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STABILITY MANIFOLDS OF VARIETIES WITH FINITE

ALBANESE MORPHISMS

LIE FU, CHUNYI LI, AND XIAOLEI ZHAO

Abstract. For a smooth projective complex variety whose Albanese
morphism is finite, we show that every Bridgeland stability condition on its
bounded derived category of coherent sheaves is geometric, in the sense that
all skyscraper sheaves are stable with the same phase. Furthermore, we de-
scribe the stability manifolds of irregular surfaces and abelian threefolds with
Néron–Severi rank one, and show that they are connected and contractible.
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1. Introduction

Let X be a smooth projective variety over the field of complex numbers C.
Denote by Db(X) the bounded derived category of coherent sheaves on X. The
notion of stability conditions on triangulated categories was introduced by Bridge-
land in [8] (see Section 2.1 for a recap). Let Stab(X) be the set of (full locally-finite
numerical) stability conditions on Db(X). By the seminal result in [8], Stab(X)
is naturally endowed with a structure of complex manifold with local coordinates
given by the central charge. We call Stab(X) the stability manifold of X.

A complete description of the stability manifold has been worked out only for
curves and abelian surfaces. More precisely,

• Stab(P1) ∼= C2, see [27].
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• Stab(C) ∼= C × H for any smooth projective curve C of genus ≥ 1, see
[8, 24]; here H denotes the upper half-plane.

• Abelian surfaces, see [9, 13].

In any of the following cases, a principal connected component of the stability
manifold is determined, which is expected to be the whole stability manifold:

• K3 surfaces with Picard rank one, see [4, 9].
• The projective plane P2, see [19].
• Abelian threefolds with Néron–Severi rank one, see [5, 22, 23].

Moreover, in each case above, the stability manifold (or the principal component) is
simply connected and contains an open subset consisting of the so-called geometric
stability conditions, meaning that all skyscraper sheaves are stable with the same
phase (see Definition 2.8). Note that the condition of equal phase turns out to be
automatic, see Proposition 2.9.

In this paper, we provide more instances of algebraic varieties whose stability
manifolds have the same feature as the aforementioned examples. Our first main
result reads as follows:

Theorem 1.1 (Corollary 2.15). Let X be a connected smooth projective variety
over C. If the Albanese morphism of X is finite, then every numerical stability
condition on Db(X) is geometric.

Here we briefly recall some examples of varieties with finite Albanese morphisms.
The most basic ones are abelian varieties and curves of genus ≥ 1. To produce new
examples out of old ones, observe that this property is stable under products and
is inherited by subvarieties and finite ramified covers. See [14] for more on the
structure of a variety with finite Albanese morphism.

Also, note that a smooth projective surface S of Néron–Severi rank one has finite
Albanese morphism if and only if it is irregular, that is, q(S) := dimH1(S,OS) �= 0.
One expects that a generic minimal surface of irregularity q ≥ 2 is of this type. Here
are some geometrically interesting examples: the Fano surface of lines on a generic
cubic threefold ([33]), the Fano surface of planes on a generic cubic fivefold.

Theorem 1.2 (Corollary 3.8). The stability manifold of an irregular surface of
Néron–Severi rank one is connected and contractible.

One should compare Theorem 1.2 with the case of abelian surfaces: as the derived
category of an abelian surface has no spherical objects (see [9, Lemma 15.1]), [13,
Theorem 1] says in particular that the stability manifold of an abelian surface is
connected and simply connected.

Finally, we establish the following result on abelian threefolds. Recall that for
an n-dimensional polarized smooth projective variety (X,H), StabH(X) denotes
the stability manifold with respect to the surjection K(X) � ΛH , where ΛH is the
image of the map K(X) → Rn sending a class [E] to the vector

(Hn rk(E), Hn−1 ch1(E), Hn−2 ch2(E), . . . , chn(E)).

Theorem 1.3 (Corollary 4.9). Let (A,H) be a polarized abelian threefold, then

StabH(A) = P̃ as that constructed in [5, Theorem 9.1]. In particular, when A has

Néron–Severi rank one, P̃ is the whole stability manifold and it is connected and
contractible.

This completes the result of [5,22,23] on the stability manifold of abelian three-
folds of Néron–Severi rank one.
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Sketch of the proof. Theorem 1.1 mainly relies on the result in [30] and the
uniqueness of Harder–Narasimhan filtration. By [30, Corollary 3.5.2], the natural
action of the group Pic0(X) on the stability manifold is trivial. Hence the Harder–
Narasimhan factors of every Pic0(X)-invariant object, e.g. a skyscraper sheaf,
must also be Pic0(X)-invariant. It follows by the assumption on the Albanese
morphism that such factors of a skyscraper sheaf may only be skyscraper sheaves.
In particular, all skyscraper sheaves are stable. On the other hand, we prove in
general that all skyscraper sheaves are of the same phase when they are all stable,
see Proposition 2.9. This seemingly-simple statement is probably known to some
experts, but we found no proof in the literature.

Theorem 1.2 on irregular surfaces then follows from the same observation as
that in [9, Section 10], which implies that every geometric stability condition can

be constructed via tilting heart up to the G̃L
+

2 (R)-action.
The proof of Theorem 1.3 on abelian threefolds is more involved. First, for any

abelian variety A, using a variant of the Fourier–Mukai transform between Db(A)
and Db(A∨), we show that all simple semi-homogeneous vector bundles are stable
with respect to all stability conditions, see Corollary 2.16. Second, specializing to
abelian threefolds, we show that every stability condition is with the same central
charge as that constructed in [5]. The actual difficulty of the whole argument is to
prove that their heart structures are also the same. Proposition 4.3, Lemma 4.6 and
Lemma 4.7 are to deal with this issue. Roughly speaking, we show that there are
enough morphisms from simple semi-homogeneous vector bundles to other stable
objects so that a stability condition can be uniquely determined by the phases of
all semi-homogeneous vector bundles and the central charge.

2. Geometric stability conditions

2.1. Generalities on stability conditions. LetX be a smooth projective variety
over C. Denote by Db(X) the bounded derived category of coherent sheaves on X.
We recall some basic notions of stability conditions.

Definition 2.1. A slicing P on Db(X) is a collection of full additive subcategories
P(φ) ⊂ Db(X) indexed by all φ ∈ R such that

(a) P(φ)[1] = P(φ+ 1);
(b) if φ1 > φ2 and Fi ∈ Obj(P(φi)), then Hom(F1, F2) = 0;
(c) for any object E in Db(X), there are real numbers φ1 > · · · > φm, objects

Ei in Db(X), and a collection of distinguished triangles

0 = E0 E1 E2 · · · Em−1 Em = E

A1 A2 Am

+1 +1 +1

such that Ai = Cone(Ei−1 → Ei) is an object in P(φi) for every 1 ≤ i ≤ m.

Remark 2.2. Non-zero objects of P(φ) are called semistable with phase φ; simple
objects of P(φ) are called stable. The sequence of maps in (c) is called the Harder–
Narasimhan (HN) filtration of E. It is not hard to see that the HN filtration is
unique up to isomorphism. We will call each Ai the HN factor of E. We denote
φ+
P(E) := φ1 and φ−

P(E) := φm; when E is semistable, we denote φP(E) the phase
of E (or simply φ(E) when there is no ambiguity).
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Notation 2.3. Let P be a slicing. For every interval I ⊂ R, we define a truncated
HN factor HNI

P(E) of E as follows. In practice, we would also write ≤ φ or > φ
for the interval (−∞, φ] or (φ,+∞) respectively when it causes no confusion.

In the HN filtration 2.1(c) of E, let a, b ∈ {1, 2, . . . ,m} be such that φi ∈ I when

and only when a ≤ i ≤ b, then HNI
P(E) is defined to be Cone(Ea−1 → Eb) (and

to be 0 if no φi is contained in I). We denote by P(I) the full subcategory of all
objects E ∈ Db(X) such that φ±

P(E) ∈ I.

Denote by K(X) the Grothendieck group of Db(X).

Definition 2.4. A Bridgeland pre-stability condition on Db(X) is a pair σ = (P, Z),
where

• P is a slicing of Db(X);
• Z : K(X) → C is a group homomorphism, called the central charge;

such that for any non-zero object E in P(φ), we have Z([E]) = m(E)eiπφ for some
m(E) ∈ R>0.

