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Abstract

Given a holomorphic or anti-holomorphic involution on a complex variety, the Smith inequality
says that the total F2-Betti number of the fixed locus is no greater than the total F2-Betti number of
the ambient variety. The involution is called maximal when the equality is achieved. In this paper, we
investigate the existence problem for maximal involutions on higher-dimensional compact hyper-Kähler
manifolds and on Hilbert schemes of points on surfaces.

We show that for n ≥ 2, a hyper-Kähler manifold of K3[n]-deformation type admits neither max-
imal anti-holomorphic involutions (i.e. real structures), nor maximal holomorphic (symplectic or anti-
symplectic) involutions. In other words, such hyper-Kähler manifolds do not contain maximal (AAB),
(ABA), (BAA) or (BBB)-branes.

For Hilbert schemes of points on surfaces, we show that for a holomorphic (resp. anti-holomorphic)
involution σ on a smooth projective surface S with H1(S,F2) = 0, the naturally induced involution on
the nth Hilbert scheme of points is maximal if and only if σ is a maximal involution of S and it acts on
H2(S,Z) trivially (resp. as − id). This generalizes previous results of Fu and Kharlamov–Răsdeaconu.
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1. Introduction

1.1. Smith inequality. For a topological space equipped with an involution satisfying mild conditions 1,
the Smith theory relates the topology of the fixed locus and that of the ambient space. In particular, we
have the following fundamental inequality relating their total F2-Betti numbers (see for example [4]):

Theorem 1.1 (Smith inequality). Let X be a topological space and σ an involution of X. Assume that X has the
structure of a finite simplicial complex that is respected by σ . Let Xσ be the fixed locus. We have the following
inequality for the total F2-Betti numbers

b∗(X
σ ,F2) ≤ b∗(X,F2). (1.1)

Recall that for a topological space W , its total F2-Betti number is defined as b∗(W,F2) :=
∑
i bi(W,F2)

with bi(W,F2) := dimF2
H i(W,F2).

When the equality holds in Theorem 1.1, we say that the pair (X,σ ) is maximal. With a slight abuse
of terminology, we also say that the involution σ is maximal (when X is clear from the context), or X is
maximal (when the involution is the natural one, e.g. the real structure when X is defined over R).

1.2. Motivation from real geometry. A real structure on a complex manifold X is an anti-holomorphic
involution, that is, a diffeomorphism

σ : X→ X

satisfying σ2 = idX and σ ∗I = −I , where I denotes the complex structure on X. A real variety (or R-variety)
refers to a pair (X,σ ) consisting of a complex manifold X and a real structure σ on it.

The real locus of (X,σ ), denoted by X(R), is defined to be the fixed locus of the involution σ . When
X(R) , ∅, it is a differentiable submanifold of X, and its real dimension is equal to the complex dimension
of X.

By Theorem 1.1, for (X,σ ) a real variety, we have the following inequality for the total F2-Betti numbers

b∗(X(R),F2) ≤ b∗(X,F2). (1.2)

In the case where X is a Riemann surface, (1.2) says that the real locus can have at most g + 1 connected
components (which are circles) – a famous classical result of Harnack [23] and Klein [34].

When equality in (1.2) holds, we call (X,σ ) a maximal real variety (or M-variety). Maximal real varieties
have attracted significant research interest over the decades. Let us mention the remarkable Rokhlin
congruence theorem for even-dimensional maximal smooth projective real varieties: χ(X(R)) ≡ sgn(X)
mod 16; see for example [38, Theorem 3.4.2]. On the other hand, constructing examples of maximal real
varieties in dimension > 2 is often challenging; see [5, §3] and [17] for a recent summary and see [38] for
the case of curves and surfaces. In higher dimensions, Viro’s combinatorial patchworking is very powerful
for complete intersections [29]. Let us mention the second author’s recent contribution [17] of constructing
new maximal real varieties by looking at moduli spaces. The present paper is a natural continuation of [17],
with a more focused investigation on hyper-Kähler manifolds and Hilbert schemes 2 of points on surfaces.

1.3. Branes in hyper-Kähler manifolds. On a hyper-Kähler manifold X, a real structure, or equiva-
lently an anti-holomorphic involution σ , is referred to as an (ABA) or (AAB) brane involution3, and its fixed
locus, which is precisely the real locus X(R), is known as an (ABA) or (AAB) brane in X, as defined in [1]
(see also [15, §2.3]). Up to hyper-Kähler rotation of the complex structure, an anti-holomorphic involution

1For example, a topological space admitting the structure of a CW-complex that is respected by the involution, which is always
the case for smooth involutions on differentiable manifolds.

2It should rather be called Douady space in the complex analytic category.
3The distinction between (ABA) and (AAB) depends on the action of σ on a choice of a (unique up to scalar) holomorphic

symplectic form η: it is called (ABA) if σ ∗(η) = η, and called (AAB) if σ ∗(η) = −η.
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can become a holomorphic anti-symplectic involution, referred to as a (BAA)-brane involution. Similarly, a
holomorphic symplectic involution on a hyper-Kähler manifold is referred to as a (BBB)-involution and its
fixed locus is called a (BBB)-brane.

Examples of non-compact hyper-Kähler manifolds with maximal (ABA) or (AAB) branes are constructed
via moduli spaces of Higgs bundles by Fu in [17, Theorem 6.3]. Another example of maximal brane in a
non-compact hyper-Kähler manifold is provided by the cotangent bundle of a maximal R-variety.

However, the situation is more intriguing for compact hyper-Kähler manifolds. We refer to [2] and [24]
for generalities of such manifolds; see also Section 4 for a quick summary of their special properties. Let us
just mention here the most studied examples of compact hyper-Kähler manifolds: deformations of Hilbert
schemes of points on K3 surfaces; such hyper-Kähler manifolds are called of K3[n]-type. On the one hand,
in (complex) dimension 2, maximal real K3 surfaces and abelian surfaces exist and have been thoroughly
studied; see [31], [48], [53, Chapters IV, VIII]. On the other hand, Kharlamov and Răsdeaconu [32] made the
surprising discovery that the Hilbert square of maximal real K3 surfaces (see also [33] for related results)
and Fano varieties of lines of maximal real cubic fourfolds are never maximal.

The motivation of this paper is to investigate the following question, raised by Fu in [17]:

Can compact hyper-Kähler manifolds of dimension ≥ 4 admit maximal (ABA), (AAB), (BAA) and (BBB) branes?

1.4. Main results I: non-existence of maximal branes in hyper-Kähler manifolds of K3[n]-type.
Although there are K3 surfaces and abelian surfaces admitting maximal brane involutions, our first main
result proves the non-existence of maximal (ABA), (AAB) or (BAA) branes in the compact hyper-Kähler
manifolds of K3[n]-type.

Theorem 1.2 (Absence of maximal (BAA)-brane). Let n ≥ 2 be an integer. Let X be a hyper-Kähler manifold
of K3[n]-type. Then X does not admit maximal holomorphic anti-symplectic involutions.

By hyper-Kähler rotation, we immediately get the following application in real algebraic geometry,
answering a question raised by the second author in [17] for these most studied deformation families of
compact hyper-Kähler manifolds.

Corollary 1.3 (Absence of maximal (ABA)/(AAB)-brane). Let n ≥ 2 be an integer. There is no maximal real
structure on a hyper-Kähler manifold of K3[n]-type.

We also prove the parallel result for (BBB)-branes.

Theorem 1.4 (Absence of maximal (BBB) branes). Let X be a hyper-Kähler manifold of K3[n]-type. Then X
does not admit non-trivial maximal holomorphic symplectic involutions.

Remark 1.5. Theorem 1.2, Corollary 1.3, Theorem 1.4 provide convincing evidence on the non-existence of
maximal (ABA), (AAB), (BAA), and (BBB) branes for compact hyper-Kähler manifolds of dimension larger
than 2. It would be extremely interesting to exploit various special properties of compact hyper-Kähler
manifolds to give an a priori reason to the non-existence of such maximal branes.

1.5. Main results II: criteria for maximality of natural involutions on Hilbert schemes. To
motivate our second main result, we extract here the following special case of Theorem 1.2, Corollary 1.3
and Theorem 1.4.

Corollary 1.6 (=Corollary 6.6). Let σ be a (non-trivial) holomorphic or anti-holomorphic involution on a K3
surface S . Then for any n ≥ 2, the induced involution on its Hilbert scheme of n points S[n] is not maximal.

Going beyond hyper-Kähler geometry, recall that the Hilbert scheme of points on a smooth surface
is always smooth [14], and a holomorphic or anti-holomorphic involution on the surface naturally induces
an involution on the Hilbert scheme of points by base-change (cf. [7, 5.3.1] for the anti-holomorphic case).
We regard Corollary 1.6 as an example towards the investigation of the more general question whether the
operations −[n] of taking Hilbert powers on a surface preserve the maximality:
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Question 1.7. Given a smooth surface S equipped with a holomorphic or anti-holomorphic involution, when
is the natural involution on the Hilbert scheme of n points S[n] maximal?

This question has been recently studied in Fu [17] and in Kharlamov–Răsdeaconu [32]. For projective
surfaces satisfying H1(S,F2) = 0, our results below provide a complete answer to Question 1.7 by giving a
sufficient and necessary condition, solely in terms of the involution on S .

Theorem 1.8 (=Theorem 6.2). Let n ≥ 2. Let S be a smooth projective R-surface. Assume that H1(S,F2) = 0.
Then the punctual Hilbert scheme S[n], equipped with the natural real structure, is maximal if and only if S is
maximal and with connected real locus.

Theorem 1.8 establishes the converse of [17, Theorem 8.1] and generalizes [32, Theorem 1.2] to all n ≥ 2.
In a similar fashion, the following theorem gives a clean characterization for the maximality of natural
holomorphic involution on punctual Hilbert schemes of surfaces. In Section 6.3 these theorems are applied
to obtain examples of maximal involutions and non-maximal involutions, generalizing [32, Corollaries 1.3
and 1.4].

Theorem 1.9 (=Theorem 6.3). Let n ≥ 2. Let S be a smooth projective surface and σ a holomorphic involution.
Assume that H1(S,F2) = 0. Then the induced involution on S[n] is maximal if and only if σ is maximal and
acts on H2(S,Z) trivially.

Remark 1.10. As a somewhat surprising consequence of Theorem 1.8 and Theorem 1.9, given a (holomorphic
or anti-holomorphic) involution on a smooth projective surface S with H1(S,F2) = 0, the maximality of the
naturally induced involution on S[n] for one n ≥ 2 implies the maximality for all n ≥ 2.

Remark 1.11. The projectivity assumptions in Theorem 1.8 and Theorem 1.9 can probably be dropped. They
are inherited from Theorem 3.1 and Theorem 3.4 that we use in the proof.

1.6. Outline of the article. The structure of the article is the following. Section 2 contains preliminaries
about maximal involutions, including sufficient and necessary conditions for maximality that are exploited
throughout the paper. In Section 3 we recollect facts about the basis given by Nakajima and Li–Qin–Wang
for the integral cohomology of the Hilbert scheme of points on a smooth projective surface with vanishing
H1(−,F2). Section 4 is an introduction to hyper-Kähler manifolds with a particular focus on manifolds of
K3[n]-type, their monodromy representation on the cohomology of degree 4, and the monodromy represen-
tation in terms of the integral basis for Hilbert schemes of points on K3 surfaces introduced in Section 3.
Section 5 is dedicated to a proof of the fact that for a surface with H1(S,F2) = 0 and a free holomorphic or
anti-holomorphic involution, the induced involution on the Hilbert scheme of points is not maximal. The
proof relies on tools of algebraic topology, such as the Smith–Gysin exact sequence and the Kalinin spectral
sequence, together with the classification of complex surfaces. The content of Section 6 is the proofs of
Theorem 1.8 and Theorem 1.9. These results are achieved using the necessary and sufficient conditions of
Section 2 together with the facts about the integral basis for the cohomology of Hilbert schemes of points of
Section 3. Section 7 contains the proof of the non-existence of maximal branes for hyper-Kähler manifolds
of K3[n]-type, namely the proof of Theorem 1.2, Corollary 1.3 and Theorem 1.4. The main ingredients of
the proofs are the necessary and sufficient conditions for maximality from Section 2 and the monodromy
representation on the degree 4 cohomology from Section 4, together with some lattice theory. Some final
comments and questions are collected in Section 8.

Convention. Throughout the paper, we denote by G the cyclic group of order 2 with generator σ .
All topological spaces with involution are considered as G-spaces and are assumed to be G-homotopy
equivalent to a finite G-CW-complex (which is the case, for example, of smooth involutions on smooth
manifolds having finitely generated cohomology with F2-coefficients). For a compact manifold, the Poincaré
duality will be used implicitly to identify cohomology and homology, as well as the associated functorialities
(e.g. Gysin maps). For a lattice Λ, which is always assumed to be non-degenerate, we denote by AΛ :=Λ∨/Λ
its discriminant group.
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2. Preliminaries on maximality of involutions

Given such a space X with an involution σ , we let XG := (X×EG)/G be the Borel construction, where G acts
diagonally (hence freely), BG is the classifying space of G and EG is its universal cover. The equivariant
cohomology H ∗G(X,−) of X is defined by H ∗G(X,−) =H

∗(XG,−).
By construction, we have a fibration XG → BG with fiber X, the associated Leray–Serre spectral se-

quence is the following:
E
p,q
2 =Hp(G,Hq(X,F2))⇒H

p+q
G (X,F2). (2.1)

The notion of maximality of σ has several cohomological characterizations.

Proposition 2.1 ([54, Chapter III, Proposition 4.16]). The following conditions are equivalent:

1. The involution σ is maximal, that is, the equality holds in (1.1).

2. The natural morphism H ∗G(X,F2)→H ∗(X,F2) is surjective.

3. G acts trivially on H ∗(X,F2) and the Leray–Serre spectral sequence

E
p,q
2 =Hp(G,Hq(X,F2))⇒H

p+q
G (X,F2) (2.2)

degenerates at E2.

The following classification of integral representations of involutions is going back to Comessatti [9, 10]
(for a sketch of proof see, for example, [53, Chapter I, Lemmas 3.5, 3.5.1]).

Lemma 2.2. Let M be a free abelian group of finite rank equipped with an involution σ . Then

M �M1 ⊕M2 ⊕B1 ⊕ · · · ⊕Bλ (2.3)

as a G-module, where σ |M1
= id, σ |M2

= − id, and σ |Bi has matrix

(
0 1
1 0

)
for each i.

