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Abstract We prove that for any polarized symplectic automorphism of the Fano variety of
lines of a smooth cubic fourfold (equipped with the Plücker polarization), the induced action
on the Chow group of 0-cycles is identity, as predicted by Bloch–Beilinson conjecture. We
also prove the same result for the Chow group of homologically trivial 2-cycles up to torsion.

1 Introduction

In this paper we are interested in an analogue of Bloch’s conjecture for the action on 0-cycles
of a symplectic automorphism of a irreducible holomorphic symplectic variety. First of all, let
us recall the Bloch conjecture and the general philosophy of the Bloch–Beilinson conjecture
which motivate our result.

The Bloch conjecture for 0-cycles on algebraic surfaces states the following (cf. [6, p.
17]):

Conjecture 1.1 (Bloch) Let Y be a smooth projective variety, X be a smooth projective
surface and � ∈ CH2(Y × X) be a correspondence between them. If the cohomological
correspondence [�]∗ : H2,0(X) → H2,0(Y ) vanishes, then the Chow-theoretic correspon-
dence

�∗ : CH0(Y )alb → CH0(X)alb

vanishes as well, where CH0(•)alb := Ker (alb : CH0(•)hom → Alb(•)) denotes the group
of the 0-cycles of degree 0 whose albanese classes are trivial.

The special case in Bloch’s conjecture where X = Y is a surface S and � = �S ∈ CH2(S ×
S) states: if a smooth projective surface S admits no non-zero holomorphic 2-forms, i.e.
H2,0(S) = 0, then CH0(S)alb = 0. This has been proved for surfaces which are not of
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general type [7], for surfaces rationally dominated by a product of curves (by Kimura’s work
[18] on the nilpotence conjecture, cf. [26, Theorem 3.30]), and for Catanese surfaces and
Barlow surfaces [25], etc.

What is more related to the present paper is another particular case of Bloch’s conjecture:
let S be a smooth projective surface with irregularity q = 0. If an automorphism f of S acts
on H2,0(S) as identity, i.e. it preserves any holomorphic 2-forms, then f also acts as identity
on C H0(S). This version is obtained from Conjecture 1.1 by taking X = Y = S a surface
and � = �S −� f ∈ CH2(S × S), where � f is the graph of f . We would like to remark that
it is also a consequence of the more general Bloch–Beilinson–Murre conjecture.

Recently Voisin [23] and Huybrechts [15] proved this conjecture for any symplectic auto-
morphism of finite order of a projective K3 surface (see also [16]):

Theorem 1.2 (Voisin, Huybrechts) Let f be an automorphism of finite order of a projective
K3 surface S. If f is symplectic, i.e. f ∗(ω) = ω, where ω is a generator of H2,0(S), then f
acts as identity on CH0(S).

The purpose of the paper is to investigate the analogous results in higher dimensional
situation. The natural generalizations of K3 surfaces in higher dimensions are the so-called
irreducible holomorphic symplectic varieties or hyperkähler manifolds (cf. [3]), which by
definition is a simply connected compact Kähler manifold with H2,0 generated by a sym-
plectic form (i.e. nowhere degenerate holomorphic 2-form). We can conjecture the following
vast generalization of Theorem 1.2:

Conjecture 1.3 Let f be an automorphism of finite order of an irreducible holomorphic
symplectic projective variety X. If f is symplectic: f ∗(ω) = ω, where ω is a generator
H2,0(X). Then f acts as identity on CH0(X).

Like Theorem 1.2 is predicted by Bloch’s Conjectures 1.1, 1.3 is predicted by the more
general Bloch–Beilinson conjecture (cf. [2,5, Chapitre 11], [17,21, Chapter 11]). Instead
of the most ambitious version involving the conjectural category of mixed motives, let us
formulate it only for the 0-cycles and in the down-to-earth fashion ([21, Conjecture 11.22]),
parallel to Conjecture 1.1:

Conjecture 1.4 (Bloch–Beilinson) There exists a decreasing filtration F• on CH0(X)Q :=
CH0(X)⊗ Q for each smooth projective variety X, satisfying:

(i) F0 CH0(X)Q = CH0(X)Q, F1 CH0(X)Q = CH0(X)Q,hom;
(ii) F• is stable under algebraic correspondences;

(iii) Given a correspondence � ∈ CHdim X (Y × X)Q. If the cohomological correspondence
[�]∗ : Hi,0(X) → Hi,0(Y ) vanishes, then the Chow-theoretic correspondence Gri

F �∗ :
Gri

F CH0(Y )Q → Gri
F CH0(X)Q on the i-th graded piece also vanishes.