The set of all pre-stability conditions has a natural topology induced by the
following generalised metric function: for two pre-stability conditions σ1 = (P1, Z1)
and σ2 = (P2, Z2), their distance is defined as

dist(σ1, σ2)

:= sup
E∈Db(X)

E �=0

{∣∣φ−
P1

(E)− φ−
P2

(E)
∣∣ , ∣∣φ+

P1
(E)− φ+

P2
(E)

∣∣ , ‖Z1 − Z2‖
}
∈ [0,+∞].

We have the following two natural group actions on the set of pre-stability condi-
tions; see [25, Remark 5.14] for more details.

• The universal covering G̃L
+

2 (R) of the group GL+
2 (R) acts on the right

of this set. This G̃L
+

2 (R)-action does not affect the (semi)stability of any
object.

• The group Aut(Db(X)) of autoequivalences of Db(X) acts on the left of
this set.

Let Λ be a free abelian group of finite rank and let λ : K(X) � Λ be a surjective
homomorphism. A typical choice (by default) for Λ is the numerical Grothendieck
group Knum(X) and λ is the natural projection K(X) � Knum(X).

Definition 2.5 ([8, 15]). We say that a pre-stability condition (P, Z) satisfies the
support property (with respect to Λ, or rather λ) if the central charge Z factors
through λ : K(X) � Λ and there is a quadratic form QΛ on Λ⊗ R such that

(a) the kernel KerZ ⊂ Λ ⊗ R of the central charge is negative definite with
respect to QΛ;

(b) for any semistable object E, we have QΛ(E) ≥ 0.

A pre-stability condition satisfying the support property is called a stability condi-
tion, and we denote the set of all stability conditions (with respect to Λ, or rather
λ) as StabΛ(X).

When λ factors through K(X) → Knum(X), we will call the stability condition
numerical.
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Theorem 2.6 ([8, Theorem 7.1], [2, Theorem 1.2]). The space StabΛ(X) of stability
conditions is naturally a complex manifold of dimension rank(Λ), such that the map
forgetting the slicing

πZ : StabΛ(X) → HomZ(Λ,C) σ = (Z,P) �→ Z

is a local biholomorphic isomorphism at every point of StabΛ(X).

Remark 2.7. Note that the notion of pre-stability condition in this paper (as well
as many others) is called stability condition in Bridgeland’s original paper [8].

When the lattice Λ is the numerical Grothendieck group, our definition of sta-
bility conditions is the same as that of the full locally-finite numerical stability
conditions in [9]. We denote the space of such stability conditions as Stab(X) and
call it the stability manifold of X.

2.2. Geometric stability conditions.

Definition 2.8. A stability condition σ on Db(X) is called geometric (with respect
toX) if for each point p ∈ X, the skyscraper sheaf Op is σ-stable, and all skyscraper
sheaves are of the same phase.

The definition is similar to that of [9, Definition 10.2]. The only difference is that
in [9], the author further assumes a ‘goodness’ condition. In the next section , we
will see that the ‘goodness’ condition is redundant at least in the surface case. In
Proposition 2.9, we show that the condition of having the same phase is redundant
for numerical stability conditions when X is a smooth connected projective variety.
The result might be known to some experts, but there is no proof written down as
far as we know.

Proposition 2.9. Let X be a connected smooth projective variety. Let σ be a
numerical stability condition on Db(X) such that every skyscraper sheaf is σ-stable.
Then all skyscraper sheaves are of the same phase, in other words, σ is geometric.

We first establish the following technical lemma.

Lemma 2.10. Let σ be a stability condition on Db(X). Let g : F → E be a mor-

phism and F̃ := Cone(F
g−→ E)[−1] in Db(X).

1. Then HNa
σ(F ) ∼= HNa

σ(F̃ ) for every a /∈ [φ−(E)− 1, φ+(E)].
2. If E is non-zero and the second smallest phase of the HN factors of E is

greater than φ−(E) + 1, then HN≤φ−(E)
σ (F ) �∼= HN≤φ−(E)

σ (F̃ ).

Proof. As for the first statement, we consider the following diagram of distinguished
triangles:

0 HN>φ+(E)
σ (F̃ ) HN>φ+(E)

σ (F̃ ) 0

E[−1] F̃ F E

E[−1] HN≤φ+(E)
σ (F̃ ) K E

can

id

f

id

g′ g

id
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The morphism f is the composition of g′ and can. The square on the top-right

commutes since g ◦f ∈ Hom(HN>φ+(E)
σ (F̃ ), E) = 0. The sequence on the bottom is

the cone of distinguished triangles on the top and middle, hence it is a distinguished
triangle by the octahedral axiom.

For any σ-semistable object A with phase > φ+(E), by applying Hom(A,−) to
the distinguished triangle on the bottom, we have Hom(A,K) = 0. Therefore, the
object K is in Pσ(≤ φ+(E)).

Note that K = Cone(HN>φ+(E)
σ (F̃ )

f−→ F ). It follows K ∼= HN≤φ+(E)
σ (F ) and

HN>φ+(E)
σ (F̃ ) ∼= HN>φ+(E)

σ (F ).

By a similar argument for the diagram

E[−1] L HN≥φ−(E)−1
σ (F ) E

E[−1] F̃ F E

0 HN<φ−(E)−1
σ (F ) HN<φ−(E)−1

σ (F ) 0,

id id

can

id

we get HN<φ−(E)−1
σ (F̃ ) ∼= HN<φ−(E)−1

σ (F ). The first statement holds.
As for the second statement, note that A := Pσ((φ

−(E)− 1, φ−(E)]) is a heart

on Db(X). Apply H•
A(−) to the distinguished triangle F̃ → F

g−→ E, we get the
long exact sequence

H−1
A (E) → H0

A(F̃ ) → H0
A(F ) → H0

A(E) → H1
A(F̃ )

h−→ H1
A(F ) → H1

A(E).

Note that for every object B, Hi
A(B) = HN(φ−(E)−i−1,φ−(E)−i]

σ (B)[i]. By the as-

sumption on E, we have H±1
A (E) = 0 and H0

A(E) = HN−(E) := HNφ−(E)
σ (E).

If the map h is not an isomorphism, then the kernel of h in A is a quotient object
of HN−(E), which must be in Pσ(φ

−(E)). We get a short exact sequence

0 → kerh → HNφ−(E)−1
σ (F̃ )[1]

h−→ HNφ−(E)−1
σ (F )[1] → 0,

which implies HNφ−(E)−1
σ (F̃ ) �∼= HNφ−(E)−1

σ (F ) as [kerh] is not 0 in Knum(X).
If the map h is an isomorphism, then we have the short exact sequence

0 → H0
A(F̃ ) → H0

A(F ) → H0
A(E) → 0.

Since [H0
A(E)] �= 0 in Knum(X), we have

HN(φ−(E)−1,φ−(E)]
σ (F̃ ) = H0

A(F̃ ) �∼= H0
A(F ) = HN(φ−(E)−1,φ−(E)]

σ (F̃ ).

In any case, we always have HN[φ−(E)−1,φ−(E)]
σ (F ) �∼= HN[φ−(E)−1,φ−(E)]

σ (F̃ ). �

Proof of Proposition 2.9. For a smooth connected curve C on X, under the as-
sumption that all skyscraper sheaves of points on the curve C are σ-stable, but
suppose that not all of them are with the same phase. Then there exist a large
enough integer m and points p1, . . . , pm, q1, . . . , qm on C such that

• OC(−p1 − · · · − pm) ∼= OC(−q1 − · · · − qm) =: L;
• φ(Op1

) < φ(Oqi) for every 1 ≤ i ≤ m.
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(Note that we used the assumption that all skyscraper sheaves of points are stable
to be able to talk about their phases.) In particular, as the central charge factors
via Knum(X), φ(Op1

) ≤ φ(Oqi) − 2 for every i. We may also assume φ(Op1
) =

min{φ(Opi
)}.

Note that L has two expressions Cone(OC → Op1
⊕ · · · ⊕ Opm

)[−1] and
Cone(OC → Oq1 ⊕ · · · ⊕ Oqm)[−1]. By Lemma 2.10.1, the HN factor HNa of L
is isomorphic to that of OC for every a < min{φ(Oqi)} − 1. By Lemma 2.10.2,

HN≤φ(Op1
)(L) �∼= HN≤φ(Op1

)(OC), which leads to a contradiction.
Hence, the phase of all skyscraper sheaves of points on C are the same. As X is

connected and projective, this implies that all skyscraper sheaves are of the same
phase. �

Lemma 2.11 is an immediate generalization of [9, Lemma 10.1] in the higher
dimensional case.