Remark 2.3. The number λ in the standard form (2.3) is called the Comessatti characteristic of (M,σ ). By
Lemma 2.2, it can be equivalently defined as

λ(M,σ ) = dimF2
Im(1+ σ : M ⊗Z F2→M ⊗Z F2) . (2.4)

Combined with Proposition 2.1, the following lemma provides the main obstruction that we will exploit
towards the maximality of involutions.

Lemma 2.4. Let M be a free abelian group of finite rank equipped with an involution σ . Then the following
conditions are equivalent.

1. σ acts on M ⊗F2 trivially.

2. The Comessatti characteristic vanishes: λ(M,σ ) = 0.

3. M =Mσ ⊕Mσ−, where Mσ := {x ∈M | σ (x) = x} and Mσ− := {x ∈M | σ (x) = −x},

4. For any element x ∈M, x+ σ (x) is divisible by 2 in M .
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Remark 2.5. Let M be a finite type torsion-free abelian group with an involution. If the Comessatti
characteristic of M is zero, then for any n ≥ 1, Symn(M) equipped with the naturally induced involution,
is again of Comessatti characteristic zero.

Lemma 2.6. Let M be a finite type free abelian group with involution σ and M ′ ⊂M a σ -invariant subgroup.
Assume that M/M ′ is 2-torsion-free, then λ(M ′) ≤ λ(M).

Proof. The short exact sequence
0→M ′→M→M/M ′→ 0 (2.5)

gives rise to an exact sequence

TorZ(M/M ′ ,F2)→M ′ ⊗F2→M ⊗F2→M/M ′ ⊗F2→ 0. (2.6)

The first term vanishes by the assumption that M/M ′ is 2-torsion-free. Hence M ′ ⊗ F2 is a subspace of
M ⊗F2, which is preserved by σ . Therefore

λ(M ′) = dimF2
Im

(
1+ σ |M ′⊗F2

)
≤ dimF2

Im
(
1+ σ |M⊗F2

)
= λ(M). (2.7)

Lemma 2.7. Let M,M” be free abelian groups of finite type equipped with involution. Let M → M ′′ be an
equivariant surjective homormoprhism. Then λ(M) ≥ λ(M”).

Proof. We denote both involutions by σ . Consider the following commutative diagram:

M ⊗F2
// //

1+σ
��

M”⊗F2

1+σ
��

M ⊗F2
// //M”⊗F2

(2.8)

Since the horizontal maps are surjective by assumption, the rank of the left vertical map is at least the rank
of the right vertical map.

3. Integral cohomology of Hilbert schemes of points on surfaces

In this section, we collect results on the cohomology of Hilbert schemes of points on surfaces that we will
need in the sequel.

For a smooth projective complex surface S , we denote by 1S ∈ H0(S,Z) its fundamental class (with
the natural orientation), by pt ∈ H4(S,Z) the class of a point. Let |0⟩ ∈ H0(S[0],Z) be the positive
generator, which is the highest weight vector for Nakajima’s representation of the Heisenberg Lie algebra
on

⊕
n≥0H

∗(S[n],Q).
In the rest of the paper, cohomological correspondences will be frequently used. Let us recall the

definition, which works for any choice of coefficients (cf. [45, Section 8.1]). Given two smooth projective
varieties X,Y and a cohomology class γ ∈H ∗(X ×Y ), we define

γ∗ : H
∗(X)→H ∗(Y )

v 7→ pY ,∗(p
∗
X(v)⌣γ),

and

γ∗ : H ∗(Y )→H ∗(X)

v 7→ pX,∗(p
∗
Y (v)⌣γ),

where the push-forward is the Gysin map (using Poincaré duality). The composition of two correspondences
γ ∈ H ∗(X × Y ), ζ ∈ H ∗(Y × Z) is defined as ζ ◦ γ := pXZ,∗(p∗XY (γ)⌣ p∗YZ(ζ)). We have associativity of
compositions, and natural equalities (ζ ◦γ)∗ = ζ∗ ◦γ∗ and (ζ ◦γ)∗ = γ∗ ◦ ζ∗.
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3.1. Nakajima operators and Li–Qin–Wang integral operators. Let S be a smooth projective

surface over C. Following [51, Definition 3.1], an operator in End
(⊕

nH
∗(S[n],Q)

)
is called integral, if it

respects the subgroup
⊕

nH
∗(S[n],Z)/tors ⊂

⊕
nH
∗(S[n],Q). This notion is slightly weaker than the usual

one (elements in End(
⊕

nH
∗(S[n],Z))).

1. Nakajima [45] defined some cohomological operations using natural correspondences. Let us recall
the definition. For any k ≥ 0 and any α ∈ H ∗(S,Z), the (creation) Nakajima operator p−k(α), for any
j ≥ 0,

p−k(α) : H
∗(S[j],Z)→H ∗(S[j+k],Z), (3.1)

sends an element β ∈H ∗(S[j],Z) to the class q∗(p∗(β)⌣ r∗(α)⌣ [Qj+k,j ]) ∈H ∗(S[j+k],Z), where

Qj+k,j := {(Z,x,Z ′) ∈ S[j] × S × S[j+k] | supp(IZ /IZ ′ ) = {x}},

and p,r,q are the projections from S[j] × S × S[j+k] to S[j], S and S[j+k] respectively. In particular,
taking j = 0, then p−k(α)|0⟩ is the image of α via the correspondence [Γk]∗ : H ∗(S,Z)→ H ∗(S[k],Z),
where Γk := {(x,Z) ∈ S × S[k] | supp(Z) = {x}}. In particular, p−1(α)|0⟩ = α.

2. For any k ≥ 0, Li–Qin–Wang [36, Definition 4.1], [35, (2.7)] defined the operator 1−k as 1−k :=
1
k!p−1(1S )

k . Despite of the apparent denominator, in [51, Lemma 3.3] it is proved that 1−k is an
integral operator. Indeed, it can be equivalently defined as follows: for any j ≥ 0, the operator

1−k :H
∗(S[j],Z)→H ∗(S[j+k],Z)

is the correspondence [S[j,j+k]]∗, where S[j,j+k] := {(Z,Z ′) ∈ S[j]×S[j+k] | Z ⊂ Z ′} is the nested Hilbert
scheme.

3. The operator m is defined in [51, §4.2] and in [35, Definition 3.3]. More precisely, for λ a partition of
n, α ∈H2(S,Z)/tors, we have an operator

mλ(α) : H
∗(S[k],Q)→H ∗(S[k+n],Q), (3.2)

which is proven to be an integral operator by Li–Qin in [35, Theorem 3.6]. The precise definition of
m is somewhat involved. Let us only mention here that when α = [C] for a smooth irreducible curve
C in S , then for any partition λ = (λ1 ≥ · · · ≥ λN ) of n, we have mλ([C])|0⟩ = [LλC], where LλC is
the closure in S[n] of {λ1x1 + · · ·+λNxN | xi ∈ C distinct}.

3.2. Integral basis. Thanks to the work of Li–Qin–Wang [35, Theorem 1.1] and [51, Theorem 1.1], for a
projective surface with vanishing odd Betti numbers, we have a concrete integral basis for the cohomology
of its punctual Hilbert schemes.

Theorem 3.1 (Li–Qin–Wang). Let S be a smooth projective surface with b1(S) = 0. Let α1, · · · ,αk be an integral
basis of H2(S,Z)/tors. Then the following classes form an integral basis of H ∗(S[n],Z)/ tors:

1
zλ

p−λ(1S )p−µ(pt)mν1(α1) · · ·mνk (αk)|0⟩ (3.3)

where λ,µ,ν1, · · · ,νk run through all partitions satisfying |λ| + |µ| + |ν1| + · · · |νk | = n, and for a partition
λ = (λ1 ≥ λ2 ≥ · · · ≥ λl) = (1m12m2 · · · rmr ), let |λ| :=

∑
imi =

∑
i λi , zλ :=

∏
i(i
mimi !), and p−λ =

∏
i p−λi .

Remark 3.2 (Integral basis in H2 and H4). What is particularly important for us is the collection of basis
elements in degree 2 and degree 4, which we list below for the easy of later reference (n ≥ 2):



8 S. Billi, L. Fu, A. Grossi and V. Kharlamov8 S. Billi, L. Fu, A. Grossi and V. Kharlamov

1. Integral basis of H2(S[n],Z)/tors:

1−(n−1)α1, · · · ,1−(n−1)αk , δ :=
1
2
1−(n−2)p−2(1S )|0⟩. (3.4)

This amounts to the well-known isomorphism

H2(S[n],Z)/tors �H2(S,Z)/tors⊕Zδ, (3.5)

where δ is the half of the exceptional divisor class, and the isomorphism identifies a class α ∈
H2(S,Z)/tors with 1−(n−1)α = ([S[1,n]])∗(α) ∈H2(S[n],Z)/tors.

2. Integral basis of H4(S[n],Z)/tors:

1−(n−1)pt; (3.6)

1−(n−2)p−2(αi)|0⟩, with 1 ≤ i ≤ k; (3.7)

1−(n−2)p−1(αi)p−1(αj )|0⟩, with 1 ≤ i < j ≤ k; (3.8)

1−(n−2)m1,1(αi)|0⟩, with 1 ≤ i ≤ k; (3.9)

1
3
1−(n−3)p−3(1S )|0⟩, when n ≥ 3; (3.10)

1
2
1−(n−3)p−2(1S )αi , with 1 ≤ i ≤ k, when n ≥ 3; (3.11)

1
8
1−(n−4)p−2(1S )p−2(1S )|0⟩, when n ≥ 4. (3.12)

Remark 3.3 (Key relation). The classes of the form 1−(n−2)p−1(α)2|0⟩ ∈ H4(S[n],Z) do not appear in the
above list, since we have the following relation, which will play a crucial role in the proof of our main
results.

1−(n−2)m1,1(α)|0⟩ =
1
2

(
1−(n−2)p−1(α)

2|0⟩ −1−(n−2)p−2(α)|0⟩
)
. (3.13)

3.3. Integral generators. We will need the following set of integral generators for the cohomology of
Hilbert schemes by Li and Qin [35, Theorem 1.2].

Theorem 3.4 (Li–Qin). Let S be a smooth projective complex surface with b1(S) = 0, and n a positive integer.
Then H ∗(S[n],Z)/tors is generated by the following three types of elements:

(i) For 1 ≤ j ≤ n, the Chern class cj(O
[n]
S ) ∈H2j(S[n],Z), where O[n]

S is the tautological rank-n bundle defined

as p∗(OZn) where p : S[n] × S → S[n] is the projection and Zn ⊂ S[n] × S is the universal codimension-2
subscheme given by {(ξ,x) ∈ S[n] × S | x ∈ supp(ξ)}.

(ii) For 1 ≤ j ≤ n, and α ∈H2(S,Z)/tors, the class 1−(n−j)m(1j )(α)|0⟩.

(iii) For 1 ≤ j ≤ n, the class 1−(n−j)p−j(pt)|0⟩, where pt ∈H4(S,Z) denotes the class of a point.

4. Hyper-Kähler manifolds and monodromy action

In this section, we recall some basic features of compact hyper-Kähler manifolds. We remind known facts
about the monodromy group of hyper-Kähler manifolds of K3[n]-type and analyze in detail the monodromy
action on the cohomology of degree 4 when n ≥ 4. We also describe the monodromy representation in
terms of the integral basis introduced in the previous section for Hilbert schemes of points on a K3 surface.
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4.1. Basics on compact hyper-Kähler manifolds. By definition, a compact Kähler manifold X is
called hyper-Kähler if it is simply-connected and H0(X,Ω2

X) is generated by a symplectic (i.e. nowhere
degenerate) holomorphic 2-form. In particular, dim(X) is even, and the canonical bundle of X is trivial.
From the viewpoint of differential geometry, such manifolds are characterized by the existence of the so-
called hyper-Kähler metrics, that is, a Ricci-flat metric whose holonomy group is the compact symplectic

group Sp(n), where n = dim(X)
2 . See [2] and [24] for basic definitions.

Compact hyper-Kähler manifolds are generalizations of K3 surfaces and by the Beauville–Bogomolov
decomposition theorem [2], they form one of the three basic types of building blocs for compact Kähler
manifolds with vanishing first Chern class. Higher-dimensional examples include Hilbert schemes of K3
surfaces, generalized Kummer varieties, O’Grady’s 10-dimensional (resp. 6-dimensional) crepant resolutions
of certain moduli spaces of semistable sheaves on K3 (resp. abelian) surfaces, and deformations of these.
By the Bogomolov–Tian–Todorov theorem, the deformation space of a compact hyper-Kähler manifold is
smooth.

An essential part of the geometry of a compact hyper-Kähler manifold is controlled by its second
cohomology. More precisely, for a compact hyper-Kähler manifold X, H2(X,Z) can be endowed with a
natural quadratic form, the Beauville–Bogomolov–Fujiki (BBF) form [2], that is compatible with the Hodge
structure on H2(X,Z) and depends only on the topology of X. From these data, one can define the period
domain, and the corresponding period map from the Kuranishi space to the period domain is étale (local
Torelli theorem). A global Torelli theorem is proved by Verbitsky [57], see also [41], [26].

Given two compact hyper-Kähler manifolds X,X ′ that are deformation equivalent, a ring isomorphism
φ : H ∗(X,Z)→ H ∗(X ′ ,Z) is called a parallel transport operator, if there exist a smooth and proper family
π : X→ B of compact hyper-Kähler manifolds over an analytic base B, two points b,b′ ∈ B with isomor-

phisms ψ : X
≃−→ Xb and ψ′ : X ′

≃−→ Xb′ , and a continuous path γ from b to b′ such that (ψ′)∗◦γ∗◦(ψ∗)−1 = φ,
where γ∗ is the parallel transport in the local system Rπ∗Z; see [41, Definition 1.1].

4.2. Hyper-Kähler rotation. Let X be a compact hyper-Kähler manifold equipped with a hyper-Kähler
metric g . Then there is a space of compatible complex structures parametrized by a 2-dimensional sphere.
More precisely, there are three complex structures I, J,K on X satisfying the quaternion relations :

I2 = J2 = K2 = − id, IJ = −JI = K, JK = −KJ = I, KI = −IK = J, (4.1)

and for any a,b,c ∈ R with a2 + b2 + c2 = 1, aI + bJ + cK is a complex structure compatible with g . This
freedom of choices of complex structures, known as hyper-Kähler rotation, allows us to switch between real
structures and anti-symplectic holomorphic involutions on X.

Proposition 4.1. Let X be a compact hyper-Kähler manifold. Let σ be a real structure, i.e. an anti-holomorphic
involution on X. Then there exists a new complex structure on X with respect to which σ is holomorphic anti-
symplectic.