(iv) Fdim X+1 CH0(X)Q = 0.

The implication from the Bloch–Beilinson Conjectures 1.3–1.4 is quite straightforward:
as before, we take Y = X to be the symplectic variety. If f is of order n, then define
two projectors in CHdim X (X × X)Q by π inv := 1

n

(
�X + � f + · · · + � f n−1

)
and π# :=

�X −π inv . Since H2 j−1,0(X) = 0 and H2 j,0(X) = C ·ω j , the assumption that f preserves
the symplectic form ω implies that [π#]∗ : Hi,0(X) → Hi,0(X) vanishes for any i . By
(i i i), Gri

F (π
#∗ ) : Gri

F CH0(X)Q → Gri
F CH0(X)Q vanishes for any i . In other words, for

the Chow motive (X, π#), Gri
F CH0(X, π#) = 0 for each i . Therefore by five-lemma and the

finiteness condition (iv), we have CH0(X, π#) = 0, that is, Im(π#∗ ) = 0. Equivalently, for
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any z ∈ CH0(X)Q, π inv(z) = z, i.e. f acts as identity on CH0(X)Q. Thanks to Roitman’s
theorem on the torsion of CH0(X), the same still holds true for Z-coefficients.

In [4], Beauville and Donagi provide an example of a 20-dimensional family of 4-
dimensional irreducible holomorphic symplectic projective varieties, namely the Fano vari-
eties of lines contained in smooth cubic fourfolds. In this paper, we propose to study Conjec-
ture 1.3 for finite order symplectic automorphisms of this particular family. Our main result
is the following:

Theorem 1.5 Let f be an automorphism of a smooth cubic fourfold X. If the induced action
on its Fano variety of lines F(X), denoted by f̂ , preserves the symplectic form, then f̂ acts
on CH0(F(X)) as identity. Equivalently, the polarized symplectic automorphisms of F(X)
act as identity on CH0(F(X)).

We will show in Sect. 3 (cf. Corollary 3.3) how to deduce the above main theorem from
the following result:

Theorem 1.6 (cf. Theorem 4.3) Let f be an automorphism of a smooth cubic fourfold X
acting as identity on H3,1(X). Then f acts as the identity on CH1(X)Q.

As a consequence of the main theorem, we will deduce in the last section the following
consequence:

Corollary 1.7 Under the same hypothesis as in Theorem 1.5: if f̂ is a polarized symplectic
automorphism of the Fano variety of lines F(X) of a smooth cubic fourfold X, then f̂ acts
on CH2(F(X))Q,hom as identity.

Let us explain the main strategy of the proof of Theorem 1.6: we use the techniques of
spread as in Voisin’s paper [24]. More precisely, we can summarize as follows the main
steps. Let f and X be as in Theorem 1.6.

(a) Let � f ⊂ X × X be the graph of f . Let n be the order of f and π inv := ∑n−1
i=0 � f i ∈

CH4(X × X)Q be the projector onto the invariant part of X . In order to prove that
f acts trivially on CH1(X)Q it suffices to show that there exists a decomposition in
CH4(X × X)Q:

�X − π inv = �′
0 + Z ′ + Z ′′, (1)

where �′
0 is supported on Y × Y for a codimension 2 closed algebraic subset Y ⊂ X ,

and Z ′, Z ′′ are the pull-back of cycles on X × P5 and P5 ×X respectively, cf. (37).
(b) To prove (1), we show firstly that there exists an algebraic cycle �′

0 supported on Y × Y
for a codimension 2 closed algebraic subset Y ⊂ X , such that �X − π inv = �′

0 has
zero cohomology class (with rational coefficients), see Proposition 6.2. Now consider
the family X → B of all smooth cubic fourfolds which are mapped to themselves by
the automorphism f (here f is a fixed projective automorphism of P5). One shows that
the cycle �′

0 for the varying X × X fit together to give a cycle �′ on X ×B X , see
Proposition 6.3. Of course, the cycles (�Xb − π inv

Xb
) fit together to give a cycle � on

X ×b X . Then the cohomology class of �−�′ restricts to zero on each fiber Xb × Xb.
By a Leray spectral sequence argument as in [24], there exist algebraic cycles Z ′, Z ′′
on X ×b X , which are the pull-back of cycles on X × P5 and P5 ×X respectively,
such that � − �′ − Z ′ − Z ′′ has zero cohomology class.