Lemma 2.11 ([9, Lemma 10.1]). Let X be an n-dimensional smooth projective
variety and σ = (P, Z) be a geometric stability condition on X such that Op ∈ P(1).
Let F be an object of Db(X). Then

(a) if F ∈ P((0, 1]), then Hi(F ) vanishes unless −n+1 ≤ i ≤ 0, and moreover,
H−n+1(F ) is torsion-free;

(b) if F ∈ Coh(X), then F ∈ P((−n + 1, 1]); if F is a torsion sheaf, then
F ∈ P((−n+ 2, 1]).

Proof.

(a) One may assume that F is stable and is not a skyscraper sheaf. For any point
p ∈ X, since Op is stable with phase 1, Hom(Op, F [i]) = Hom(F,Op[i− 1]) = 0 for
all i ≤ 0. By Serre duality, Hom(F,Op[i]) = 0 unless 0 ≤ i ≤ n− 1.

It follows from [10, Proposition 5.4] that F is quasi-isomorphic to a length n
complex of locally free sheaves. So F satisfies the condition in part (a).

(b) Let F be a coherent sheaf. For every object E ∈ P(> 1), by part (a),
Hi(E) = 0 when i ≥ 0. So Hom(E,F ) = 0. For every object G ∈ P(≤ −n + 1),
by part (a), Hi(G) = 0 when i ≤ 0. So Hom(F,G) = 0. It follows that F ∈
P((−n+ 1, 1]).

Now let F be a torsion sheaf. We have a distinguished triangle

E → F → G
+1−−→

for some E ∈ P((−n+2, 1]) and G ∈ P((−n+1,−n+2]). By part (a), Hi(G) = 0
unless 0 ≤ i ≤ n − 1, and H0(G) is torsion-free. Since F is a torsion sheaf,
Hom(F,G) = 0. This can only happen when G = 0, so F ∈ P((−n+ 2, 1]). �
2.3. Stability of skyscraper sheaves. The following basic result is used in the
study of homogeneous vector bundles on abelian varieties.

Lemma 2.12. Let A be an abelian variety and E ∈ Db(A). Further assume that
for any ξ ∈ A∨, we have that E ⊗ Pξ � E, where Pξ is the line bundle on A
parameterized by ξ. Then the support of E is finite.

Proof. See for example the proof of [31, Proposition 11.8]. �
Theorem 2.13. Let X be a smooth projective variety such that its Albanese mor-
phism is finite, then skyscraper sheaves are all stable with respect to every numerical
stability condition on Db(X).
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Proof. Fix an arbitrary numerical stability condition on Db(X). Let p ∈ X
be a closed point. Let E1, . . . , En be the Jordan–Hölder factors in the Harder–
Narasimhan filtration associated with Op. By Polishchuk [30, Corollary 3.5.2], the

group Pic0(X) ⊂ Aut(Db(X)) acts trivially on the stability manifold. In particular,
the Harder–Narasimhan filtration, as well as the Jordan–Hölder factors, are pre-
served by the action of Pic0(X). As a consequence, each Ei satisfies the condition
that Ei ⊗ L � Ei for any L ∈ Pic0(X).

Let a : X → Alb(X) be the Albanese morphism. For any ξ ∈ Pic0(Alb(X)),
denote by Pξ the corresponding line bundle on Alb(X). Then for any i, we have
Ei ⊗ a∗(Pξ) � Ei. By the projection formula,

Ra∗(Ei)⊗ Pξ � Ra∗(Ei),

which implies that the support of Ra∗(Ei) is finite by Lemma 2.12. Combined with
the assumption that a is a finite morphism, we see that the support of Ei is also
finite, for any i.

The theorem then follows by Lemma 2.14. �
Lemma 2.14. Let X be a smooth variety and σ a stability condition on Db(X).
Assume that the Jordan–Hölder factors of Op have finite support. Then Op is
stable.

Proof. Suppose Op is not stable, then there exists a stable object E �= Op supported
at p. Let k, l be the maximal and minimal non-vanishing cohomology degrees of E.
Then there exists composition of morphisms:

E
can−−→ Hk(E)[−k]

ι1−→ Op[−k]
ι2−→ Hl(E)[−k]

can−−→ E[l − k].

As both Hk(E) and Hl(E) are supported at p, we may let ιi’s be non-zero. Their
composition ι2 ◦ ι1 is then non-zero as well.

The whole composition is non-zero because it induces a non-zero map from the
term of E with maximal cohomology degree to the term of E[l − k] with minimal
cohomology degree. Since k ≥ l, by the stability of E, we may only have k = l, and
E = Hk(E)[−k] = Op[−k] which is stable. This leads to a contradiction. �
Corollary 2.15. Let X be a connected smooth projective variety such that its
Albanese morphism is finite. Then all numerical stability conditions on Db(X) are
geometric.

Proof. It is a combination of Proposition 2.9 and Theorem 2.13. �

Let A be an abelian variety. For every element [L]
l ∈ NS(A) ⊗Z Q, there exist

simple semi-homogeneous vector bundles with det
rk = [L]

l in the sense of Mukai [26],
see [28, Section 4]. The following result will be useful in studying the stability
manifold of abelian threefold in Section 4.

Corollary 2.16 (cf. [32, Proposition 3.1.4]). Let A be an abelian variety. Then all
simple semi-homogeneous vector bundles are stable with respect to any numerical
stability condition on Db(A). Moreover, given a numerical stability condition, all

simple semi-homogeneous vector bundles with det
rk = [L]

l are with the same phase.

Proof. Denote by M the moduli space parameterizing all simple semi-homogeneous

vector bundles with det
rk = [L]

l . In particular, M ∼= A∨ by [26, Theorem 7.11].
Denote by E [L]

l

the universal family on A×M . By [28, Lemma 4.8], and [7, Theorem
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5.1 and 5.4], the Fourier–Mukai transformation ΦE [L]
l

is an equivalence between

Db(A) and Db(M).
Note that the property of being stable with respect to any stability condition

is preserved under any equivalence. The skyscraper sheaves on M are mapped to

all simple semi-homogeneous vector bundles with det
rk = [L]

l . The statement now
follows from Theorem 2.13. �

Note that the stability of these objects is already proved in [32, Proposition
3.1.4].

3. Surface case

Let (X,H) be a polarized smooth projective variety. We fix the following sur-
jection from K(X), whose image, denoted by ΛH , is clearly a lattice in Rn:

λH : K(X) � ΛH ; [E] �→ (Hn rk(E), Hn−1 ch1(E), Hn−2 ch2(E), . . . , chn(E)),

where n is the dimension of X. We denote the set of all (resp. geometric) stability

conditions with respect to ΛH as StabH(X) (resp. StabGeo
H (X)). In particular, if S

is a surface of Néron–Severi rank one, then StabH(S) is Stab(S), the whole stability
manifold of S.

3.1. Le Potier function. Recall that the H-slope of a coherent sheaf F on X is
defined as

μH(F ) :=

{
Hn−1 ch1(F )
Hn rk(F ) , if rk(F ) > 0;

+∞, if rk(F ) = 0.

A coherent sheaf F is called μH -(semi)stable if for every proper non-zero subsheaf
E, one has

μH(E) < (≤)μH(F/E).

Definition 3.1. Let (S,H) be a polarized surface. We define the Le Potier function
ΦS,H : R → R as:

ΦS,H(x) := lim
μ→x

sup
F∈Coh(X)

{
ch2(F )

H2 rk(F )

∣∣∣∣ F is μH -semistable with μH(F ) = μ

}
.

Proposition 3.2. The Le Potier function is well-defined satisfying ΦS,H(x) ≤ x2

2 .
It is the smallest upper semi-continuous function satisfying

ch2(F )

H2rk(F )
≤ ΦS,H

(
Hch1(F )

H2rk(F )

)
for every torsion-free μH-stable (or semistable) sheaf F .

Proof. By [12, Theorem 5.2.5], for every rational number μ, there exists a μH -stable
sheaf F with μH(F ) = μ. The value of the function at every point is therefore in
R ∪ {+∞}.

The Bogomolov inequality states that

2 rk(F )ch2(F ) ≤ ch1(F )2

for every μH -semistable sheaf F . Combined with the Hodge Index Theorem, we
have

2H2 rk(F )ch2(F ) ≤ (Hch1(F ))2
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for every μH-semistable sheaf F . When F is torsion-free, we can divide both sides

by (H2 rk(F ))2, which implies ΦS,H(x) ≤ x2

2 . In particular, the function is well-
defined, i.e. valued in R.