Proof. Fix a σ -invariant hyper-Kähler metric on X. Let I be the complex structure on X. As σ is anti-
holomorphic, we have

σ ∗(I) = −I.

Let {I, J,K} be a triple of complex structures on the real tangent bundle of X satisfying the quaternion
relations (4.1). Let ωI , ωJ and ωK be the corresponding Kähler forms.

Let σ ∗(J) = λI + aJ + bK , where λ,a,b ∈ R such that λ2 + a2 + b2 = 1. Since IJ = −JI , we have
σ ∗(I)σ ∗(J) = −σ ∗(J)σ ∗(I). Therefore the condition σ ∗(I) = −I implies that λ = 0, hence

σ ∗(J) = aJ + bK

for some a,b ∈ R with a2 + b2 = 1. It yields that σ ∗(K) = σ ∗(I)σ ∗(J) = (−I)(aJ + bK) = bJ − aK .
In other words, the restriction of σ ∗ to the plane RJ ⊕RK is a reflection. Up to changing J,K by a

rotation of this plane, one can assume that σ ∗(J) = −J and σ ∗(K) = K .
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Now we equip the manifold X with the new complex structure K , then σ is holomorphic and the
holomorphic symplectic form

ηK =ωI +
√
−1ωJ

is clearly σ -anti-invariant.

4.3. The monodromy group of manifolds of K3[n]-type. Let X be a compact hyper-Kähler
manifold. The monodromy group Mon(X) is the subgroup of

∏
iGL(H i(X,Z)) consisting of parallel

transport operators from X to itself. The group Mon(X) acts on H ∗(X,Z) by degree-preserving ring
isomorphisms. We denote by Mon2(X) the subgroup of O(H2(X,Z)) obtained by restricting parallel
transport operators to H2(X,Z); in other words, Mon2(X) is the image of Mon(X) under the projection∏
iGL(H i(X,Z))→GL(H2(X,Z). The isomorphism classes of the groups Mon(X), Mon2(X) depend only

on the deformation class of X.
For a K3 surface S , we have the following computation of its monodromy group; see for example [27,

Chapter 7, Proposition 5.5]:
Mon2(S) =O+(H2(S,Z)) ⊂O(H2(S,C)),

where O+(H2(S,Z)) stands for the isometries of the lattice H2(S,Z) with spinor norm 1 (i.e. preserving
orientation in positive definite 3-dimensional subspaces of H2(S,R)). Note that Mon2(S) is not an algebraic
closed subgroup and its Zariski closure is the entire O(H2(S,C)).

Let X be a K3[n]-type hyper-Kähler manifold. Thanks to [42, Lemma 2.1], the natural morphism
Mon(X)→Mon2(X) is an isomorphism. From results of Markman [40, Theorem 1.2 and Lemma 4.2] we
know that

Mon2(X) =W (H2(X,Z)),

where W (H2(X,Z)) stands for the subgroup of isometries in O+(H2(X,Z)) acting as ± id on the dis-
criminant group of the lattice H2(X,Z). Here and in the sequel, H2(X,Z) is always equipped with the
Beauville–Bogomolov–Fujiki quadratic form. We have therefore the discriminant character

τ : Mon2(X)→ {±1} (4.2)

that records the action on the discriminant.
Markman proved in [39, Lemma 4.11] (combined with Lemma 4.10 in loc. cit.) that the Zariski closure

of the subgroup Mon(X) ⊂ GL(H ∗(X,C)) is isomorphic to O(H2(X,C)) × {±1} if X is of K3[n]-type with
n ≥ 3, and isomorphic to O(H2(X,C)) if X is of K3[2]-type4. By this result of Zariski closure, we obtain
that for any n ≥ 1 and X of K3[n]-type, a linear representation

ρ : O(H2(X,C))× {±1} →GL(H ∗(X,C)) (4.3)

acting by degree-preserving ring isomorphisms (the action of {±1} is set to be trivial if n < 3).

4.4. Monodromy representation on the degree-4 cohomology. Let X be a compact hyper-
Kähler manifold of K3[n]-type with n ≥ 4. Following Markman [40], we define5

Q(X,Z) :=H4(X,Z)/ Sym2H2(X,Z). (4.4)

Note that Sym2H2(X,Z) is preserved by the monodromy action, hence we have a natural action of Mon(X)
on Q(X,Z). For any monodromy operator σ ∈Mon(X) ⊂GL(H ∗(X,Z)), we denote by

σ2 ∈Mon2(X) ⊂O(H2(X,Z)) and σ4 ∈GL(H4(X,Z)) and σQ ∈O(Q(X,Z)) (4.5)

4The K3[2]-type case is not stated in [39, Lemma 4.11], but it follows from the fact that in this case, the discriminant group
AH2(X,Z) of H2(X,Z) is isomorphic to Z/2Z equipped with a non-zero quadratic form, hence O(AH2(X,Z)) is trivial. In particular,
the discriminant character τ is trivial.

5It is denoted by Q4(X,Z) in [40].
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the restricted/induced automorphisms on H2(X,Z), H4(X,Z) and Q(X,Z) respectively.
We need the following result of Markman [40, Theorem 1.10] on Q(X,Z). Let c2(X) denote the image

of the second Chern class c2(X) under the natural projection H4(X,Z)→Q(X,Z).

Theorem 4.2 (Markman). Notation is as above. Let X be a K3[n]-type hyper-Kähler manifold with n ≥ 4. Then

1. Q(X,Z) is a free abelian group equipped with a natural Hodge structure and a monodromy invariant
quadratic form qQ, such that the resulting lattice is the Mukai lattice E8(−1)⊕2 ⊕U⊕4.

2. 1
2c2(X) is a non-zero primitive element in Q(X,Z) with square qQ(

1
2c2(X)) = 2n− 2.

3. There is a Hodge isometry e : H2(X,Z) �−→ c2(X)⊥ ⊂ Q(X,Z) such that the transformation of e under
the monodromy group is given by the discriminant character τ : Mon2(X) → {±1}. More precisely, the
following diagram is commutative:

Mon(X)

��

ρ // O(c2(X)⊥,qQ)

��
Mon2(X)

τ ·ρ // O(H2(X,Z),q)

(4.6)

where the top arrow is the monodromy representation, the bottom arrow is the monodromy representation
multiplied by the discriminant character, and the right vertical arrow sends any F ∈O(c2(X)⊥,qQ) to the
composition e−1 ◦F ◦ e. In other words, for any α ∈H2(X,Z) and σ ∈Mon(X),

σQ(e(α)) = τ(σ ) · e(σ2(α)). (4.7)

Remark 4.3. In the statement of [40, Theorem 1.10], it was only indicated that there is some non-trivial
character τ : Mon2(X)→ {±1} making the diagram (4.6) commutative, without determining τ explicitly.
However, it is easy to see that τ must be the discriminant character: since Q(X,Z) is a unimodular lattice
and σQ(c2(X)) = c2(X), σQ must act trivially on the discriminant of the sublattice c2(X)⊥ in Q(X,Z).
Therefore the transported action of σQ to H2(X,Z) by conjugating with the isomorphism e must act
trivially on the discriminant of H2(X,Z). This implies that τ must be the discriminant character.

4.5. Monodromy representation for Hilbert schemes of points on K3 surfaces. We relate the
action of monodromy operators of a K3 surface with the integral basis of the cohomology of the Hilbert
schemes described in the previous sections. The results are based on Markman’s results and are collected
in Oberdieck’s work [49, Section 3.6]. We briefly recall them for the reader’s convenience.

Let S be a K3 surface and consider the Hilbert scheme of n points S[n]. As remarked before, (4.3) gives
for any n ≥ 1, a linear representation

ρn : O(H2(S[n],C))× {±1} →GL(H ∗(S[n],C)) (4.8)

acting by degree-preserving ring isomorphisms. Notice that there are natural embeddings

O+(H2(S,Z)) ⊂W (H2(S[n],Z)) ⊂O(H2(S[n],Z))× {±1}, (4.9)

where the first is induced by the natural inclusion H2(S,Z) ⊂ H2(S[n],Z) and the second one is given by
g 7→ (g,τ(g)).

Remark 4.4. Via the inclusions (4.9), the restriction of the representation ρn in (4.8) to O+(H2(S,Z)) =
Mon2(S) is given geometrically by sending a monodromy operator of S defined by a loop γ in the base of
a family of K3 surfaces S→ B to the monodromy operator defined by the same loop γ for the associated
family of Hilbert schemes HilbnBS→ B.
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As is recalled in (3.4) and (3.5), we have a natural isomorphism H2(S[n],Z) � H2(S,Z)⊕Z · δ, where
δ is the half of the class of the exceptional divisor. Via this isomorphism, we have a canonical injective
morphism

O(H2(S,C)) ↪→O(H2(S[n],C))

by extending by the trivial action on δ. In the sequel, we identifyO(H2(S,C)) with its image inO(H2(S[n],C)),
which is nothing but O(H2(S[n],C))δ, the stabilizer of δ.

We moreover have the map O(H2(S,C))→GL(H ∗(S,C)) given by g 7→ g̃ := idH0(S,C)⊕g ⊕ idH4(S,C).
Nakajima operators are encoded in the following linear maps. For any k ≥ 0,

p−k : H
∗(S,C)→Hom(H ∗(S[n],C),H ∗(S[n+k],C)) (4.10)

is defined by p−k(α)(v) = (r∗α)∗(v) := pS [n+k],∗(p
∗
S [n]

(v)⌣ r∗α), where r : S[n,n+k]0 → S is the residue map,

pS [n] and pS [n+k] are the natural projections from S
[n,n+k]
0 to S[n] and S[n+k] respectively, and S

[n,n+k]
0 :=

{(Z,Z ′) ∈ S[n] × S[n+k] | Z ⊂ Z ′ and supp(IZ /IZ ′ ) is one point}, and α ∈H ∗(S).

Lemma 4.5. For any n,k ∈ N, and any α ∈H ∗(S,C), the group

Mn,k(α) :=
{
g ∈O(H2(S,C)) | p−k(g̃(α)) ◦ ρn(g,1) = ρn+k(g,1) ◦ p−k(α)

}
is a closed algebraic subgroup of O(H2(S,C)).

Proof. It is straightforward to check that Mn,k(α) is a subgroup of O(H2(S,C)). To show that the condition
in the statement is a Zariski closed condition, it suffices to notice the following elementary facts:

• For any n, the homomorphism ρn(−,1) : O(H2(S,C)) → GL(H ∗(S[n],C)) is algebraic. Indeed this
follows from the definition of ρn as it is defined by extending to algebraic closure of the monodromy
group.

• The map sending g to g̃ is clearly a morphism of algebraic groups.

• The map O(H ∗(S,C))→H ∗(S,C) of evaluation at α is an algebraic map.

• The map p−k as in (4.10) is algebraic (actually, linear).

• Composition of algebraic maps is algebraic.

Hence both sides of the condition in the statement are algebraic in g , this defines a closed algebraic
subgroup.

Proposition 4.6. For any α ∈H ∗(S,C), g ∈O(H2(S,C)) and n,k ∈ N, we have

p−k(g̃(α)) ◦ ρn(g,1) = ρn+k(g,1) ◦ p−k(α). (4.11)

Proof. Note that given a monodromy operator on the K3 surface

g ∈O+(H2(S,Z)) = Mon2(S),

the induced monodromy operator on S[n], still denoted by g ∈Mon2(S[n]), has trivial discriminant char-
acter: τ(g) = 1, since it preserves the exceptional divisor, hence also the class δ. By Remark 4.4, it is
straightforward to check that the relation (4.11) holds for any g ∈O+(H2(S,Z)) = Mon2(S). By Lemma 4.5,
the relation also holds for any element in the Zariski closure of O+(H2(S,Z)) ⊂ O(H2(S,C)). The Zariski
closure is the entire O(H2(S,C)), so that (4.11) holds for any isometry as in the statement.
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Corollary 4.7 (Property 3 of [49, Section 3.6]). Let n be a positive integer. For any g ∈ O(H2(S,C)) =
O(H2(S[n],C))δ , any k1, . . . , kl ∈ N with n = k1+ · · ·+kl , and any α1, . . . ,αl ∈H ∗(S,C), we have the following
equality in H ∗(S[n],C):

ρn(g,1)p−k1(α1) . . .p−kl (αl)|0⟩ = p−k1(g̃(α1)) . . .p−kl (g̃(αl))|0⟩, (4.12)

Proof. An iterated application of (4.11) gives the commutation rule (4.12).

Remark 4.8. As a special case of Corollary 4.7, for any monodromy operator g ∈Mon2(S[n]) = Mon(S[n])
such that g(δ) = δ, we have g(p−k1(α1) . . .p−kl (αl)|0⟩) = p−k1(g(α1)) . . .p−kl (g(αl))|0⟩. Indeed, if g(δ) = δ
then τ(g) = 1. Hence the monodromy action by g is the same as by ρn(g,1).

The following result will be useful to understand the action of the action of a monodromy operator that
acts as − id on the discriminant group AH2(X,Z).

Lemma 4.9 (Property 2 of [49, Section 3.6]). Let n ≥ 3 be an integer and S[n] be the n-th punctual Hilbert
scheme of a K3 surface S . Then

ρn(idH2(S [n],C),−1) =D ◦ ρn(− idH2(S [n],C)1,1),

where D is the degree operator which acts on H2i(S[n],C) by multiplication by (−1)i .

5. Surfaces with a free involution and their Hilbert schemes

Among real varieties, or more generally, in the study of the geometry of involutions, those without real
(resp. fixed) points often play a distinguished role and sometimes present extra difficulties. It is indeed the
case in the proofs of Theorem 1.8 and Theorem 1.9. The goal of this section is to prove these theorems in
the fixed-point-free case. More precisely, the main result of the section is the following:

Theorem 5.1. Let S be a compact complex surface with H1(S,F2) = 0. Let σ be a holomorphic or anti-
holomorphic involution of S without fixed point. Then for any n ≥ 1, the naturally induced involution on the
Hilbert scheme S[n] is not maximal.

Theorem 5.1 is proved in Section 5.5 and it is obtained by combining Theorem 5.4, Corollary 5.5,
Remark 5.7, Theorem 5.11, Corollary 5.12, Theorem 5.13, Theorem 5.15.

