of a surface. Then we can apply Lemma 5.4 to conclude to the vanishing.

By the weight argument (Lemma 5.5), combined with Proposition 5.3, [17, Theo-
rem 1.4 (ii)] and Proposition 7.1, we can deduce that if we restrict the domain to h4tr.X/,
then each step of (28) factors through h4tr.X/ or h2tr.S/.�1/. In other words,

�4tr;X ı v4.P
R
X / ı �

4
tr;X ı v3.E

R/ ı �2tr;S ı v3.E/ ı �
4
tr;X ı v4.P

L
X / ı �

4
tr;X D �

4
tr;X :

By Lemma 5.2, we get

�4tr;X ı v3.E
R/ ı �2tr;S ı v3.E/ ı �

4
tr;X D �

4
tr;X : (30)

Similarly, (29) implies

�2tr;S ı v3.E/ ı �
4
tr;X ı v3.E

R/ ı �2tr;S D �
2
tr;S : (31)

Note that (30) and (31) together say that we have the following pair of inverse isomor-
phisms:

h4tr.X/ h2tr.S/.�1/
�2tr;Sıv3.E/ı�

4
tr;X

�4tr;Xıv3.E
R/ı�2tr;S

(32)

By the same argument as in the proof of (21), using Lemma 5.7, we can moreover show
that the two inverse isomorphisms in (32) are transpose to each other. To summarize, we
have proven the following:

Theorem 7.2. The correspondence �tr WD �
2
tr;S ı v3.E/ ı �

4
tr;X in CH3.X � S/ induces

an isomorphism
�tr W h

4
tr.X/.2/

'
�! h2tr.S/.1/

whose inverse is its transpose t�tr.

Via Proposition 2.1, Theorem 7.2 establishes Theorem 3.

Appendix: An equivariant Witt theorem

Throughout the appendix, F is a field of characteristic different from 2 and all the vector
spaces are finite dimensional over F .

Let us first recall the classical Witt theorem. Let V1, V2 be vector spaces equipped
with quadratic forms, whose associated bilinear symmetric pairings are denoted by h�;�i.
Suppose that V1 and V2 are isometric and we have orthogonal decompositions

V1 D U1 W1; V2 D U2 W2;



Cubic fourfolds, Kuznetsov components, and Chow motives 853

such that U1 and U2 are isometric. Then W1 and W2 are also isometric. This is often
referred to as Witt’s cancellation theorem, which is clearly equivalent to the following
Witt’s extension theorem: Let V be a non-degenerate quadratic space and let f W U ! U 0

be an isometry between two subspaces of V . Then f can be extended to an isometry of V .
The goal of this appendix is to establish an equivariant version of the Witt theorem, in

case the quadratic spaces are endowed with a group action. For a quadratic space V with
a G-action, we denoteOG.V / the group of G-equivariant isometries, i.e., automorphisms
of V that preserve the pairing and commute with the action of G.

Lemma A.1. Let V be a non-degenerate quadratic space equipped with an isometric
action of a finite group G. Suppose that jGj is invertible in F . Then

(1) The restriction of the quadratic form to V G , theG-fixed space, is non-degenerate.

(2) For any x;y 2 V G with hx;xi D hy;yi ¤ 0, there exists aG-equivariant isometry
� 2 OG.V / sending x to y.

Proof. For (1), let x 2 rad.V G/, for any y 2 V ,

hx; yi D
1

jGj

X
g2G

hgx; gyi D

�
x;

1

jGj

X
g2G

gy

�
D 0;

since 1
jGj

P
g2G gy 2 V

G . Therefore, x 2 rad.V / D ¹0º.
For (2), as x and y are anisotropic, it is well-known that there exists �1 2 O.V G/, a

reflection or a product of two reflections, which sends x to y. By (1), we have an orthog-
onal decomposition

V D V G ˚ .V G/?:

Hence we can take � WD �1 ˚ id.V G/? .

Theorem A.2. Let V1, V2 be two non-degenerate quadratic spaces endowed with actions
of a finite groupG by isometries. Assume that jGj is invertible in the base field F . Suppose
that we have orthogonal decompositions preserved by G:

V1 D U1 W1; V2 D U2 W2;

satisfying the following conditions:

• there is a G-equivariant isometry between V1 and V2;

• W1 � V
G
1 and W2 � V G2 ;

• W1 and W2 are isometric.

Then there exists a G-equivariant isometry between U1 and U2.

Proof. We only give a proof in the case where W1 and W2 are assumed to be non-
degenerate; the general case (which we do not use in this paper) is left to the reader.
We may and will identifyW1 andW2, and denote bothW . Let us first treat the case where
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W is of dimension 1, generated by a vector x with hx; xi ¤ 0. By hypothesis, there is a
G-equivariant isometry

V1 D Fx ˚ U1
�
�! V2 D Fx ˚ U2:

Denote y D �.x/ and U 01 D �.U1/. Hence 0 ¤ hx; xi D hy; yi and x; y are both G-
invariant. Applying Lemma A.1, we get a G-equivariant isometry � 2 OG.V2/ sending
x to y. Therefore �.U2/, being orthogonal to y, must be U 01. In particular, U2 is G-
equivariantly isometric to U 01, hence also to U1.

In the general case, we diagonalize W and proceed by induction.
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