The last statement follows directly from the definition of ΦS,H . �

Remark 3.3. The Le Potier function is only known for very few polarized surfaces.

When S is an abelian surface, it is known that ΦS,H(x) = x2

2 . When S is the
projective plane, the function is known thanks to the work [11]. The explicit formula
for ΦP2 is very complicated, see [19] for more details. The function is also known
or partially known for polarized K3 surfaces, del Pezzo surfaces, and a few sporadic
surfaces like the intersection of a quadric and a quintic S2,5 in P4; see [16, 20] for
more details. Very recently, Lahoz and Rojas showed in [18, Example 2.12(2)] that

ΦS,H(x) = x2

2 for any smooth projective surface with finite Albanese morphism.

3.2. Tilting construction. In this section, we recall the tilting construction of
stability conditions on polarized surfaces. We refer to the lecture notes [25, Section
6] for more details, and to [1] for the original treatment. The same construction
gives weak stability conditions on threefolds or higher dimensional varieties. We
will only use the threefold case in the next section. Readers interested in more
details are referred to [3, 6].

Let (X,H) be a polarized variety. For every β ∈ R, we define a pair of subcate-
gories:

Tβ := {F ∈ Coh(X)| any μH -semistable factor of F satisfies μH(F ) > β};
Fβ := {F ∈ Coh(X)| any μH -semistable factor of F satisfies μH(F ) ≤ β}.

This is a torsion pair on Coh(X). We denote the tilted heart as

Cohβ(X) := 〈Tβ ,Fβ[1]〉 =

⎧⎪⎨⎪⎩F ∈ Db(X)

∣∣∣∣∣∣∣
Hi(F ) = 0 for i �= 0,−1;

H0(F ) ∈ Tβ ;
H−1(F ) ∈ Fβ .

⎫⎪⎬⎪⎭ .

Recall from [25, Lemma 5.11] that giving a stability condition (P, Z) on a tri-
angulated category is equivalent to giving (A, Z), where A = P ((0, 1]) is the heart
of a bounded t-structure, compatible with Z.

Now let (S,H) be a polarized surface. For every α ∈ R, we define a central
charge on Db(S) as follows:

Zα,β(F ) := (− ch2(F ) + αH2 rk(F )) + i(H ch1(F )− βH2 rk(F )).

Theorem 3.4 ([25, Theorem 6.10]). For every α > ΦS,H(β), the pair σα,β =

(Cohβ(S), Zα,β) is a geometric stability condition (with respect to ΛH) on S. More-
over, the map

Σ : {(α, β) ∈ R2|α > ΦS,H(β)} → StabH(S) : (α, β) �→ σα,β

is a continuous embedding.

Remark 3.5. The above statement is slightly stronger than [25, Theorem 6.10], in

the sense that we include stability conditions σα,β for some α ≤ β2

2 when ΦS,H(x) �=
x2

2 . We briefly explain why the construction still works.
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For every pair (α0, β0) satisfying α0 > ΦS,H(β0), since ΦS,H is upper semi-

continuous and not greater than x2

2 , there exists sufficiently small δ > 0 satisfying

δ−1(x− β0)
2 + α0 − δ ≥ ΦS,H(x)

for every x ∈ R. In other words, every μH -semistable coherent sheaf F satisfies the
Bogomolov type inequality:

δ−1
(
H ch1(F )− β0H

2 rk(F )
)2 −H2 rk(F )

(
ch2(F )− (α0 − δ)H2 rk(F )

)
≥ 0.

By exactly the same argument as that for [25, Theorem 6.10] (or see [29, Section 2]
for a more general set-up), the pair σα0,β0

is a stability condition and the embedding
Σ is continuous at (α0, β0).

Note that skyscraper sheaves are all simple in Cohβ0(S) by definition. They are
all σα0,β0

-stable with phase 1. Hence the stability condition σα0,β0
is geometric.

3.3. Geometric stability conditions on surfaces.

Proposition 3.6 (cf. [9, Section 10]). Let σ = (P, Z) be a geometric stability

condition in StabGeo
H (S). Then σ = σα,βg for some α > ΦS,H(β) and g ∈ G̃L

+

2 (R).

Proof. Applying an element of G̃L
+

2 (R) one can assume that Z(Op) = −1 and
Op ∈ P(1) for all p ∈ X. In particular, the central charge is of the form

− ch2 +aH ch1 +bH2 rk+i(cH ch1 +dH2 rk)

for some a, b, c, d ∈ R.
By [9, Lemma 10.1.c], the torsion sheaf OC(mH) ∈ P((0, 1]) for every curve

C on S and m ∈ Z. Therefore, the coefficient c > 0. Applying an element of

G̃L
+

2 (R) again, we may assume the central charge is of the form Zα,β for some
α, β ∈ R. By [25, Lemma 6.20] (note that the argument holds for all α ∈ R), the

heart P((0, 1]) = Cohβ(S).
Now we only need to show that α > ΦS,H(β). By [25, Proposition 5.27], there is

an open neighbourhood U of σ in StabH(S) where all skyscraper sheaves are stable.
By Theorem 2.6, there is an open neighborhood W of (α, β) in R2 such that for
every (α′, β′) ∈ W , there exists a stability condition σ′ = (P ′, Z ′) ∈ U with

kerZ ′ = (1, β′, α′) · R ⊂ ΛH ⊗ R.

Suppose α ≤ ΦS,H(β), by Definition 3.1, there exists a μH -semistable sheaf F and
(α0, β0) ∈ W such that

H ch1(F ) = β0H
2 rk(F ) and ch2(F ) > α0H

2 rk(F ).

Let σ0 = (P0, Z0) be a stability condition in U with kerZ0 = (1, β0, α0) · R.
Applying an element of G̃L

+

2 (R) on σ0, one can assume that Z0 = Zα0,β0
. By

[25, Lemma 6.20], P0((0, 1]) = Cohβ0(S) � F [1]. This leads to a contradiction that
Zα0,β0

(F [1]) ∈ R>0. Therefore, we must have α > ΦS,H(β). �

Corollary 3.7. Let (S,H) be a smooth polarized surface such that its Albanese
morphism is finite, then StabH(S) is connected and contractible.

Proof. By Corollary 2.15, Proposition 3.6, and [18, Example 2.12(2)], StabH(S) is

homeomorphic to a G̃L
+

2 (R)-principal bundle over {(α, β) ∈ R2|α > β2

2 }. It follows
that StabH(S) is connected and contractible. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

5680 LIE FU, CHUNYI LI, AND XIAOLEI ZHAO

Corollary 3.8. The space of stability conditions of an irregular surface with Néron–
Severi rank one is connected and contractible.

Proof. The Albanese morphism of an irregular surface S is non-constant. It does
not contract any curve, since otherwise the Néron–Severi rank of S is at least
2. Therefore the Albanese morphism is finite. Let H be an ample divisor, then
Stab(S) = StabH(S), which is connected and contractible by Corollary 3.7. �

4. Abelian threefold case

Let (A,H) be a polarized abelian threefold. In this section, we show that the
principal component of the stability manifold of A constructed in [5, Theorem 9.1]
is the whole space StabH(A).

4.1. Review: Stability conditions on abelian threefolds. We briefly recall
the construction of stability conditions on abelian threefolds as that in [22,23] and
[5].

For every β ∈ R, recall from the previous section that we have the heart

Cohβ(A) := 〈Tβ ,Fβ [1]〉.
We will always consider the twisted Chern character chβ(F ) := e−βH ch(F ).

More explicitly, we have

chβ1 = ch1 −βH rk; chβ2 = ch2 −βH ch1 +
β2

2
H2 rk;

chβ3 = ch3 −βH ch2 +
β2

2
H2 ch1 −

β3

6
H3 rk .

Note that for every object F in Cohβ(A), we have H2 chβ1 (F ) ≥ 0.

For every α > 0, we consider the slope function μα,β on Cohβ(X) defined as

μα,β(F ) :=

⎧⎨⎩
H chβ

2 (F )−α2

2 rk(F )

H2 chβ
1 (F )

, if H2 chβ1 (F ) > 0;

+∞, if H2 chβ1 (F ) = 0.

A non-zero object F ∈ Cohβ(A) is called μα,β-(semi)stable if for every proper

non-zero subobject E ↪→ F in Cohβ(A), one has

μα,β(E) < (≤)μα,β(F/E).

Consider the pair of subcategories:

Tα,β := {F ∈ Cohβ(A)|
any quotient object F � G in Cohβ(A) satisfies μα,β(G) > 0};

Fα,β := {F ∈ Cohβ(A)|
any non-zero subobject E ↪→ F in Cohβ(A) satisfies μα,β(E) ≤ 0}.