5.1. Topological constraints on free involutions of surfaces. As a first step, we provide a strong
restriction satisfied by a fixed-point-free (holomorphic or anti-holomorphic) involution on a compact com-
plex surface. We start with a lemma from algebraic topology of involutions on manifolds, where we use
the following notation. Let M be a topological space endowed with a continuous involution σ :M →M
without fixed point:

Mσ = ∅. (5.1)

Assume that M has a CW-complex structure such that σ is cellular. Consider the associated Smith–Gysin
long exact sequence in the following form (see [11, Theorem 1.2.1] for example):

· · · →Hr+1(M/σ,F2)
γr−−→Hr(M/σ,F2)

αr−−→Hr(M,F2)
βr−−→Hr(M/σ,F2)

γr−1−−−→Hr−1(M/σ,F2)→ ·· · (5.2)

and put Ir =Hr(M,F2)σ the subspace of invariant elements. Recall that γr = ∩ω where ω ∈H1(M/σ,F2)
is the characteristic class of the double covering π :M→M/σ , while αr = π∗ and βr = π∗ are the transfer
and projection homomorphisms, respectively.
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Lemma 5.2. Let M be a connected compact oriented 4-manifold with H1(M,F2) = 0 and σ : M → M an
orientation-preserving involution with empty fixed locus Mσ = ∅. Then:

dim I2 = dimImα2 +1 = b2(M/σ,F2), (5.3)

dimImα2 =
1
2
b2(M). (5.4)

Proof. Let the notation be as before. In the Smith–Gysin sequence (5.2):

• clearly β0 : H0(M,F2)→H0(M/σ,F2) and α4 : H4(M/σ,F2)
π∗−−→H4(M,F2) are isomorphisms;

• H3(M,F2) =H1(M,F2) = 0 by the assumption that H1(M,F2) = 0.

Therefore the exactness of (5.2) implies the following:

• γ3 : H4(M/σ,F2)
∩ω−−−→ H3(M/σ,F2) is an isomorphism, hence H3(M/σ,F2) is 1-dimensional and

generated by the Poincaré dual of ω.

• γ0 : H1(M/σ,F2)
∩ω−−−→ H0(M/σ,F2) is an isomorphism. Recall that for any closed orientable 4-

manifold V and any v ∈H1(V ,F2), we have v4 = 0. Thus, ω4 = 0, and as γ0 is an isomorphism,

ω3 = 0. (5.5)

• γ2 :H3(M/σ,F2)
∩ω−−−→H2(M/σ,F2) is a monomorphism, hence

ω2 , 0. (5.6)

• We have an exact sequence:

0→H3(M/σ,F2)
γ2=∩ω−−−−−−−→H2(M/σ,F2)

α2=π∗−−−−−−→H2(M,F2)
β2=π∗−−−−−−→H2(M/σ,F2)

γ1=∩ω−−−−−−−→H1(M/σ,F2)→ 0. (5.7)

In its turn, from the exactness of (5.7) it follows that 1+rkα2 = b2(M/σ,F2) = rkβ2+1 and rkα2+rkβ2 =
b2(M,F2). Note that by assumption H ∗(M,Z) is 2-torsion-free, hence b2(M,F2) equals to the usual b2(M).
The relation (5.4), and the second equality in (5.3), are proven.

Next, since (α2◦β2)I2 = (1+σ∗)I2 = 0, we get β2(I2) ⊂ ker(α2) = Imγ2 and dimβ2(I2) ≤ dimImγ2 = 1.
Thus, due to kerβ2 = Imα2 ⊂ I2, to prove dim I2 = dimImα2+1 it is sufficient to check that dimβ2(I2) ≥ 1.

Now, from ω3 = 0 in (5.5) and the exactness of (5.7), it follows that there exists ξ ∈ H2(M,F2) with
β2(ξ) = Dω2 (where D stands for the Poincaré duality). We have ξ ∈ I2, since (1 + σ∗)ξ = (α2 ◦ β2)(ξ) =
α2(Dω2) = α2(ω ∩ Dω) = (α2 ◦ γ2)(Dω) = 0 by exactness of the Smith–Gysin sequence. As ω2 , 0,
dimβ2(I2) ≥ 1, which concludes the proof of dim I2 = dimImα2 +1.

Remark 5.3. By the Lefschetz trace formula for fixed points, we have

rkH2(M,Z)σ− − rkH2(M,Z)σ = 2. (5.8)

Hence b2(M) is an even number and

rkH2(M,Z)σ− =
1
2
b2(M) + 1; rkH2(M,Z)σ =

1
2
b2(M)− 1. (5.9)

By Lemma 5.2 it follows that
dim I2 = rkH2(M,Z)σ−. (5.10)

This implies that the pull-back homomorphism establishes a lattice isomorphism:

π∗ : H2(M/σ,Z)(2) �−→H2(M,Z)σ . (5.11)
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Theorem 5.4. Let S be a compact complex surface with H1(S,F2) = 0. Let σ be an involution of S without
fixed point that satisfies one of the following conditions

(i) σ is a holomorphic involution, or

(ii) σ is anti-holomorphic and b2(S) , 2.

Then σ acts on H2(S,F2) non-trivially.

Proof. Assume for contradiction that σ acts on H2(S,F2) trivially, that is,

dim I2 = b2(S).

As a holomorphic or anti-holomorphic involution preserves the natural orientation of a complex surface,
we can apply Lemma 5.2, and obtain that

dim I2 =
1
2
b2(S) + 1. (5.12)

Thus the only possibility is when b2(S) = 2. Hence, case (ii) is proven.
For case (i), i.e. σ is holomorphic, by the Lefschetz trace formula, σ acts on H2(S,Q) by − id; see (5.9)

in Remark 5.3. As the canonical class is preserved by σ , this implies that KS is torsion. In particular, S is
a minimal surface of Kodaira dimension 0. By looking at the Enriques–Kodaira classification, there is no
such type of surfaces with b1(S) = 0 and b2(S) = 2. Case (i) is proven.

Corollary 5.5. Let the notations and assumptions be as in Theorem 5.4. For a given positive integer n, let S[n]

be the nth Hilbert scheme of points on S , and let σ [n] be the naturally induced (holomorphic or anti-holomorphic)
involution on S[n]. Then σ [n] acts non-trivially on H2(S[n],F2). In particular, σ [n] is not a maximal involution.

Proof. The case where n = 1 is exactly Theorem 5.4. Assume n ≥ 2 in the sequel. The assumption
H1(S,F2) = 0 implies that H1(S,Z) = 0 and H2(S,Z) is 2-torsion-free. We have the following isomorphism
(see for example [2, P.768]), where (−)tf stands for (−)/ tors.

H2(S[n],Z)tf �H2(S,Z)tf ⊕Z · δ, (5.13)

where δ is half of the class of the exceptional divisor in S[n]. In the isomorphism (5.13), the injection
i : H2(S,Z)tf → H2(S[n],Z)tf is induced by the incidence subscheme S[1,n] := {(x,ξ) ∈ S × S[n] | x ∈
supp(ξ)}. Therefore i is equivariant with respect to the action of σ and σ [n].

Since H1(S,F2) = 0, the cohomology H ∗(S,Z) is 2-torsion-free. By [55, Theorem 3.1 and the remark
that follows], H ∗(S[n],Z) is also 2-torsion-free. We obtain from (5.13) a (σ [n],σ )-equivariant isomorphism:

H2(S[n],F2) �H
2(S,F2)⊕F2 ·δ. (5.14)

Since the action of σ on H2(S,F2) is non-trivial, the action of σ [n] on H2(S[n],F2) is non-trivial. The
non-maximality follows from Proposition 2.1.

Remark 5.6. Let us give an alternative geometric proof for the non-triviality of the action of σ [n] on
H2(S[n],F2) without using (5.13). Choose an element α ∈ H2(S,F2) with σ∗(α) , α. By perfectness of the
intersection pairing, there exists β ∈ H2(S,F2) with α ∪ β = 0 and σ∗(α)∪ β , 0. Let S[1,n] := {(x,ξ) ∈
S×S[n] | x ∈ supp(ξ)} as before, and let S[1,n]0 := {(x,ξ) ∈ S×S[n] | {x} ⊂ ξ and supp(Oξ /Ox) is one point}.
There is a natural residual-point morphism r : S[1,n]0 → S . Consider

α̃ := 1−(n−1)(α) = (S[1,n])∗(α) ∈H2(S[n],F2);

β̃ := p−1(pt)
n−1(α) = (r∗(pt))∗(β) ∈H4n−2(S[n],F2).

Then the intersection pairings (α̃ · β̃) = (α · β) = 0 and (σ [n]
∗ α̃ · β̃) = (σ∗α · β) , 0. In particular, α̃ is not

preserved by σ [n].
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Remark 5.7. The only cases that are not covered by Theorem 5.4 are fixed-point-free anti-holomorphic
involutions on compact complex surfaces with H1(S,F2) = 0 and b2(S) = 2. Thanks to the Enriques–
Kodaira classification, such surfaces can only be (smooth) quadrics, fake quadrics6, Hirzebruch surfaces,
and blown-ups of fake projective planes at one point. The last case can be easily excluded by noticing
that any real structure on the blown-up of a fake projective plane must globally preserve the exceptional
(−1)-curve E, hence (E ·σ∗(E)) is an odd number, but for a real structure σ on a smooth projective surface
without real points, (D · σ∗(D)) must be an even number for any divisor D . We will treat the remaining
cases, namely, quadrics, fake quadrics and Hirzebruch surfaces in the rest of this section, by using the
so-called Kalinin spectral sequence.

5.2. Kalinin spectral sequence. To treat the case of quadrics, Hirzebruch surfaces and fake quadrics,
we apply the so-called Kalinin spectral sequence. This spectral sequence can be deduced from the exact
Smith sequence or can be seen as a kind of the stable part of the Borel–Serre spectral sequence (see [11],
for example). Contrary to most traditional spectral sequences, Kalinin spectral sequence is Z-graded on
each page. More precisely, for a manifold M equipped with an involution σ , the Kalinin spectral sequence
is built as follows:

• Page E0 is the chain complex of M with the usual boundary operator as the differential d0.

• In page E1, the terms are the usual homology groups H∗(M,F2) and the differential d1 is the "aver-
aging" operator:

d1 : Hr(M,F2)→Hr(M,F2).

xr 7→ xr + σ∗xr

• In page E2, the terms are H∗(M,F2)σ /Im(1+ σ∗), and the differential

d2 :Hr(M,F2)
σ /Im(1+ σ∗)→Hr+1(M,F2)

σ /Im(1+ σ∗) (5.15)

is described as follows. Starting from xr ∈ Hr(M,F2)σ /Im(1 + σ∗), we select an r-dimensional cycle
ηr representing xr . Then one can choose a chain ηr+1 such that ∂ηr+1 = ηr +σ∗(ηr ). We define d2(xr )
to be the class of ηr+1 + σ∗ηr+1. It is straightforward to check that d2 is well-defined.

• For the differential d3 on the E3-page, we only give its description under the extra assumption that
Hodd(M,F2) = 0 (which is satisfied in the applications). In such a situation we have trivially d2 = 0.
For any even integer r,

d3 : Hr(M,F2)
σ /Im(1+ σ∗)→Hr+2(M,F2)

σ /Im(1+ σ∗) (5.16)

has the following chain description (see [11, P.9]): for xr ∈ Hr(M,F2)σ /Im(1 + σ∗), we choose an r-
dimensional cycle ηr representing xr . By assumption we can find an (r + 1)-dimensional chain ηr+1
and an (r + 2)-dimensional chain ηr+2, such that ∂ηr+2 = ηr+1 + σ∗ηr+1 and ∂ηr+1 = ηr + σ∗ηr , then
we define d3(xr ) as the class of ηr+2 + σ∗ηr+2. One can check that d3 is well-defined in this case.

As a straightforward application, one gets the following obstruction to maximality that we will exploit in
this section:

If one of the differentials dr , r ≥ 1, is non-zero in the Kalinin spectral sequence, then σ is not maximal.

To illustrate the use of this obstruction as well as the computation of differentials in Kalinin spectral
sequence, we give two examples.

6A fake quadric in this paper is always assumed to be of general type. See the precise definition in Section 5.4.
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Example 5.8 (Quadrics). Recall that up to conjugation, P1 admits only two real structures (equivalently real
forms): the standard one z 7→ z giving rise to P1

R as real form, and the antipode z 7→ −1z giving rise to the
conic without real points as real form. Up to isomorphism, there are only two real structures on P1 × P1

with empty real loci ([8]). Namely,

(z1, z2) 7→ (z1,−
1
z2

) and (z1, z2) 7→ (− 1
z1
,− 1
z2

). (5.17)

In either case, the anti-holomorphic involution acts trivially onH2(P1×P1,F2), while the "line generator"
P1×{pt} is not invariant. This leads to the conclusion that, in both cases, the class P1×[pt] ∈H2(P1×P1,F2)
of the latter line generator is sent by the differential in the E3-page of the Kalinin spectral sequence to the
fundamental class of the surface:

d3(P1 × [pt]) = [P1 ×P1].

Indeed, following the chain construction recalled above, we find
- η2 = P1 × {z}, where z is an arbitrary point in P1,
- η3 = P1 × arc where arc is a semi-big-circle connecting z with its antipode −1z ,
- η3 + σ∗η3 = P1 × circle where circle is a big-circle through z and −1z , and finally
- η4 = P1 ×hemisphere, hence d3(P1 × [pt]) = [η4 + σ∗η4] = [P1 ×P1].

Example 5.8 can be generalized to Hirzebruch surfaces as follows:

Example 5.9 (Hirzebruch surfaces). For each integer e > 0, the e-th Hirzebruch surface is a complex surface
S isomorphic to the ruled surface obtained as the projectivization of the rank-2 vector bundle O ⊕O(−e)
over a base curve C � P1. Let π : S → C be the P1-bundle projection. S has a unique irreducible curve Σ

with self-intersection −e, which is the section of π defined by the first summand of O ⊕O(−e). Denote by
F the fiber class of π. Then we have (F2) = 0, (F ·Σ) = 1, and (Σ2) = −e.

Let σ be a real structure on S without real points. Since σ preserves Σ (reversing its orientation) and
the intersection form, σ acts on H2(S,Z) as − id. In particular, σ∗(F) = −F. Therefore σ preserves the
P1-bundle structure, and induces a real structure τ on the base curve C. As π induces an equivariant
isomorphism between Σ and C, τ has no fixed point, i.e. it is the antipode on C. Moreover, as σ has
no fixed points, the intersection form must be even, hence e must be even. In fact, when e > 0 is even,
by Comessatti [8] and Iskovskih [28], there is a unique real structure on S without real points, up to
isomorphism.

The image of the fiber class F under the differential d3 in the Kalinin spectral sequence is the funda-
mental class of S :

d3(F) = [S] (5.18)

Indeed, for any z ∈ C, let Fz � P1 denote the fiber of π over z. As in Example 5.8, let us choose an arbitrary
z ∈ C and represent F by a fiber η2 := Fz. Then η3 := π−1(arc) =

⋃
z∈arcFz satisfies ∂η3 = η2 +σ∗η2, where

arc is a semi-big-circle connecting z with its antipode τ(z). Hence η3 + σ∗η3 = π−1(circle), where circle
is a big-circle through z and τ(z). Finally, η4 = π−1(hemisphere) satisfies ∂η4 = η3 + σ∗η3 and we have
d3(F) = [η4 + σ∗η4] = [S].

To summarize, we have proved the following statement.

Proposition 5.10. Let S be P1 × P1 or a Hirzebruch surface. For any real structure on S without real points,
let F ∈ H2(S,F2) be the fiber-class of a ruling over the conic without real point if S = P1 × P1, and that of the
unique ruling on S , if S is a Hirzebruch surface. Then the image of F under the differential d3 of the third page
of the Kalinin spectral sequence is the fundamental class of S . In particular, d3 , 0.

5.3. Quadrics and Hirzebruch surfaces. Following Example 5.8 and Example 5.9, we prove the
following results.
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Theorem 5.11. Let S be the complex surface P1 ×P1 equipped with a real structure σ without real points. Then
for any positive integer n the nth Hilbert scheme S[n], equipped with the natural real structure, is not maximal.

Proof. We prove that at least one of the differentials d1,d2,d3 in Kalinin’s spectral sequence for the natural
involution on S[n] is not zero. For that, we assume that d1 and d2 are zero and check that d3 , 0.

Since d1 and d2 are zero, d3 is a linear map from H∗(S[n],F2) to H∗+2(S[n],F2). We follow the notation
in Example 5.8. We can assume the real structure on S = P1 × P1 is given by (τ ′ , τ) with τ the antipode
real structure on P1. Choose a point t ∈ P1, and denote by x the class in H2n(S[n],F2) represented by the
cycle Symn(P1 × {t}). Our goal is to check that d3(x) , 0.

Using the chain construction of d3 and proceeding as in the proof of Proposition 5.10, we observe that
d3(x) is represented by the following cycle of dimension 2n+2:

M :=
⋃
t∈P1

Symn(P1 × {t}). (5.19)

In order to show that [M] , 0, we construct a complementary cycle of dimension 2n−2. Pick n−1 distinct
points p1, . . . ,pn−1 in P1 and a point q = (q1,q2) ∈ P1×P1 with q1 , p1, . . . ,pn−1. We let y ∈H2n−2(S[n],F2)
be the class represented by the cycle N formed by w ∈ S[n] with supp(w) consisting of a fixed point q and
variable points (p1, t1), . . . (pn−1, tn−1) with t1, . . . , tn−1 ∈ P1. Clearly, N ∩M consists of the unique length-
n reduced subscheme with support in (q1,q2), (p1,q2), . . . (pn−1,q2) and their intersection is transversal.
Hence, ([N ] · [M]) = 1 ∈ F2, which implies d3(x) = [M] , 0.

Corollary 5.12. Let S be a Hirzebruch surface. Let σ be a real structure on S without real points. Then for any
n ≥ 1, the Hilbert scheme S[n] equipped with the natural real structure is not maximal.

Proof. We use the notation in Example 5.9. Let −e < 0 be the self-intersection number of the exceptional
section, which must be an even number since σ has no fixed points. By [8] (see also [53] and [12, 2.5.2]), the
real structure is actually unique up to isomorphism. By Degtyarev–Kharlamov [12], real rational surfaces
are quasi-simple, hence the R-surface (S,σ ) is real deformation equivalent to the R-surface (P1 ×P1, τ × τ)
where τ is the antipode real strucutre on P1; see [12, Section 4.2, Case 3] for the explicit construction of the
deformation. Therefore, the Hilbert scheme (S[n],σ [n]) is real deformation equivalent to ((P1 ×P1)[n], (τ ×
τ)[n]). Since the latter is not maximal by Theorem 5.11, while maximality being clearly a real deformation
invariant property, we can conclude the non-maximality of σ [n].

5.4. Fake quadrics. Let us understand by a fake quadric a minimal smooth projective surface S of
general type such that q(S) = pg(S) = 0, b2(S) = 2 and K2

S = 8. In particular, each fake quadric has
the same Betti and Hodge numbers as smooth quadrics in P3. For a fake quadric S , its Néron–Severi
lattice N1(S) := H2(S,Z)tf is a unimodular indefinite lattice of rank 2, hence is isometric to either U or
⟨1⟩ + ⟨−1⟩. A fake quadric S is called the odd type (resp. even type) if H2(S,Z)tf as a lattice is odd (resp.
even), i.e. isometric to ⟨1⟩+ ⟨−1⟩ (resp. to U ).

Theorem 5.13. Fake quadrics of odd type with H1(S,F2) = 0 admit neither holomorphic or anti-holomorphic
involution without fixed points. Fake quadrics of even type with H1(S,F2) = 0 do not admit any holomorphic
involution without fixed points.

Proof. Let σ be an involution without fixed points. From the Lefschetz trace formula, it follows that σ
acts on H2(S,Z) by − id. On the other hand, σ has no fixed point implies that (D · σ∗D) = 0 mod 2 for
every D ∈ H2(S,Z). Both together show that S is of even type. The second statement follows from the
observation that holomorphic involutions preserve the class 1

2KS ∈H
2(X,Z) and that its reduction mod 2

is not zero.

Thanks to Theorem 5.13, we can concentrate in real structures on fake quadrics of even type. Recall
that in this case, H2(S,Z)tf � U . Since KS , as well as the first Chern class c1(S), is mapped by the



In search of maximal branes on hyper-Kähler manifolds 19In search of maximal branes on hyper-Kähler manifolds 19

coefficient homomorphism to the Wu class, we have that (D · KS ) ≡ (D2) mod 2 for any D ∈ H2(S,Z).
Hence, KS has even intersection number with any D ∈ H2(S,Z). Thus, 1

2KS is an element H2(S,Z)tf,
whose self-intersection number is 2 (as K2

S = 8). Therefore there exists a basis {H,F} of H2(S,Z) such that
(H2) = (F2) = 0, (F ·H) = 1 and KS = 2H +2F.

Lemma 5.14. Let S be a fake quadric of even type and let σ : S→ S be an anti-holomorphic involution without
fixed point. Then, there exist on S two linear pencils of curves, {At}t∈P1 and {Bt}t∈P1 , satisfying the following
properties: their divisor classes have the same mod 2-reduction as H and F, in particular, (Au ·Bv) = 1 mod 2
for every u,v ∈ P1; both pencils are σ -invariant, and for at least one of them, say for {At}, it holds that
σ (At) = Aτ(t) where τ : P1→ P1 is a real structure without real points.

Proof. We pick inside the interior of the ample cone of S two ample divisors, A′ = xH +yF with odd x and
even y, and B′ = uH +vF with even u and odd v. Then, the divisors A =mA′ and B =mB′ are very ample
for eachm sufficiently big, which we take odd to preserve the property that (A·B) =m2(A′ ·B′) =m2(xv+yu)
is odd. Since PicS = H2(S,Z) and the action of σ on it is a multiplication by −1, we can lift σ : S → S
up to anti-automorphisms cA, cB of the line bundles LA,LB defined by the divisor classes A,B. Then,
the transformation f 7→ cA ◦ f ◦ σ defines a real structure in the projectivization, |A|, of the spaces of
sections of LA; similarly for |B|. Due to Lemma 5.2, at least in one of these spaces, the real structure
constructed is without real points. Indeed, if |A| has a real point, then A is linearly equivalent to a
divisor that is preserved by σ , hence A ∈ Im(π∗); similarly for |B|. However, Lemma 5.2 implies that
dimIm(π∗ : H2(S/σ ,F2) → H2(S,F2)) = dimH2(S,F2)σ − 1 = 1. Since the classes of A and B are F2-
linearly independent, it is impossible that |A| and |B| both admit real points. Finally, it remains to pick a
real line in each of these two projective spaces of sections.

Theorem 5.15. If σ : S → S is an anti-holomorphic involution without fixed point on a fake quadric S of
even type, then for any positive integer n the n-th Hilbert scheme S[n] is not maximal with respect to the induced
involution σ [n].

Proof. The proof follows the same arguments as the proof of Theorem 5.11 given above.
Here, we apply Lemma 5.14 and consider the element x2n of H2n(S[n],F2) represented by the cycle

SymnAt with a chosen point t ∈ P1. Proceeding as in the proof of Proposition 5.10 we observe that d3(x2n)
is represented by the following cycle of dimension 2n+2:

M :=
⋃
t∈P1

SymnAt . (5.20)

Our goal is to show d3(x2n) = [M] , 0.
To construct a complementary cycle N of dimension 2n − 2, we pick a generic point q ∈ At and

choose n − 1 distinct curves Bti , ti ∈ P1, i = 1, . . . ,n − 1 not passing through q. Then we define N to
be the cycle formed by w ∈ S[n] with supp(w) consisting from the chosen point q and variable points
p′1 ∈ Bt1 , . . .p

′
n−1 ∈ Btn−1 . As it follows from Proposition 5.10, N ∩M consists of an odd number of points

(equal to (Au · Bv)n−1) and their intersection is transversal. Hence, ([N ] · [M]) = 1 ∈ F2, which implies
[M] , 0.

5.5. Proof of Theorem 5.1. We are now ready to prove the main theorem of this section, which is
obtained as a recollection of the previous results.

Proof of Theorem 5.1. Assume S is a compact complex surface with H1(S,F2) = 0 and let σ be a holo-
morphic or anti-holomorphic involution on S without fixed points. By Theorem 5.4 we know that if σ is
holomorphic, or σ is anti-holomorphic and b2(S) , 2, then σ acts non-trivially on H2(S,F2). In partic-
ular, by Corollary 5.5 the induced involution on its Hilbert scheme of points is not maximal. The case
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where σ is anti-holomorphic and b2(S) = 2 remains to be treated. From Remark 5.7, namely the Enriques–
Kodaira classification with the fact that the blow-up at a point of a fake projective plane does not admit
fixed-point-free real structures, it follows that we are left to consider only smooth quadrics, fake quadrics
and Hirzebruch surfaces. An anti-holomorphic involution without fixed points (i.e. real structure without
real points) on a quadric induces a non-maximal involution on the Hilbert schemes of points by virtue
of Theorem 5.11, which, by real deformation, leads to the same result for Hirzebruch surfaces as stated
in Corollary 5.12. It remains to treat the case of fake quadrics. Fake quadrics of odd type do not admit
fixed-point-free anti-holomorphic involutions by Theorem 5.13. Fake quadrics of even type might admit
anti-holomorphic involutions of without fixed points, but they induce involutions that are not maximal on
the Hilbert schemes of points by Theorem 5.15.

6. Natural involutions on Hilbert schemes of points on surfaces

In this section, S is a smooth projective complex surface. We assume that

H1(S,F2) = 0 (6.1)

Remark 6.1. Note that the condition (6.1) is equivalent to requiring that b1(S) = 0 and H ∗(S,Z) is 2-torsion-
free. By Göttsche [20] and Totaro [55], this also implies that S[n] has vanishing odd Betti numbers and
2-torsion-free integral cohomology. In the sequel, since all cohomology groups are 2-torsion-free and torsion
elements of odd order are irrelevant, we ignore the torsion in cohomology groups, and, when it does not lead to a
confusion, we drop /tors from the notation and denote H ∗(−,Z)/tors by H ∗(−,Z).

A holomorphic (resp. anti-holomorphic) involution σ on S naturally induces a holomorphic (resp. anti-
holomorphic) involution on S[n]. The goal of this section is to relate the maximality of this induced
involution on S[n] to conditions on the pair (S,σ ).

6.1. Natural anti-holomorphic involutions on Hilbert schemes. The following theorem com-
pletes Fu [17, Theorem 8.1] to an if-and-only-if result and generalizes Kharlamov–Răsdeaconu [32, Theorem
1.1, Theorem 1.2] to all dimensions. Even for n = 2, our proof is different ([32] studies in much more details
the fixed locus in the n = 2 case).

Theorem 6.2. Let n ≥ 2. Let S be a smooth projective R-surface. Assume that H1(S,F2) = 0. Then the
punctual Hilbert scheme S[n] equipped with the natural real structure is maximal if and only if S is maximal
with connected real locus, or equivalently, maximal with the real structure acting as − id on H2(S,Z).

Proof. First, by [17, Proposition 4.4], for a maximal smooth projective surface S with H1(S,F2) = 0, the
connectedness of S(R) is equivalent to H2(S,Z)σ = 0, which in its turn is equivalent to the condition that
σ acts as − id on H2(S,Z). The "if" part of the theorem is proven in Fu [17, Theorem 8.1]. For the "only if"
part, let σ denote both the associated anti-holomorphic involutions on S and on S[n]. Let G be the cyclic
group of order 2 generated by σ .

Suppose that the involution is maximal on S[n]. Let us start by showing that S is maximal. Thanks to
Theorem 5.1, we may assume that S(R) , ∅. By Proposition 2.1, in order to prove the maximality of (S,σ ), it
is sufficient to show that for any i, the natural map H i

G(S,F2)→H i(S,F2) is surjective. For i = 0,1,3, it is
clear from the assumption; for i = 4, it follows from the existence of fixed/real points. For i = 2, note that,
in accord with Remark 3.2, the universal subscheme S[1,n] ⊂ S × S[n] induces a G-equivariant embedding
with 2-torsion-free quotient:

1−(n−1) : H
2(S,Z) ↪→H2(S[n],Z). (6.2)

The maximality of S[n] implies that the Comessatti characteristic of H2(S[n],Z) is zero. By Lemma 2.6, the
Comessatti characteristic of H2(S,Z) is also zero. By Lemma 2.4, G acts trivially on H2(S,F2). Now the
Leray–Serre spectral sequence (2.1), together with the vanishing of H1(S,F2), yields an exact sequence

H2
G(S,F2)→H2(S,F2)

G→H3(G,F2)→H3
G(S,F2) (6.3)
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The last map is split injective since a real point on S provides a section of SG→ BG. Hence H2
G(S,F2)→

H2(S,F2)G = H2(S,F2) is surjective. We finished proving that H ∗G(S,F2)→ H ∗(S,F2) is surjective, hence
S is maximal.