This is a torsion pair on Cohβ(A). We denote the tilted heart as

Cohα,β(A) := 〈Tα,β ,Fα,β [1]〉.

For every b ∈ R and a > α2

6 + 1
2 |b|α, we define the central charge as

Za,b
α,β := − chβ3 +bH chβ2 +aH2 chβ1 +i

(
H chβ2 −

1

2
α2H3 rk

)
.
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We will write μa,b
α,β := −Re(Za,b

α,β)

Im(Za,b
α,β)

for the slope function. Now we may summarize

the construction of stability conditions on Db(A) as follows.

Theorem 4.1 ([5, Section 8 and Theorem 9.1]). Let (A,H) be a polarized abelian
threefold. Then for every α, β, a, b ∈ R satisfying α > 0 and a > 1

6α
2 + 1

2 |b|α,
the pair σa,b

α,β = (Cohβ(A), Za,b
α,β) is a stability condition on Db(A) in StabH(A).

Moreover, the map

Σ : {(a, b, α, β) ∈ R4|α > 0, a >
α2

6
+

1

2
|b|α} → StabH(A)

(a, b, α, β) �→ σa,b
α,β

is a continuous embedding.

Denote P̃ := (im(Σ)) · G̃L
+

2 (R), then im(Σ) is a slice of the G̃L
+

2 (R)-action on

P̃. The space P̃ is a connected component in StabH(A).

Our goal is to show that P̃ is actually the unique connected component of
StabH(A).

4.2. Semi-homogeneous vector bundles. Let (A,H) be a polarized abelian
threefold. We will make use of simple semi-homogeneous vector bundles with
det
rk = sH for s ∈ Q. To simplify the notation, we will denote such a simple
semi-homogeneous vector bundle as Es.

Write s = p
q for some coprime integers p, q with q ∈ Z>0. The Chern characters

of Es are

ch(Es) = rk(Es)e
sH = rk(Es)(1, sH,

s2

2
H2,

s3

6
H3).

For every object F ∈ Db(A), it follows from the Hirzebruch–Riemann–Roch formula
that

χ(Es, F ) = rk(Es) ch
s
3(F ).

Every Es can be constructed as the push-forward of line bundles via an isogeny
Y → X, see [26, Theorem 5.8].

Lemma 4.2. Let (A,H) be a polarized abelian threefold. If s<t, then Hom(Es, Et[i])
�= 0 if and only if i = 0.

Proof. By Corollary 2.16, both Es and Et are σa,b
α,β-stable for β = s+t

2 , α < t−s
2 ,

b = 0, and a = α2

6 + ε. In particular, Et, Es[2] ∈ Cohβ,α(A), and

μ
α2

6 +ε,0

α,β (Es[2]) =
s− β

3
<

t− β

3
= μ

α2

6 +ε,0

α,β (Et)

when ε tends to 0. Therefore, Hom(Et, Es[i]) = 0 when i ≤ 2. By Serre duality,
Hom(Es, Et[i]) = 0 unless i = 0.

By the Hirzebruch–Riemann–Roch formula, we have

χ(Es, Et) = rk(Es) rk(Et)
(t− s)3

6
> 0.

Therefore, Hom(Et, Es) �= 0. �
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Denote by C the set of all (shifted) skyscraper sheaves Op[t] and all simple semi-
homogeneous vector bundle Es[t]’s. By Corollaries 2.15 and 2.16, all elements in C
are stable with respect to every stability condition. Proposition 4.3 is the key input
to our main result.

Proposition 4.3. Let σ = σa,b
α,β be a stability condition on Db(A) and F ∈ Pσ(θ).

Then

infE∈C {θ − φσ(E)|Hom(E,F ) �= 0} ≤ 1;

infE∈C {φσ(E)− θ|Hom(F,E) �= 0} ≤ 1.

Proof. We may assume that F is σ-stable and is not in C. Since the set C is closed
under homological shift, we may also assume θ ∈ (0, 1].

We first deal with the case when θ ∈ (0, 1) and H3−• ch•(F ) �∈ R · (1, t, t22 ,
t3

6 ).
Denote by C := μ(F ) = − cot(πθ) ∈ R the slope of F . It follows that

(1) chβ3 (F )− bH chβ2 (F )− aH2 chβ1 (F )− C

(
H chβ2 (F )− 1

2
α2H3 rk(F )

)
= 0.

Consider the equation

(2) f(x) :=
x3

6
− (C + b)

x2

2
− ax+

1

2
α2C = 0.

By the assumption that a > 1
6α

2 + 1
2 |b|α and α > 0, we have

f(α) = α

(
1

6
α2 − 1

2
bα− a

)
< 0 < α

(
a− 1

6
α2 − 1

2
bα

)
= f(−α).

Note that limx→±∞ f(x) = ±∞, we have

f(sj) = 0 for some s1 < −α < s2 < α < s3.

It is worth noticing that f(x) = 0 if and only if μ(e(β+x)H) = C.

Now assume that chβ+s1
3 (F ) > 0, we will show that under this assumption, we

have
infE∈C {φσ(E)− θ|Hom(F,E) �= 0} ≤ 1.

Remark 4.4. When β + s1 is rational, we may simply notice that

χ(F,Eβ+s1) = − rk(Eβ+s1) ch
β+s1
3 (F ) < 0.

It then follows that Hom(F,Eβ+s1 [3]) �= 0, which implies the conclusion.
As β+s1 can be an irrational number, we need to deform the stability condition so

that there exists Eβ+s′1
in C. Yet this deformation is not completely straightforward,

as at certain point we need the assumption that H3−• ch•(F ) �∈ R ·(1, t, t22 ,
t3

6 ). The
only purpose of next few paragraphs is to deal with this issue. For the convenience
of the readers, it is harmless to skip these paragraphs and simply assume that
Eβ+si ∈ C exists.

By [25, Proposition 5.27], there is an open neighbourhood W of (α, β, a, b) such

that F is σa′,b′

α′,β′ -stable for every (α′, β′, a′, b′) ∈ W . For every ε > 0, there exists

δ0 > 0 such that for every |δ| , |δ′| , |δ′′| < δ0 we have

• (α+ δ′′, β, a+ δ, b+ δ′) ∈ W ;

• chβ+s1+δ
3 (F ) > 0;

• dist(σa,b
α,β , σ

a+δ,b+δ′

α,β ) < ε
2 .
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It follows from f(s1) = 0 that μ(e(β+s1)H) = C. Note that the function B(x)
satisfying

μ
a,B(x)
α,β (e(β+x)H) = μ

a,B(x)
α,β (F )

is well-defined and continuous when x �= ±
√

2H chβ
2 (F )

H3 rk(F ) . When s1 �= ±
√

2H chβ
2 (F )

H3 rk(F ) ,

B(s1) = b. There exists |δ| < δ0 such that Eβ+s1+δ ∈ C and |B(s1 + δ)− b| < δ0.

If s1 = ±
√

2H chβ
2 (F )

H3 rk(F ) but s1 �= H2 chβ
1 (F )

H3 rk(F ) , then the function A(x) satisfying

μ
A(x),b
α,β (e(β+x)H) = μ

A(x),b
α,β (F )

is well-defined and continuous at a small neighbourhood of x = s1. There exists
|δ| < δ0 such that Eβ+s1+δ ∈ C and |A(s1 + δ)− a| < δ0.

If s1 = ±
√

2H chβ
2 (F )

H3 rk(F ) =
H2 chβ

1 (F )
H3 rk(F ) , since H3−• ch•(F ) �∈ R · (1, t, t22 ,

t3

6 ), we have

s31 �= 6 chβ
3 (F )

H3 rk(F ) . It follows that the positive function P (x) satisfying

μa,b
P (x),β(e

(β+x)H) = μa,b
P (x),β(F )

is well-defined and continuous at a small neighbourhood of x = s1 (as the denom-

inator of 1
2 (P (x))2 is

s31
6 H

3 rk(F ) − chβ3 (F ) at x = s1). There exists |δ| < δ0 such
that Eβ+s1+δ ∈ C and |P (s1 + δ)− α| < δ0.

In any case, we may assume there exists Eβ+s′1
∈ C and (α′, β, a′, b′) such that

• s′1 < −α′, Eβ+s′1
[2] ∈ Pσ((0, 1]) and ch

β+s′1
3 (F ) > 0;

• F is σa,b
α′,β-stable and μa′,b′

α′,β (F ) = μa′,b′

α′,β (Eβ+s′1
);

•
∣∣φσ(Eβ+s′1

[2])− φσ(F )
∣∣ < ε.