For the connectedness of the real locus, let us assume that S(R) is not connected, and show that S[n] is
not maximal. By [17, Proposition 4.4], the non-connectedness of S(R) implies that H2(S,Z)σ , 0. Choose a
primitive element α ∈H2(S,Z)σ , and put

v := 1−(n−2)p−2(α)|0⟩. (6.4)

By definition of the Nakajima and Li–Qin–Wang operators (see Section 3.1), v is the image of α via the
following composition of correspondences:

H2(S,Z)
[E]∗−−−→H4(S[2],Z)

[S [2,n]]∗−−−−−−→H4(S[n],Z), (6.5)

where E is the exceptional divisor in S[2] with E → S the natural P1-bundle map, S[2,n] is the incidence
subscheme parameterizing (ξ,ξ ′) ∈ S[2] × S[n] such that ξ ⊂ ξ ′ . All the varieties appearing here have a
natural real structure inherited from that of S . Since E is of odd dimension, the natural real structure is
orientation reversing, hence the class [E] is σ -anti-invariant; since S[2,n] is of even dimension, the class
[S[2,n]] is σ -invariant. Therefore, v is σ -anti-invariant.

Similarly, consider
u := 1−(n−2)p−1(α)p−1(α)|0⟩, (6.6)

which is the image of α ⊗α by the following composition of correspondences:

H2(S,Z)⊗H2(S,Z) ×−→H4(S × S,Z)
[Bl∆(S×S)]∗−−−−−−−−−−→H4(S[2],Z)

[S [2,n]]∗−−−−−−→H4(S[n],Z), (6.7)

where the first map is the exterior product, the second map is the correspondence by Bl∆(S × S), whose
map to S[2] is the quotient by the involution swapping two factors. Since all varieties appearing here have
natural real structures and are of even dimensions, we see that u is σ -invariant.

As a result, the following element also belonging to H4(S[n],Z) (see Remark 3.3)

w := 1−(n−2)m1,1(α)|0⟩ =
1
2
(u − v) (6.8)

satisfies that σ (w) = 1
2 (u + v) = w+ v.

By Theorem 3.1, or more explicitly Remark 3.2, by extending α into a basis of H2(S,Z), we see that v
and w are part of an integral basis of H4(S[n],Z). The G-action on the submodule Zw ⊕Zv has matrix[
1 1
0 −1

]
hence has Comessatti characteristic 1. By Lemma 2.6,

λ(H4(S[n],Z)) ≥ λ(Zv ⊕Zw) = 1. (6.9)

In particular, the natural real structure on S[n] is not maximal.

6.2. Natural holomorphic involutions on Hilbert schemes. We achieve an analogous criterion for
the maximality of the naturally induced holomorphic involutions on Hilbert schemes of points of regular
surfaces.

Theorem 6.3. Let n ≥ 2. Let S be a smooth projective surface and σ a holomorphic involution. Assume that
H1(S,F2) = 0. Then the induced involution on S[n] is maximal if and only if σ is maximal and acts on H2(S,Z)
trivially.
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Proof. We first prove the if part. Assume that the G-action on H2(S,Z) is trivial, we need to show the
surjectivity of the natural map

H ∗G(S
[n],F2)→H ∗(S[n],F2). (6.10)

By Remark 6.1, H ∗(S[n],Z) is 2-torsion-free and by Theorem 3.4, we have the following set of generators of
H ∗(S[n],F2):

1. the Chern classes cj(O
[n]
S ) ∈H2j(S[n],F2), for 1 ≤ j ≤ n;

2. the classes 1−(n−j)m(1j )(α)|0⟩, for 1 ≤ j ≤ n and α ∈H2(S,Z);

3. the classes 1−(n−j)p−j(pt)|0⟩, for 1 ≤ j ≤ n.

Let us show that these generators are in the image of (6.10):

For (i), since O[n]
S is a G-equivariant vector bundle, we can consider the G-equivariant Chern class cGj (O

[n]
S ) ∈

H
2j
G (S[n],F2). Its image in H2j(S[n],F2) is cj(O

[n]
S ) by naturality.

For (ii), since H1(S,Z) = 0, the Leray–Serre spectral sequence gives rise to an exact sequence

H2
G(S,Z)→H2(S,Z)G→H3(G,Z)→H3

G(S,Z). (6.11)

Since Fix(σ ) , ∅, the natural map SG→ BG has a section. Therefore the last map in (6.11) is split injective.
It yields that the following map is surjective

H2
G(S,Z)→H2(S,Z)G =H2(S,Z) (6.12)

where the last equality is by our assumption. Since H2
G(−,Z) classifies G-equivariant C∞ complex line

bundles (via the equivariant first Chern class map), we conclude that for any α ∈ H2(S,Z), there exists a
G-equivariant C∞ complex line bundle Lα on S with cG1 (Lα) = α. By [35, Proof of Lemma 3.5], we have :

cj(p1,!(p
∗
2(Lα))) =m(1j )(α)|0⟩ ∈H ∗(S[j],F2),

where p1 and p2 are natural maps from the universal subscheme S[1,n] ⊂ S[n]×S to S[n] and S respectively.
As p1 and p2 are G-equivariant maps, p1,!(p∗2(Lα)) can be viewed as an element in the G-equivariant
topological KU-theory of S[n]. Therefore, the equivariant Chern class cGj (p1,!(p

∗
2(Lα))) ∈ H

∗
G(S

[j],F2) is
mapped to m(1j )(α)|0⟩ via the left vertical arrow in the following commutativity diagram:

H ∗G(S
[j],F2)

[S [j,n]]∗//

��

H ∗G(S
[n],F2)

��
H ∗(S[j],F2)

[S [j,n]]∗ // H ∗(S[n],F2)

(6.13)

Therefore 1−(n−j)m(1j )(α)|0⟩ = [S[j,n]]∗m(1j )(α)|0⟩ is in the image of the right vertical arrow.
For (iii), we have a commutative diagram

H ∗G(S,F2)
[S [1,j]]∗//

����

H ∗G(S
[j],F2)

[S [j,n]]∗//

��

H ∗G(S
[n],F2)

��
H ∗(S,F2)

[S [1,j]]∗// H ∗(S[j],F2)
[S [j,n]]∗ // H ∗(S[n],F2)

(6.14)

where the left vertical arrow is surjective by maximality assumption. Since 1−(n−j)p−j(pt)|0⟩ is the image of
pt ∈ H4(S,F2) under the composition of the bottom maps, and by the commutativity of the diagram, it is
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in the image of the right vertical arrow.
We proved that all the generators in (i), (ii) and (iii) are in the image of (6.10), hence (6.10) is surjective. By
Proposition 2.1, the involution on S[n] induced by σ is maximal.

We now show the only if part. The proof is similar to that of Theorem 6.2, let us only emphasize the
differences. Assume the natural involution on S[n] induced by σ is maximal. By Theorem 5.1 (or rather
Corollary 5.5), σ admits fixed points, i.e. Sσ , ∅. The maximality of σ is proven by exactly the same
argument as in Theorem 6.2. In particular,

H2(S,Z) =H2(S,Z)σ ⊕H2(S,Z)σ−. (6.15)

Assume that the action of σ on H2(S,Z) is not trivial. Choose a primitive anti-invariant element α ∈
H2(S,Z)σ−, and extend it up to a basis of H2(S,Z). Then consider the following element

v := 1−(n−2)p−2(α)|0⟩. (6.16)

By definition of the Nakajima and Li–Qin–Wang operators (recalled in Section 3.1), v is the image of α via
the following composition of correspondences induced by G-invariant cycles

H2(S,Z)
[E]∗−−−→H4(S[2],Z)

[S [2,n]]∗−−−−−−→H4(S[n],Z), (6.17)

Therefore, v is σ -anti-invariant.
Similarly, consider

u := 1−(n−2)p−1(α)p−1(α)|0⟩, (6.18)

which is the image of α⊗α by the following composition of correspondences induced by G-invariant cycles

H2(S,Z)⊗H2(S,Z) ×−→H4(S × S,Z)
[Bl∆(S×S)]∗−−−−−−−−−−→H4(S[2],Z)

[S [2,n]]∗−−−−−−→H4(S[n],Z). (6.19)

We see that u is σ -invariant.
As a result, the following element also belonging to H4(S[n],Z) (see Remark 3.3)

w := 1−(n−2)m1,1(α)|0⟩ =
1
2
(u − v) (6.20)

satisfies that σ (w) = 1
2 (u + v) = w+ v. Then we conclude the non-maximality as in Theorem 6.2.

6.3. Examples. In this subsection, we apply Theorem 6.2 and Theorem 6.3 to deduce the non-existence
of maximal involutions on Hilbert schemes of certain surfaces, and also provide examples of maximal
involutions on Hilbert schemes of some surfaces.

Corollary 6.4 (Hilbert schemes of projective plane). Let σ be a holomorphic or anti-holomorphic involution
on P2. If σ is maximal, then the naturally induced involution on (P2)[n] is maximal for any integer n ≥ 1.

Proof. Let σ be an involution of P2. If σ is holomorphic, then it sends a projective line to a projective
line preserving the complex orientation, while if it is anti-holomorphic, it sends a projective line to a
projective line but with the complex orientation reversed. Since the class of a projective line is a generator
of H2(P2,Z), the result follows from Theorem 6.3 and Theorem 6.2, respectively.

Remark 6.5. Corollary 6.4 can be applied to produce examples of maximal holomorphic involutions and
anti-holomorphic involutions on (P2)[n].

(i) The holomorphic involution [T0 : T1 : T2] 7→ [−T0 : T1 : T2] on P2 is maximal. Indeed, the fixed locus
is {[1 : 0 : 0]}∪(T0 = 0), the union of a point and a projective line. By Corollary 6.4, we get a maximal
holomorphic involution on (P2)[n].
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(ii) The natural real structure [T0 : T1 : T2] 7→ [T0 : T1 : T2] on P2 is maximal. Indeed, the real locus is
RP2. By Corollary 6.4, the natural real structure on (P2)[n] is maximal.

In fact, it is easy to see, and well known, that those are the only examples of (anti-)holomorphic involutions
on P2 up to equivalence: any holomorphic involution of P2 is projectively equivalent to the reflection shown
in (i), and any real structure on P2 is conjugate to the natural one shown in (ii).

Let us turn to some constructions of non-maximal involutions. We first point out the following appli-
cation to hyper-Kähler geometry. It will be generalized in Section 7 (see Theorem 1.2, Corollary 1.3 and
Theorem 1.4).

Corollary 6.6 (Hilbert schemes of K3). Let σ be a (non-trivial) holomorphic or anti-holomorphic involution on
a K3 surface S . Then for any n ≥ 2, the induced involution on S[n] is not maximal.

Proof. Assume for contradiction that the induced involution on S[n] is maximal.
We first reduce the problem to the projective case. If σ is holomorphic anti-symplectic, then S is

projective (see [46, Theorem 0.1]). If σ is holomorphic symplectic or anti-holomorphic, then S might not be
projective but it is known that it can be deformed together with the involution to a projective K3 surface. For
holomorphic symplectic involutions, it follows from the connectedness of their moduli space (obtained by
Nikulin in loc. cit. and existence of such involutions on, say, the Fermat quartic in P3). For anti-holomorphic
involutions, their moduli space is disconnected, but a similar approach can be applied. Namely, by [11,
Theorem 13.8.1], the deformation type of a real K3 surface depends only on the isomorphism class of the
lattice H2(S,Z) with an involution. Thus, it is sufficient to notice that the list of these isomorphism classes
(summarized, for example, in [11, Theorem 8.4.2]) coincides with Nikulin’s list [47] for those classes that are
realized by real quartic K3 surfaces in P3 (or to notice that, as it follows from [52], the number of classes
realized by real K3 surfaces obtained as a double plane branched in a real curve of degree 6 is not smaller).
Thus, as maximality is a deformation-invariant notion, we can assume S to be projective in all the cases,
and can apply Theorem 6.3 and Theorem 6.2.

If σ is holomorphic, Theorem 6.3 implies that σ must act trivially on H2(S,Z). But then, by [50], σ is
the identity.

If σ is anti-holomorphic, then by Theorem 6.2, the assumption that S[n] is maximal implies that S
is maximal with connected real locus, or equivalently, by [17, Proposition 4.4], the whole H2(S,Z) is σ -
anti-invariant. Now we have two ways to conclude: either use the fact that any maximal K3 surface has
disconnected real locus by [11, Theorem 8.4.1] (see [32, Lemma 5.5] for a generalization), or argue that
by Proposition 4.1, up to changing the complex structure on S by a hyper-Kähler rotation, σ becomes a
holomorphic anti-symplectic involution, hence it must preserve the Kähler cone and cannot be − id on
H2(S,R).

In fact, the statement for anti-holomorphic involutions in Corollary 6.6 holds more generally for surfaces
with non-vanishing geometric genus. See the following generalization of [32, Corollary 1.3].

Corollary 6.7. Let S be a smooth projective R-surface with H2,0(S) , 0 and H1(S,F2) = 0. Then for any
n ≥ 2, the n-th Hilbert scheme S[n], equipped with the naturally induced real structure, is not maximal.

Proof. Since H2,0(S) is mapped to H0,2(S) by any anti-holomorphic involution, the induced action on
H2(S,C) cannot be − id. Applying Theorem 6.2, we see that the induced anti-holomorphic involution on
the n-th Hilbert scheme is not maximal for any n ≥ 2.

To get more examples, we remark that the conditions in Theorem 6.2 and Theorem 6.3 behave well
under birational transformations:

Proposition 6.8 (Blow-ups). Let S be a smooth projective surface equipped with a holomorphic (resp. anti-
holomorphic) involution σ . Let P ∈ S be a fixed point of σ . Let σ̃ be the holomoprhic (resp. anti-holomorphic)
involution on BlP S lifting σ . Then
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1. σ is maximal if and only if σ̃ is maximal;

2. σ acts as id (resp. − id) on H2(S,Z) if and only if the same holds for σ̃ .

Proof. (i). If σ is holomorphic and P belongs to a fixed curve C, then the fixed locus of σ̃ around the
exceptional divisor E is the union of the strict transform of C (which is isomorphic to C) and another point
on E. Therefore, the total F2-Betti numbers of both the surface and the fixed locus increase by 1. Hence
the maximality of σ is equivalent to that of σ̃ .

If σ is holomorphic and P is an isolated fixed point, then the fixed locus of σ̃ around E is E itself.
Therefore, the total F2-Betti numbers of both the surface and the fixed locus increase by 1, and we have
again the equivalence between the maximalities of σ and σ̃ .

If σ is anti-holomorphic, then the fixed locus of σ is a 2-dimensional manifold M, while the fixed locus
of σ̃ is M#RP2, where # denotes the connected sum. Therefore, the total F2-Betti number of the fixed
locus increases by 1, and the maximalities of σ and σ̃ are equivalent.

For (ii), it is enough to notice that the lifted involution preserves (resp. reverses) the orientation of the
exceptional divisor in the holomorphic (resp. anti-holomorphic) case.

Remark 6.9. Thanks to Proposition 6.8, starting from a smooth projective surface S with H1(S,F2) = 0
together with a maximal holomorphic or anti-holomorphic involution σ , after a successive blow-ups along
fixed points of (lifted) involutions, we get a new surface S ′ equipped with involution σ ′ , then the induced
involution on the n-th Hilbert schemes of points on S ′ is maximal for n ≥ 2 if and only if the same holds
for the Hilbert schemes of S . In this way, from Corollary 6.4, Corollary 6.6 and Corollary 6.7, we can
produce many maximal and non-maximal involutions on Hilbert schemes of surfaces. This generalizes [32,
Corollary 1.4] to arbitrarily higher dimensions.

7. Nonexistence of maximal branes on K3[n]-type hyper-Kähler manifolds

In this section, we focus on the existence problem of maximal (holomorphic as well as anti-holomorphic)
involutions on compact hyper-Kähler manifolds. In contrast to Corollary 6.6, we deal more generally
with hyper-Kähler manifolds that are only deformation equivalent to Hilbert schemes of K3 surfaces, and
involutions beyond the naturally induced ones. The main results have been stated in Introduction as
Theorem 1.2, Corollary 1.3 and Theorem 1.4.

7.1. Holomorphic symplectic involutions. Here we treat (BBB)-branes and deduce Theorem 1.4 from
results obtained in Section 6.

Proof of Theorem 1.4. Thanks to [30, Theorem 3.2], for any symplectic involution τ on a hyper-Kähler man-
ifold X of K3[n] type, the pair (X,τ) is deformation equivalent to a pair (S[n],σ [n]) for a K3 surface S and
natural involution σ [n] induced by a symplectic involution σ on S . As a consequence, the fixed locus of τ
is diffeomorphic to the fixed locus of σ [n], which is never maximal by Corollary 6.6, unless the involution
is trivial.

7.2. Anti-symplectic involutions. The goal of this section is to prove Theorem 1.2.
Let X be a compact hyper-Kähler manifold of K3[n]-type with n ≥ 2. Assume for contradiction that σ

is a maximal holomorphic anti-symplectic involution of X. Denote by H ∗(X,Z)σ the subgroup of σ -invariant
elements and by H ∗(X,Z)σ− the subgroup of σ -anti-invariant elements. By Proposition 2.1 and Lemma 2.4,
we have a direct sum decomposition of cohomology group for each degree k:

Hk(X,Z) =Hk(X,Z)σ ⊕Hk(X,Z)σ−. (7.1)

In particular, equipping the second cohomology with the Beauville–Bogomolov–Fujiki quadratic form [2],
we have an orthogonal direct sum decomposition of integral lattices:

H2(X,Z) =H2(X,Z)σ ⊕H2(X,Z)σ−. (7.2)
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In the rest of this section, we always assume (7.2).
Denote by L := H2(X,Z), which is isometric to U⊕3 ⊕ E8(−1)⊕2 ⊕ ⟨−2n + 2⟩. We have the following

classification of its eigen-sub-lattices:

Lemma 7.1. Under the assumption (7.2), there are only four cases:

Case 1. Lσ is unimodular and ALσ− � Z/(2n− 2)Z. In this case, we have the following classification:Lσ �ULσ− �U⊕2 ⊕E8(−1)⊕2 ⊕ ⟨−2n+2⟩
or

Lσ �U ⊕E8(−1)Lσ− �U⊕2 ⊕E8(−1)⊕ ⟨−2n+2⟩
or

Lσ �U ⊕E8(−1)⊕2Lσ− �U⊕2 ⊕ ⟨−2n+2⟩.

Case 2. Lσ− is unimodular and ALσ � Z/(2n− 2)Z. In this case, we have the following classification:Lσ �U ⊕ ⟨−2n+2⟩
Lσ− �U⊕2 ⊕E8(−1)⊕2

or

Lσ �U ⊕E8(−1)⊕ ⟨−2n+2⟩
Lσ− �U⊕2 ⊕E8(−1)

or

Lσ �U ⊕E8(−1)⊕2 ⊕ ⟨−2n+2⟩
Lσ− �U⊕2.

Case 3. ALσ � Z/2Z and ALσ− � Z/(n− 1)Z. This case can only happen when n ≥ 4 is an even integer.

Case 4. ALσ � Z/(n− 1)Z and ALσ− � Z/2Z. This case can only happen when n ≥ 4 is an even integer.

Proof. Most of the statements can be deduced from [6, Proposition 2.8]. As our case is simplified thanks
to the assumption (7.2) (which is amount to the condition a = 0 in loc. cit.), we give a direct proof for
convenience of the reader.

Since σ is holomorphic, it must preserve some Kähler class, hence the signature of Lσ is (≥ 1,−).
Since σ is anti-symplectic, by the Hodge–Riemann bilinear relations applied to holomorphic 2-forms, the
signature of Lσ− is (≥ 2,−). As a result,

sgn(Lσ ) = (1,−) and sgn(Lσ−) = (2,−). (7.3)

We denote by σ the action of σ on the discriminant group AL � Z/(2n − 2)Z. By Markman [41, Lemma
9.2],

σ = ± id .

Hence σ or −σ ∈ Õ(L) := {φ ∈O(L) | φ̄ = id ∈O(AL)}.
We embed (L,σ ) if σ ∈ Õ(L), resp. (L,−σ ) if −σ ∈ Õ(L), into (̃L := U⊕4 ⊕E8(−1)⊕2, σ̃ ) with σ̃ = id on

L⊥ ⊂ L̃ in such a way that L̃σ̃− = Lσ− if σ ∈ Õ(L) and L̃σ̃− = Lσ otherwise. This is achieved by the gluing
of the lattices L and ⟨2n − 2⟩ up to an even unimodular lattice (cf. [47, Theorem 1.6.1, Corollary 1.5.2]).
The result of the gluing is isomorphic to U⊕4 ⊕ E8(−1)⊕2 as it follows from the classification of indefinite
unimodular lattices by rank, signature and parity (see, e.g., [43, Chapter II]). Since L̃ is unimodular and
even, we conclude that AL̃σ̃− , and hence ALσ− if σ ∈ Õ(L) or ALσ otherwise, is isomorphic to (Z/2Z)⊕m
for some m ∈ Z≥0. In addition, by assumption (7.2) we have L = Lσ ⊕ Lσ−, hence ALσ ⊕ALσ− � AL, where
AL � Z/(2n− 2)Z. All these implies the following:

• If n = 2 or n ≥ 3 is odd, taking into account that Z/(2n−2)Z does not admit a non-trivial direct sum
decomposition with a summand of the form (Z/2Z)⊕m, we obtain that ALσ or ALσ− is trivial, i.e. Lσ

or Lσ− is unimodular. So we are in Case 1 or Case 2 for such n.

• If n ≥ 4 is even, then the only non-trivial direct sum decomposition of Z/(2n−2)Z with one summand
being 2-elementary is the decomposition Z/(2n− 2)Z � Z/(n− 1)Z⊕Z/2Z. Hence, for such n, if we
are not in Case 1 or Case 2 , then we are in Case 3 or Case 4.

It remains to classify the lattices in Case 1 and Case 2:
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Case 1. If Lσ is unimodular, since it is even and has index (1,−), by classification of such lattices (see [43,
Chapter II]), it is determined by its rank and signature, and the signature is divisible by 8. Hence

Lσ �U ⊕E8(−1)⊕i

with i = 0,1 or 2. Consequently, Lσ− is even, of index (2,−), with length ℓ(ALσ−) = ℓ(Z/(2n−2)Z) = 1
and rank 5,13 or 21. By Nikulin [47, Corollary 1.13.3], Lσ− is determined by its rank, index and
discriminant form. Then the classification follows.

Case 2. Similarly, if Lσ− is unimodular, again since it is even, its signature is divisible by 8. The only
possibilities are sgn(Lσ−) = (2,2), (2,10) or (2,18); in particular it is indefinite. Therefore

Lσ− �U⊕2 ⊕E8(−1)⊕i

with i = 0,1 or 2. Hence Lσ is even, indefinite, with length 1, and with rank at least 3. Applying
Nikulin [47, Corollary 1.13.3], we conclude the classification.

Before proceeding further with the proof, we recall the following generalization of Eichler’s criterion
(see [13, §10] for the classical version). For a vector v in a lattice Λ, we denote by v∗ the class v

div(v) in the
discriminant group AΛ, where div(v) is the divisibility of v.

Theorem 7.2 ([21, Proposition 3.3]). Let Λ be an even lattice containing at least two orthogonal copies of
hyperbolic planes. Let Õ+(Λ) be the group of isometries of Λ of trivial spinor norm that act trivially on the
discriminant group AΛ. Then the Õ+(Λ)-orbit of a primitive vector v ∈ Λ is determined by the integer v2 and
the class v∗ in the discriminant group AΛ.

Lemma 7.3. Assume Lσ or Lσ− to be unimodular (which is always the case when n ≥ 3 is an odd integer or
n = 2), and assume that the class v∗ generates the discriminant group AL for a primitive vector v ∈ L with
v2 = 2 − 2n and div(v) = 2n − 2. Then there exists a primitive element ϵ ∈ Lσ−, or ϵ ∈ Lσ respectively, with
ϵ2 = v2 and div(ϵ) = div(v) such that ϵ∗ = v∗ in AL.

Proof. Let us denote by L′ the sublattice Lσ or Lσ−, depending on Lσ− or Lσ is unimodular. From the
classification in Lemma 7.1, it is clear that there exists a primitive element x ∈ L′ with x2 = 2 − 2n and
div(x) = 2n − 2 such that AL is generated by x∗ := x

div(x) . On the other hand, by hypothesis AL is also
generated by v∗, hence there exists an integer k that is coprime to 2n − 2, such that v∗ = kx∗ in AL.
Therefore, we have the following equality in Q/2Z, since the lattice L is even:

(v∗)2 =
−1

2n− 2
=
−k2

2n− 2
= (kx∗)2.

This readily implies that k2−1
2n−2 ∈ 2Z. Again by the classification in Lemma 7.1, there is always a copy of the

hyperbolic plane U in x⊥L′ as a direct summand. As the hyperbolic plane quadratic form represents all
even integers, there exists w ∈ L′ such that w ⊥ x and w2 = k2−1

2n−2 .
We claim that the following element in L′ satisfies the desired properties:

ϵ := kx+ (2n− 2)w.

Indeed, since L′ = Z · x ⊕ x⊥L′ and k is coprime to 2n − 2 and x is primitive, ϵ is a primitive vector
with div(ϵ) = 2n − 2. It is also straightforward to compute that ϵ2 = 2 − 2n. Finally, we observe that
ϵ∗ = kx∗ +w = kx∗ = v∗ in AL.
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Lemma 7.4. Notation is as above, in particular L = H2(X,Z). If Lσ or Lσ− is unimodular, then there exists a
graded ring isomorphism

φ : H ∗(X,Z) �−→H ∗(S[n],Z), (7.4)

such that S is a (any) K3 surface, and there exists a primitive element ϵ ∈ H2(X,Z)σ−, or ϵ ∈ H2(X,Z)σ
respectively, with ϵ2 = 2−2n and divisibility 2n−2 which is sent to δ := 1

2 [E], half of the class of the exceptional
divisor in S[n]. Moreover, φ can be chosen to be a parallel transport operator.

Proof. For any K3 surface S , we have that X is deformation equivalent to S[n] and hence there is a parallel
transport operator inducing an isometry f : H2(X,Z) �H2(S[n],Z). Consider the class δ ∈H2(S[n],Z) cor-
responding to 1

2 [E] with E the exceptional divisor of S[n]. The element f −1(δ)∗ generates the discriminant
group of L = H2(X,Z), hence by Lemma 7.3 there exists an element ϵ ∈ Lσ−, or ϵ ∈ Lσ respectively, with
the same square and divisibility as f −1(δ) and such that ϵ∗ = f −1(δ)∗ in AH2(X,Z).

Therefore, by Theorem 7.2, we can find an orientation-preserving isometry acting trivially on the
discriminant group g ∈ Õ+(L) such that g(ϵ) = f −1(δ). Markman proved that Mon2(X) �W (H2(X,Z)) :=
{h ∈ O+(H2(X,Z)) | h̄ = ± id ∈ O(AH2(X,Z))} if X is of K3[n]-type, see for example [41]. This means
that the isometry g is induced by parallel transport and hence it is also the case of the composition
φ := f ◦ g : H2(X,Z)→ H2(S[n],Z), which is then the restriction of a ring isomorphism that we call again

φ : H ∗(X,Z) �−→H ∗(S[n],Z).

Proof of Theorem 1.2. Keep the notation as before. We separate the proof according to the four cases in
Lemma 7.1, firstly in Case 1 or 2, then in Case 3 or 4.

In Case 1 or Case 2 of Lemma 7.1: then Lσ or Lσ− is unimodular. By Lemma 7.3 and Lemma 7.4, we
can find a graded ring isomorphism φ : H ∗(X,Z) �H ∗(S[n],Z) sending ϵ to δ. We set

ι := φ ◦ σ ◦φ−1 ∈ Aut(H ∗(S[n],Z))

We will still denote by σ and ι their restrictions to H2(−,Z) when it does not lead to confusion. Notice
that ι : H2(S[n],Z)→ H2(S[n],Z) is an orientation-preserving isometry acting by ± id on the discriminant
group, i.e. ι ∈W (H2(S[n],Z)) �Mon2(S[n]) �Mon(S[n]).

The action of σ on H ∗(X,F2) is trivial if and only if the action of ι on H ∗(S[n],F2) is. Hence we are
reduced to the study of the monodromy involution ι on the cohomology of S[n]. The goal is to show that
Comessatti characteristic of ι on H4(S[n],Z) is at least 1.

From the classification in Case 1 and Case 2 in Lemma 7.1, we observe that ϵ⊥ ∩H2(X,Z)σ , 0 or
respectively ϵ⊥ ∩ H2(X,Z)σ− , 0, so that we are able to pick a non-zero primitive element α ∈ δ⊥ ∩
H2(S[n],Z)ι− when ι(δ) = δ (Case 2), or α ∈ δ⊥ ∩H2(S[n],Z)ι when ι(δ) = −δ (Case 1). Extend α to a basis
of H2(S,Z). Consider the basis element

v := 1−(n−2)p−2(α)|0⟩,

from Theorem 3.1 and the element

u := 1−(n−2)p−1(α)p−1(α)|0⟩.