Note that φa′,b′

α′,β (F ) = φa′,b′

α′,β (Eβ+s′1
[2]) and F �= Eβ+s′1

[2], we have

Hom(Eβ+s′1
, F [t]) = (Hom(F,Eβ+s′1

[3− t]))∗ = 0

for all t �= 0,−1. Therefore,

Hom(F,Eβ+s′1
[4])−Hom(F,Eβ+s′1

[3])

=χ(F,Eβ+s′1
) = − rk(Eβ+s′1

) chβ+s′1(F ) < 0.

It follows that Hom(F,Eβ+s′1
[3]) �= 0. In particular,

infE∈C {φσ(E)− θ|Hom(F,E) �= 0} ≤ φσ(Eβ+s′1
[3])− θ < 1 + ε.

As ε tends to 0, we have infE∈C {φσ(E)− θ|Hom(F,E) �= 0} ≤ 1.

By the same argument, if any value of {(−1)i+1 chβ+si
3 (F )}i=1,2,3 is positive,

then

infE∈C {φσ(E)− θ|Hom(F,E) �= 0} ≤ 1.

If any value of {(−1)i+1 chβ+si
3 (F )}i=1,2,3 is negative, then

infE∈C {θ − φσ(E)|Hom(E,F ) �= 0} ≤ 1.

To conclude the argument for the case that H3−• ch•(F ) �∈ R · (1, t, t22 ,
t3

6 ) and

θ �= 1, we need the following property for the values of chβ+si
3 (F ).
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Lemma 4.5. The values {(−1)j chβ+si
3 (F )}i=1,2,3 cannot be all positive (or nega-

tive) at the same. Moreover, if all of them are non-negative (or non-positive), then
they must be all 0 and

(H3 rk(F ), H2 chβ1 (F ), H chβ2 (F ), chβ3 (F )) = λ · (1, b− C,−a,−C

2
α2)

for some λ ∈ R×.

The proof for the lemma is elementary, we postpone it after the proof of this
proposition.

By Lemma 4.5, the only outstanding case is when chβ+si
3 (F ) are all zero. In this

case, for every ε > 0, we may deform a to an a′ �= a such that

• dist(σ, σa′,b
α,β ) < ε;

• F is σa′,b
α,β -stable and is not in P

σa′,b
α,β

(1).

The characters of F cannot satisfy the condition

(H3 rk(F ), H chβ2 (F )) = λ · (1,−a′)

as that in Lemma 4.5 for any λ ∈ R×. Therefore,

infE∈C {φσ(E)− φσ(F )|Hom(F,E) �= 0}

< infE∈C

{
φ
σa′,b
α,β

(E)− φ
σa′,b
α,β

(F ) + 2ε

∣∣∣∣ Hom(F,E) �= 0

}
≤ 1 + 2ε.

As ε tends to 0, we get the inequality for σ. The statement holds for all F ∈ Pσ(θ)

with θ �∈ Z and H3−• ch•(F ) �= R · (1, t, t22 ,
t3

6 ).
In the case that θ = 1, if F is a skyscraper sheaf, then the statement holds

automatically as F ∈ C. Otherwise, ch(F ) �= (0, 0, 0, a), we can deform σ in any
small open neighbourhood so that F is still stable but not with phase 1. The
inequalities in the statement hold.

In the case that H3−• ch•(F ) = R · (1, t, t22 ,
t3

6 ) for some t ∈ R, we have

Qβ
K(H3−• ch•(F )) = 0 for all quadratic form Qβ

K = KΔH+∇β
H . By [5, Proposition

A.8], they are stable with respect to all stability conditions as that in Theorem 4.1.
In particular, F [−i] = F ′ ∈ Coh(A) where i = 0 when t > β + α; i = 1 when
β − α < t ≤ β + α; and i = 2 when t ≤ β − α. By the same argument as that in
Lemma 4.2, Hom(Es, F

′) �= 0 when s < t; and Hom(F ′, Es) �= 0 when s > t. It is
clear that both infimums for F in the statement are 0. �

Proof for Lemma 4.5. As si’s are the solutions to f(x) = 0, we have

s1 + s2 + s3 = 3b− 3C;(3)

s1s2 + s2s3 + s3s1 = −6a;(4)

s1s2s3 = 3α2C.(5)

Substitute (1) into chβ+si
3 (F )’s, we may replace the term chβ

3 (F ) by other terms:

(6) chβ+si
3 (F ) = (b−C−si)H chβ2 (F )+(a+

s2i
2
)H2 chβ1 (F )+(

1

2
Cα2− s3i

6
)H3 rk(F ).

To simplify the notations, we denote

(7) Li(x, y, z) := (b− C − si)x+ (a+
s2i
2
)y + (

1

2
Cα2 − s3i

6
)z.
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Substitute (x, y, z) = (
s2i
2 , si, 1) into Lj ’s, we have

Lj(
s2i
2
, si, 1) = (b− C)

s2i
2

− sjs
2
i

2
+ asi +

s2jsi

2
+

α2C

2
−

s3j
6

=
s3i
6

− sjs
2
i

2
+

s2jsi

2
−

s3j
6

=
1

6
(si − sj)

3.

Substitute (x, y, z) = (−a, b− C, 1) into Li’s, we have

Li(−a, b− C, 1) = asi +
s2i
2
(b− C) +

1

2
Cα2 − s3i

6

= −1

6

(
(s1s2 + s2s3 + s3s1)si − s2i (s1 + s2 + s3)− s1s2s3 + s3i

)
= 0.

Therefore, Li’s are linear dependant, and we have

(s3 − s1)
3L2 = (s3 − s2)

3L1 + (s2 − s1)
3L3.

Since s1 < s2 < s3, the values {(−1)iLi(x, y, z)} are all non-negative (or non-
positive) if and only if (x, y, z) ∈ R · (−a, b− C, 1). �

4.3. Stability manifold of abelian threefolds. Given stability conditions σ1

and σ2 on Db(X), we may consider the following generalised metric function on
them as that defined in [8, Section 6]:

d(σ1, σ2) := sup
0�=E∈Db(X)

{
∣∣φ−

σ1
(E)− φ−

σ2
(E)

∣∣ , ∣∣φ+
σ1
(E)− φ+

σ2
(E)

∣∣} ∈ [0,+∞].

Lemma 4.6. Let σ and τ be two stability conditions, δ ∈ [0, 1], and D be a set of
objects such that

(a) every object E in D is both σ-stable and τ -stable with φσ(E) = φτ (E);
(b) for every object F ∈ Pσ(θ), we have

infE∈D {θ − φσ(E)|Hom(E,F ) �= 0} ≤ δ;

infE∈D {φσ(E)− θ|Hom(F,E) �= 0} ≤ δ.

Then d(σ, τ ) ≤ δ.

Proof. For every τ -stable object F , we have the distinguished triangle

(8) E → F → G
+−→,

where E = HNφ+
σ (F )

σ (F ) and G = HN<φ+
σ (F )

σ (F ).
Suppose φ+

σ (F ) > φτ (F ) + δ, then it follows that

φσ(E) = φ+
σ (F ) > max{φτ (F ) + δ, φ+

σ (G)}.
Since E is σ-semistable, by the assumption, there exists A ∈ D such that

Hom(A,E) �= 0 and φτ (A) = φσ(A) > max{φτ (F ), φ+
σ (G)− δ}.

Apply Hom(A,−) to (8), we have an exact sequence

· · · → Hom(A,G[−1]) → Hom(A,E) → Hom(A,F ) → . . . .
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Since both A and F are τ -stable and φτ (A) > φτ (F ), Hom(A,F ) = 0. Since A is σ-
stable and φ+

σ (G[−1]) = φ+
σ (G)−1 ≤ φ+

σ (G)−δ < φσ(A), we have Hom(A,G[−1]) =
0. This contradicts to the fact that Hom(A,E) �= 0 and the exactness of the
sequence. Therefore, we must have φ+

σ (F ) ≤ φτ (F )+ δ for every τ -stable object F .
For the same reason, φ−

σ (F ) ≥ φτ (F ) − δ for every τ -stable object F . By
[8, Lemma 6.1], we have d(σ, τ ) ≤ δ. �

Lemma 4.7. Let σ and τ be two stability conditions with the same central charge.
If d(σ, τ ) ≤ 1, then σ = τ .

Proof. For every σ-stable object F , we first show that φ+
τ (F ) ≥ φσ(F ).