Since ι is monodromy operator, one can apply Corollary 4.7 and Lemma 4.9 to perform the following
computation:

• if ι(δ) = δ, then denoting again by ι its restriction to H2(S,Z), we have

ι(u) = ρn(ι,1)(1−(n−2)p−1(α)p−1(α)|0⟩)
= 1−(n−2)p−1(ι(α))p−1(ι(α))|0⟩
= 1−(n−2)p−1(−α)p−1(−α)|0⟩
= u,
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and

ι(v) = ρn(ι,1)(1−(n−2)p−2(α)|0⟩)
= 1−(n−2)p−2(ι(α))|0⟩
= 1−(n−2)p−2(−α)|0⟩
= −v.

• if ι(δ) = −δ, then τ(ι) = −1. Denoting again by ι its restriction to H2(S,Z), we have (note that the
degree operator D is id since we are using its action on degree-4 cohomology):

ι(u) = ρn(ι,−1)(1−(n−2)p−1(α)p−1(α)|0⟩)
= ρn(−ι,1)(1−(n−2)p−1(α)p−1(α)|0⟩)
= 1−(n−2)p−1(−ι(α))p−1(−ι(α))|0⟩
= 1−(n−2)p−1(−α)p−1(−α)|0⟩
= u,

and

ι(v) = ρn(ι,−1)(1−(n−2)p−2(α)|0⟩)
= ρn(−ι,1)(1−(n−2)p−2(α)|0⟩)
= 1−(n−2)p−2(−ι(α))|0⟩
= 1−(n−2)p−2(−α)|0⟩
= −v.

We see that in any case, we have ι(u) = u and ι(v) = −v.
As a result, the following element (see Remark 3.3)

w := 1−(n−2)m1,1(α)|0⟩ =
1
2
(u − v). (7.5)

satisfies that ι(w) = 1
2 (u + v) = w+ v.

By Theorem 3.1, or more explicitly Remark 3.2, v and w are part of an integral basis of H4(S[n],Z).

The G-action on Zw⊕Zv has matrix

[
1 1
0 −1

]
, hence has Comessatti characteristic 1. By Lemma 2.6,

λ(H4(S[n],Z), ι) ≥ λ(Zv ⊕Zw,ι) = 1. (7.6)

The ring isomorphism φ : H ∗(X,Z) �H ∗(S[n],Z) is equivariant by construction. Therefore λ(H4(X,Z),σ ) ≥
1. In particular, the involution σ is not maximal, which is a contradiction. The theorem is proved in Case
1 or 2.

In Case 3 of Lemma 7.1 (this can only happen when n ≥ 4 is an even integer): then ALσ � Z/2Z and
ALσ− � Z/(n− 1)Z, hence τ(σ ) = −1. We will use notations as in Section 4.4. In particular,

Q(X,Z) :=H4(X,Z)/ Sym2H2(X,Z),

whose most important properties are summarized in Theorem 4.2. We set L =H2(X,Z) and

γ :=
1
2
c2(X) ∈Q(X,Z) and L′ := γ⊥ = c2(X)

⊥ ⊂Q(X,Z). (7.7)
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L and L′ are equipped with induced involutions, both denoted by σ (to be precise, σ2 on L and the

restriction of σQ on L′). By Theorem 4.2, there is a Hodge isometry e : L
�−→ L′ such that for any α ∈ L,

σ (e(α)) = −e(σ (α)). (7.8)

Let us choose one U -summand in Q(X,Z) � E8(−1)⊕2 ⊕ U⊕4 and pick in it two orthogonal primitive
elements u,v such that u2 = 2n − 2, v2 = 2 − 2n and u + v is divisible by 2n − 2. According to [58,
Theorem 6], there exists an isometry φ : Q(X,Z) → Q(X,Z) that sends u to γ . We put δ′ = φ(v) and

define w := δ′+γ
2n−2 ∈Q(X,Z). In particular, δ′2 = 2− 2n, δ′ ∈ L′ and the divisibility of δ′ in L′ is 2n− 2.

Let δ := e−1(δ′) ∈ L, which has the same square and divisibility as δ′ . By the hypothesis (assumed for
contradiction) L = Lσ ⊕Lσ−, we can write

δ = δ+ + δ− (7.9)

with δ+ ∈ Lσ and δ− ∈ Lσ−. Combining the hypothesis ALσ � Z/2Z with the fact that the pairing of δ+
2n−2

with any element in Lσ is integral (as div(δ) = 2n − 2 and δ− ⊥ Lσ ), we see that x := δ+
n−1 ∈ L

σ since

ALσ � Z/2Z. Similarly y := δ−
2 ∈ L

σ−. That is,

δ = (n− 1)x+2y. (7.10)

As δ is primitive, x is not divisible by 2 and y is not divisible by n− 1.

Consider the element w := δ′+γ
2n−2 and then we have the following equality in Q(X,Z).

w − σQ(w)

=
e(δ) +γ − σQ(e(δ) +γ)

2n− 2

=
e(δ) +γ − σ (e(δ))−γ

2n− 2

=
e(δ) + e(σ (δ))

2n− 2

=
e(δ+)
n− 1

=e(x)

where the second equality uses that c2(X) is preserved by σQ, the third equality uses (7.8), and the fourth
equality uses σ (δ) = δ+ − δ−. Since x is not divisible by 2, neither is w − σ (w). Therefore the Comessatti
characteristic of the involution σQ on Q(X,Z) is at least 1. By Lemma 2.7, the Comessatti characteristic of
the involution σ on H4(X,Z) is at least 1. This contradicts the maximality of σ .

For Case 4 of Lemma 7.1, the proof is the same as in Case 3. The only difference is that now
ALσ � Z/(n − 1)Z and ALσ− � Z/2Z, so we have τ(σ ) = 1. Again by Theorem 4.2, we have the following
(instead of (7.8)):

σ (e(α)) = e(σ (α)). (7.11)

We make the same choices of δ ∈ L and δ′ ∈ L′ . By the same argument as in Case 3, we see that

δ = 2x+ (n− 1)y

with x ∈ Lσ and y ∈ Lσ− such that x is not divisible by n− 1 and y is not divisible by 2.

We consider again the element w := δ′+γ
2n−2 , then a similar computation as in Case 3 yields that

w − σQ(w) = e(y) (7.12)

which is not divisible by 2. Hence the Comessatti characteristic of Q(X,Z), and hence also that of H4(X,Z),
is at least 1.
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7.3. Anti-holomorphic involutions. Using hyper-Kähler rotation, we can deduce results on real struc-
tures from results on anti-symplectic involutions:

Proof of Corollary 1.3. Since maximality is a topological property, we can use hyper-Kähler rotation to
change the complex structure. More precisely, let X be a hyper-Kähler manifold of K3[n]-type (n ≥ 2),
and let σ be a real structure with respect to the original complex structure I . By Proposition 4.1, there is
another complex structure K on X such that σ is holomorphic and anti-symplectic. Applying Theorem 1.2
to the anti-symplectic holomorphic involution σ on (X,K), we deduce that σ is not maximal.

8. Final comments and questions

8.1. Generalization beyond biregular involutions. By inspecting the proof of Theorem 1.2, one
sees that what is actually proved is the following more general result.

Theorem 8.1. Let X be a compact hyper-Kähler manifold of K3[n]-type with n ≥ 2. Let σ ∈ MonHdg(X) be
an order-2 monodromy operator of X preserving Hodge structure on H2(X,Z). If σ is anti-symplectic, i.e. acts
on H2,0(X) by − id, then σ acts on H2(X,F2) ⊕ H4(X,F2) non-trivially. In other words, the Comessatti
characteristic of the involution acting on H2(X,Z) and H4(X,Z) cannot be simultaneously zero.

Proof. The only place in the proof of Theorem 1.2 where we used that σ is a geometric involution is at the
beginning of the proof of Lemma 7.1, where we argued that the signature of H2(X,Z)σ is (≥ 1,−) since
σ preserves a Kähler class. But the claim for the signature holds in general for any Hodge monodromy
operator: since σ ∈ Mon2(X) is of trivial spinor norm, it preserves C◦X , the connected component of the

positive cone containing Kähler classes. Since C◦X is convex, for any Kähler class ω, the class ω+σ ∗(ω)
2 is

σ -invariant with positive square. Hence the signature of H2(X,Z)σ is (≥ 1,−). The rest of the proof of
Lemma 7.1 goes through verbatim.

In addition to Theorem 1.2 as a special case, Theorem 8.1 can be applied more generally to birational
automorphisms, since a birational automorphism on a compact hyper-Kähler manifold induces a Hodge
monodromy operator on its cohomology. Consequently, Theorem 8.1 implies the following result:

Corollary 8.2. Let X be a compact hyper-Kähler manifold of K3[n]-type with n ≥ 2. Then any anti-symplectic
birational involution acts non-trivially on H2(X,F2)⊕H4(X,F2).

It will be interesting to extract some nice geometric consequences (e.g. certain generalization of non-
maximality) from the non-triviality of the induced involution on cohomology with F2-coefficients.

Remark 8.3. Let us clarify the action of a birational automorphism f on the cohomology of X: it is in
general not given by the self-correspondence induced by Γf , the closure of the graph of f , but by the
following procedure. By [25, Theorem 2.5], there exist two families of smooth hyper-Kähler manifolds
X1,X2 over a pointed smooth curve (S,0) both with fiber over 0 isomorphic to X, and an S-birational
isomorphisms F : X1 99K X2, such that F restricted to the fibers over 0 is f , and over S\{0}, F is a biregular
isomorphism. The closure of the graph of the isomorphism F is a cycle in X1 ×S X2, its specialization at
0 ∈ S gives rise to a cycle in X ×X:

γ := sp(ΓF).

Then the action of f on the cohomology H ∗(X) used in Corollary 8.2 is given by the correspondence by γ .

8.2. Hyper-Kähler varieties of other deformation types. Our main results on hyper-Kähler man-
ifolds of K3[n]-type lead us to the following natural question.

Question 8.4. In general, do there exist maximal branes on compact hyper-Kähler manifolds of dimension
> 2. How about the other known deformation types e.g. Kumn-type, OG10-type and OG6-type?
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It would be extremely interesting to exploit the general distinctive properties of compact hyper-Kähler
manifolds in order to answer this question. One important extra structure on their cohomology is the
Looijenga–Lunts–Verbitsky (LLV) Lie algebra action [37] [56]. We did not explicitly use the LLV-action in
this paper, but it plays a crucial role in the proof of many results that we used.

Remark 8.5. Several generalizations of hyper-Kähler manifolds to the singular setting exist in the literature.
For example, the study of symplectic orbifolds was initiated by Fujiki [18], and the more general notion
of symplectic varieties was introduced by Beauville [3]. In contrast to the non-existence results of max-
imal involutions obtained in this paper in the smooth setting, it is relatively easy to construct examples
of maximal involution on singular symplectic varieties. Indeed, given a space with maximal involution,
Franz [16] showed that any symmetric power of the space equipped with the induced involution is again
maximal. Hence for a K3 surface S equipped with a maximal real structure or anti-symplectic involution,
the symplectic orbifold S(n) is maximal.

8.3. (BBB)-branes on compact hyper-Kähler manifolds. Theorem 1.2 and Corollary 1.3 can be
reinterpreted as the claim that the Smith inequality Theorem 1.1 is not optimal for anti-symplectic or anti-
holomorphic involutions on compact hyper-Kähler manifolds of K3[n]-type for n ≥ 2.

Of course, Theorem 1.4 can be reformulated similarly, but we want to argue that the upper bound
given by the Smith inequality for holomorphic symplectic involutions on compact hyper-Kähler manifolds
is presumably very far from optimal. Already for K3 surfaces, any symplectic involution has 8 isolated
fixed points, whose total F2-Betti number is 8, which is much smaller than the one imposed by the Smith
inequality (24 in this case).

In fact, more generally, the fixed loci of symplectic involutions on compact hyper-Kähler manifolds of
all known deformation types have been computed. Let X be a compact hyper-Kähler manifold equipped
with a holomorphic symplectic involution σ .

• If X is of K3[n]-type, by [30, Theorem 1.1], the fixed loci of σ is the disjoint union of
∑

2m=n−k−2l
(8
k

)(k
l

)
copies of hyper-Kähler manifolds of K3[m]-type with m running through integers from max(0,⌈n2 ⌉ −
12) to ⌊n2 ⌋. A computation in the first few values of n shows that the total Betti number of the fixed
locus tends to be much smaller than the total Betti number of X. For example, when n = 2 (resp.
n = 3), the fixed locus consists of a K3 surface and 28 points (resp. 8 K3 surfaces and 64 points),
whose total Betti number is 52 (resp. 256), while X has total Betti number 324 (resp. 3200).

• If X is of Kumn-type, by [30, Theorem 1.3], the fixed loci of σ is the disjoint union of Nn+1,m copies
of hyper-Kähler manifolds of K3[m]-type with m running through integers from max(0,⌈n+12 ⌉ − 24)
to ⌊n+12 ⌋, where the number Nn,m is defined before [30, Theorem 3.9]. Similar to the previous case,
a computation in the first few values of n shows that the Smith inequality tends to be very far from
optimal.

• If X is of OG6-type, by [22, Theorem 1.1], σ acts trivially on the second cohomology. Such involutions
are classified in [44, Theorem 5.2], and their fixed loci are computed in [44, Propositions 6.1, 6.3, 6.7]:
it is either 16 K3 surfaces, or 16 points, or 2 K3 surfaces. Hence the maximal total F2-Betti number
of the fixed locus is at most 384, while the total F2-Betti number of X is 1920.

• If X is of OG10-type, by [19, Theorem 1.1], there is no non-trivial finite-order symplectic automor-
phism.

Question 8.6. Can we establish a general sharper upper bound for the total F2-Betti number of the fixed
locus of a holomorphic symplectic involution on a compact hyper-Kähler manifold, than the one provided
by the Smith inequality?
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8.4. Galois-maximality. The non-existence of maximal branes on manifolds of K3[n] type is obtained
by proving that the action of the involution is not trivial on H ∗(X,F2), which is part of condition 3 of
Proposition 2.1. Another way to obtain the non-existence of maximal branes concerns the behavior of the
Leray–Serre spectral sequence associated with the involution. Involutions for which the Leray–Serre spectral
sequence degenerates are called Galois-maximal, which is a weaker version of the maximality.

It is then natural to investigate the degeneration of the Leray–Serre spectral sequence for compact
hyper-Kähler manifolds with real structures.

Question 8.7. Let X be a compact hyper-Kähler manifolds equipped with a real structure. If X(R) , ∅, when
does the spectral sequence

E
p,q
2 =Hp(G,Hq(X,F2))⇒H

p+q
G (X,F2) (8.1)

degenerates at E2 ?
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