Suppose φ+
τ (F ) < φσ(F ), then since d(σ, τ ) ≤ 1, the object F ∈ Pτ

(
[φσ(F ) −

1, φσ(F ))
)
. Therefore,

Zτ (F ) = meπiθ for some m > 0 and θ ∈ [φσ(F )− 1, φσ(F )),

which cannot equal Zσ(F ) = m′eπiφσ(F ) for any m′ > 0. It follows that φ+
τ (F ) ≥

φσ(F ). Due to the same argument, for every τ -stable object E, φ+
σ (E) ≥ φτ (E).

For every σ-stable object F , we then show that φ+
τ (F ) = φσ(F ). Note that we

have the distinguished triangle

(9) E → F → G
+−→,

where E = HNφ+
τ (F )

τ (F ) and G = HN<φ+
τ (F )

τ (F ). Suppose φ+
τ (F ) > φσ(F ), then

φ+
σ (E) ≥ φτ (E) = φ+

τ (F ) > φσ(F ).

In particular, we have Hom(HNφ+
σ (E)

σ (E), F ) = 0.
Since d(σ, τ ) ≤ 1, we have

φ+
σ (G[−1]) ≤ φ+

τ (G) < φ+
τ (F ) = φτ (E) ≤ φ+

σ (E).

Therefore, we have Hom(HNφ+
σ (E)

σ (E), G[−1]) = 0. Apply Hom(HNφ+
σ (E)

σ (E),−) to
(9), we get the contradiction. Hence, we must have φ+

τ (F ) = φσ(F ).
By the same argument, φ−

τ (F ) = φσ(F ) for every σ-stable object F . By [8,
Lemma 6.1], d(σ, τ ) = 0. As σ and τ also have the same central charge, they are
the same stability condition. �

Now we are ready to prove our main result for the stability conditions on abelian
threefolds.

Theorem 4.8. Let (A,H) be a polarized abelian threefold and σ = (P, Z) be a

stability condition in StabH(A). Then σ = σa,b
α,βg for some α > 0, a > 1

6α
2+ 1

2 |b|α,
and g ∈ G̃L

+

2 (R).

Proof. Applying an element of G̃L
+

2 (R) one can assume that Z(Op) = −1 and
Op ∈ P(1) for all p ∈ A. In particular, the central charge is of the form

Z = − ch3 +l1H ch2 +l2H
2 ch1 +l3H

3 rk+i(m1H ch2 +m2H
2 ch1 +m3H

3 rk)

for some li,mi ∈ R.
We first show that m1 > 0. Suppose m1 ≤ 0, then we may deform the stability

condition so that Op ∈ P(1) and m1 < 0. Note that

lim
t→±∞

Im(Z(etH)) = −∞,
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it follows from Corollary 2.16, Lemma 2.11 that all Et ∈ C are in the heart
P((−1, 0]). Note that

lim
t→+∞

−Re(Z(etH))

Im(Z(etH))
= −∞ and lim

t→−∞
−Re(Z(etH))

Im(Z(etH))
= +∞,

we have limt→+∞(φσ(Et)) = −1 and limt→−∞(φσ(Et)) = 0. This contradicts with
Corollary 2.16 and Lemma 4.2. Therefore, we must have m1 > 0.

Applying an element of G̃L
+

2 (R) we may further assume that the central charge
is of the form

Z = − chβ3 +bH chβ2 +aH2 chβ1 +cH3 rk+i(H chβ2 +dH3 rk)

for some a, b, c, d, β ∈ R.
We then show that d must be negative. Suppose d ≥ 0, we may deform the

stability condition so that d > 0. Note that Im(Z(etH)) > 0 for all t ∈ Q, if follows
from Corollary 2.16, Lemmas 2.11 and 4.2 that there exists β′ ∈ R ∪ {±∞} such
that Et ∈ P((−2,−1]) for all t < β′ and Et ∈ P((0, 1]) for all t > β′.

We show that β′ must be β in this case. Suppose β′ < β, then there exists p
q such

that β′ < p
q < p+1

q < β, and both p and p+1 are coprime with q. Let E p
q
, E p+1

q
∈ C.

Since both of them are the push-forward of line bundle from the same isogeny map,
there exists an injective map f : E p

q
→ E p+1

q
. Since the sheaf F := coker(f) is the

extension of E p+1
q

and E p
q
[1], it must be in P((0, 2]). By Lemma 2.11 part (b), the

coherent sheaf F is in P((0, 1]). We get the contradiction by computing

Im(Z(F )) = Im(Z(E p+1
q
))− Im(Z(E p

q
)) =

1

2q

(
2p+ 1

q
− 2β

)
H3 rk(E p

q
) < 0.

Suppose β′ > β, then there exists p
q such that β < p

q < p+1
q < β′, and both p and

p+ 1 are coprime with q. Since the sheaf F is the extension of E p+1
q

and E p
q
[1], it

must be in P((−2, 0]). As F is a torsion sheaf, it is in P((−1, 0]) by Lemma 2.11
part (b). We get the contradiction by computing

Im(Z(F )) = Im(Z(E p+1
q
))− Im(Z(E p

q
)) =

1

2q

(
2p+ 1

q
− 2β

)
H3 rk(E p

q
) > 0.

Therefore, β′ = β. In particular, for any s < β < t, we have φσ(Es) ≤ −1 < 0 <
φσ(Et). We may deform the stability condition in a sufficiently small neighbourhood

to another stability condition σ′ such that Op ∈ P(1) and ImZ ′ = H chβ0

2 +d′H3 rk
for some β0 > β and d′ > 0. By the same argument, we have φσ′(Et) ≤ −1 < 0 <
φσ(Et) for any rational number β < t < β0. Hence, by [8, Lemma 6.1], we have
dist(σ, σ′) ≥ 1, and this leads to the contradiction.

Applying an element of G̃L
+

2 (R) we may further assume that the central charge
is of the form

Z = − chβ3 +bH chβ2 +aH2 chβ1 +i(H chβ2 −
α2

2
H3 rk)

for some a, b, β ∈ R and α > 0.

We now show that a > α2

6 + 1
2 |b|α. Suppose a ≤ α2

6 + 1
2 |b|α, by deforming

the stability condition, we may assume α, β ∈ Q, and a < α2

6 + 1
2 |b|α. Note that

Im(Z(Et)) ≥ 0 when and only when |t− β| ≥ α. By Corollary 2.16, Lemmas 2.11
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and 4.2, we have Et ∈ P((0, 1]) when t > β +α; Et ∈ P((−1, 0]) when β − α < t ≤
β + α; and Et ∈ P((−2,−1]) when t ≤ β − α. Note that Im(Z(Eβ±α)) = 0 and

Re(Z(Eβ+α[1])) = − rk(Eβ+α)H
3α(a+

1

2
bα− α2

6
);

Re(Z(Eβ−α[2])) = − rk(Eβ−α)H
3α(a− 1

2
bα− α2

6
).

At least one of them is positive, which leads to the contradiction.

Finally, applying an element of G̃L
+

2 (R), we may assume that Op ∈ P(1), and

σ has the same central charge as that of σa,b
α,β for some α > 0 and a > α2

6 + 1
2 |b|α.

Moreover, by Corollary 2.16, Lemmas 4.2 and 2.11, for every object E ∈ C, we have
φσ(E) = φσa,b

α,β
(E).

By Proposition 4.3 and Lemma 4.6, we have d(σ, σa,b
α,β) ≤ 1. By Lemma 4.7, we

have σ = σa,b
α,β . �

Corollary 4.9. Let (A,H) be a polarized abelian threefold, then StabH(A) = P̃.

4.4. Further questions.

Question 4.10. Let (X,H) be a smooth projective variety whose Albanese mor-
phism is finite, then is StabH(X) also contractible?

This is already non-trivial for the threefold case. Unlike Theorem 4.8 of the
abelian threefold case, there are examples of different geometric stability condi-
tions on the projective space with the same central charge. However, we do not
expect such examples exist when the Albanese morphism of the variety is finite. In
particular, we expect [5, Conjecture 1.7] to hold in an even stronger sense that P̃n

is the whole space StabH(X) when the Albanese morphism of X is finite.

Question 4.11. Let X be a smooth projective variety whose Albanese morphism
is not finite. Then do there always exist non-geometric stability conditions?

In other words, we expect the finite Albanese morphism condition is necessary
and sufficient for all stability conditions being geometric. When X is of dimension
one, the answer is affirmative by [24, Theorem 2.7]. When X is of dimension greater
than or equal to three, the question is far beyond reach, as even the existence of
stability conditions is only known in few cases, see [5, 17, 20, 21] for more details.

This makes the surface case the most interesting one, which is nevertheless highly
non-trivial. By gluing stability conditions with respect to the Orlov semiorthogonal
decomposition for blow-ups, there are always non-geometric stability conditions
on non-minimal surfaces. One may therefore always assume that the surface is
minimal. Among all such surfaces, the most interesting case is when the Albanese
morphism of X is trivial, in other words, H1(X,OX) = 0. We have the following
conjecture for the Le Poitier function of them.

Conjecture. Let (S,H) be a smooth polarized surface with zero irregularity, then
the Le Potier function ΦS,H is not continuous at 0.

Admitting this conjecture, we expect that there always exist stability condi-
tions as that discussed in [9, Theorem 12.1] when S has zero irregularity. We will
investigate this direction in a future project.
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English summary), Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 193–243. MR816365
[12] Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, 2nd

ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010, DOI
10.1017/CBO9780511711985. MR2665168

[13] Daniel Huybrechts, Emanuele Macr̀ı, and Paolo Stellari, Stability conditions for generic K3
categories, Compos. Math. 144 (2008), no. 1, 134–162, DOI 10.1112/S0010437X07003065.
MR2388559

[14] Yujiro Kawamata, Characterization of abelian varieties, Compositio Math. 43 (1981), no. 2,
253–276. MR622451

[15] Maxim Kontsevich and Yan Soibelman, Motivic Donaldson-Thomas invariants: summary of
results, Mirror symmetry and tropical geometry, Contemp. Math., vol. 527, Amer. Math.
Soc., Providence, RI, 2010, pp. 55–89, DOI 10.1090/conm/527/10400. MR2681792

[16] Naoki Koseki, On the Bogomolov–Gieseker inequality for hypersurfaces in the projective
spaces, 2020, arXiv:2008.09799.

[17] Naoki Koseki, Stability conditions on threefolds with nef tangent bundles, Adv. Math. 372
(2020), 107316, 29, DOI 10.1016/j.aim.2020.107316. MR4127165

[18] Mart́ı Lahoz and Andrés Rojaz, Chern degree functions, to appear in Commun. Contemp.
Math. (2022).

[19] Chunyi Li, The space of stability conditions on the projective plane, Selecta Math. (N.S.) 23
(2017), no. 4, 2927–2945, DOI 10.1007/s00029-017-0352-4. MR3703470

[20] Chunyi Li, On stability conditions for the quintic threefold, Invent. Math. 218 (2019), no. 1,
301–340, DOI 10.1007/s00222-019-00888-z. MR3994590

https://www.ams.org/mathscinet-getitem?mr=2998828
https://www.ams.org/mathscinet-getitem?mr=4023385
https://www.ams.org/mathscinet-getitem?mr=3263665
https://www.ams.org/mathscinet-getitem?mr=3592689
https://www.ams.org/mathscinet-getitem?mr=3573975
https://www.ams.org/mathscinet-getitem?mr=3121850
https://www.ams.org/mathscinet-getitem?mr=1651025
https://www.ams.org/mathscinet-getitem?mr=2373143
https://www.ams.org/mathscinet-getitem?mr=2376815
https://www.ams.org/mathscinet-getitem?mr=1910263
https://www.ams.org/mathscinet-getitem?mr=816365
https://www.ams.org/mathscinet-getitem?mr=2665168
https://www.ams.org/mathscinet-getitem?mr=2388559
https://www.ams.org/mathscinet-getitem?mr=622451
https://www.ams.org/mathscinet-getitem?mr=2681792
https://www.ams.org/mathscinet-getitem?mr=4127165
https://www.ams.org/mathscinet-getitem?mr=3703470
https://www.ams.org/mathscinet-getitem?mr=3994590


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

5690 LIE FU, CHUNYI LI, AND XIAOLEI ZHAO

[21] Yucheng Liu, Stability conditions on product varieties, J. Reine Angew. Math. 770 (2021),
135–157, DOI 10.1515/crelle-2020-0010. MR4193465

[22] Antony Maciocia and Dulip Piyaratne, Fourier-Mukai transforms and Bridgeland stability
conditions on abelian threefolds II, Internat. J. Math. 27 (2016), no. 1, 1650007, 27, DOI
10.1142/S0129167X16500075. MR3454685

[23] Antony Maciocia and Dulip Piyaratne, Fourier-Mukai transforms and Bridgeland stability
conditions on abelian threefolds, Algebr. Geom. 2 (2015), no. 3, 270–297, DOI 10.14231/AG-

2015-012. MR3370123
[24] Emanuele Macr̀ı, Stability conditions on curves, Math. Res. Lett. 14 (2007), no. 4, 657–672,

DOI 10.4310/MRL.2007.v14.n4.a10. MR2335991
[25] Emanuele Macr̀ı and Benjamin Schmidt, Lectures on Bridgeland stability, Moduli of curves,

Lect. Notes Unione Mat. Ital., vol. 21, Springer, Cham, 2017, pp. 139–211. MR3729077
[26] Shigeru Mukai, Semi-homogeneous vector bundles on an Abelian variety, J. Math. Kyoto

Univ. 18 (1978), no. 2, 239–272, DOI 10.1215/kjm/1250522574. MR498572
[27] So Okada, Stability manifold of P1, J. Algebraic Geom. 15 (2006), no. 3, 487–505, DOI

10.1090/S1056-3911-06-00432-2. MR2219846
[28] D. O. Orlov, Derived categories of coherent sheaves on abelian varieties and equivalences

between them (Russian, with Russian summary), Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002),
no. 3, 131–158, DOI 10.1070/IM2002v066n03ABEH000389; English transl., Izv. Math. 66
(2002), no. 3, 569–594. MR1921811

[29] Dulip Piyaratne and Yukinobu Toda, Moduli of Bridgeland semistable objects on 3-folds
and Donaldson-Thomas invariants, J. Reine Angew. Math. 747 (2019), 175–219, DOI
10.1515/crelle-2016-0006. MR3905133

[30] A. Polishchuk, Constant families of t-structures on derived categories of coherent sheaves
(English, with English and Russian summaries), Mosc. Math. J. 7 (2007), no. 1, 109–134,
167, DOI 10.17323/1609-4514-2007-7-1-109-134. MR2324559

[31] Alexander Polishchuk, Abelian varieties, theta functions and the Fourier transform, Cam-
bridge Tracts in Mathematics, vol. 153, Cambridge University Press, Cambridge, 2003, DOI
10.1017/CBO9780511546532. MR1987784

[32] Alexander Polishchuk, Phases of Lagrangian-invariant objects in the derived category of an

abelian variety, Kyoto J. Math. 54 (2014), no. 2, 427–482, DOI 10.1215/21562261-2642449.
MR3215574

[33] Xavier Roulleau, Fano surfaces with 12 or 30 elliptic curves, Michigan Math. J. 60 (2011),
no. 2, 313–329, DOI 10.1307/mmj/1310667979. MR2825265

Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud

University, PO Box 9010, 6500 GL, Nijmegen, Netherlands

Email address: lie.fu@math.ru.nl
URL: https://www.math.ru.nl/~liefu/

Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom

Email address: C.Li.25@warwick.ac.uk
URL: https://sites.google.com/site/chunyili0401/

Department of Mathematics, University of California, South Hall 6607, Santa Bar-

bara, California 93106

Email address: xlzhao@math.ucsb.edu
URL: https://sites.google.com/site/xiaoleizhaoswebsite/

https://www.ams.org/mathscinet-getitem?mr=4193465
https://www.ams.org/mathscinet-getitem?mr=3454685
https://www.ams.org/mathscinet-getitem?mr=3370123
https://www.ams.org/mathscinet-getitem?mr=2335991
https://www.ams.org/mathscinet-getitem?mr=3729077
https://www.ams.org/mathscinet-getitem?mr=498572
https://www.ams.org/mathscinet-getitem?mr=2219846
https://www.ams.org/mathscinet-getitem?mr=1921811
https://www.ams.org/mathscinet-getitem?mr=3905133
https://www.ams.org/mathscinet-getitem?mr=2324559
https://www.ams.org/mathscinet-getitem?mr=1987784
https://www.ams.org/mathscinet-getitem?mr=3215574
https://www.ams.org/mathscinet-getitem?mr=2825265

	1. Introduction
	2. Geometric stability conditions
	3. Surface case
	4. Abelian threefold case
	Acknowledgments
	References