(c) Now comes the core of the proof: one show that given z ∈ CH4(X ×B X )Q which is
homologically trivial there exists a dense open subset B ′ ⊂ B such that the restriction
of z to the base-changed family X ′ ×B′ X ′ vanishes. There are two main ingredients
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in the proof:
(i) One completes the family X ×B X to a smooth projective variety for which the
rational equivalence and cohomological equivalence coincide, once we tensor with Q.
(i i) To extend a homologically trivial cycle to a homologically trivial cycle in the com-
pactification (or rather its resolution of singularities), we exploit the fact that the Chow
motive of a cubic fourfold decomposes into pieces which do not exceed the size of the
Chow motives of surfaces.

(d) Applying the result in (c) to the cycle (� − �′ − Z ′ − Z ′′) gives (1) and hence the
result.

We organize the paper as follows. In Sect. 2, we start describing the parameter space of
cubic fourfolds with an action satisfying that the induced actions on the Fano varieties of
lines are symplectic. In Sect. 3, the main theorem is reduced to a statement about the 1-cycles
of the cubic fourfold. By varying the cubic fourfold, in Sect. 4 we reduce the main theorem
1.5 to the form that we will prove, which concerns only the 1-cycles of a general member in
the family. The purpose of Sect. 5 is to establish the triviality of Chow groups of some total
spaces. The first half Sect. 5.1 shows the triviality of Chow groups of its compactification;
then the second half Sect. 5.2 passes to the open part by comparing to surfaces. Section 6
proves the main Theorem 1.5 by combining the strategy of Voisin’s paper [24] and the result
of Sect. 5. In Sect. 7 we reformulate the hypothesis in the main theorem to the assumption
of being ‘polarized’. Finally in Sect. 8, we verify another prediction of Bloch–Beilinson
cFourieronjecture on the Chow group of 2-cycles (Corollary 1.7) from our main result.

We will work over the complex numbers throughout this paper.

2 Basic settings

In this first section, we establish the basic settings for automorphisms of the Fano variety of
a cubic fourfold, and work out the condition corresponding to the symplectic assumption.

Let V be a fixed 6-dimensional C-vector space, and P5 := P(V ) be the corresponding
projective space of 1-dimensional subspaces of V . Let X ⊂ P5 be a smooth cubic fourfold,
which is defined by a polynomial T ∈ H0(P5,O(3)) = Sym3 V ∨. Let f be an automorphism
of X . Since Pic(X) = Z · OX (1), any automorphism of X is induced: it is the restriction of
a linear automorphism of P5 preserving X , still denoted by f .

It is classical and well-known that Aut(X) is a finite group. Let f be of order n ∈ N+.
Since the minimal polynomial of f is semi-simple, we can assume without loss of generality
that f : P5 → P5 is given by:

f : [x0 : x1 : · · · : x5] 	→ [ζ e0 x0 : ζ e1 x1 : · · · : ζ e5 x5], (2)

where ζ = e
2π

√−1
n is a primitive n-th root of unity and ei ∈ Z/nZ for i = 0, . . . , 5. Now

it is clear that X is preserved by f if and only if its defining equation T is contained in an
eigenspace of Sym3 V ∨, where Sym3 V ∨ is endowed with the induced action coming from
V .

Let us make it more precise: as usual, we use the coordinates x0, x1, . . . , x5 of P5 as a
basis of V ∨, then

{
x α

}
α∈� is a basis of Sym3 V ∨ = H0(P5,O(3)), where x α denotes

xα0
0 xα1

1 · · · xα5
5 , and

� :=
{
α = (α0, . . . , α5) ∈ N5 | α0 + · · · + α5 = 3

}
. (3)
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Therefore the eigenspace decomposition of Sym3 V ∨ is the following:

Sym3 V ∨ =
⊕

j∈Z/nZ

⎛

⎝
⊕

α∈� j

C · x α

⎞

⎠,

where for each j ∈ Z/nZ, we define the subset of �

� j :=
{
α = (α0, . . . , α5) ∈ N5 | α0+···+α5=3

e0α0+···+e5α5= j mod n

}
. (4)

and the eigenvalue of
⊕

α∈� j
C · x α is ζ j . Therefore, explicitly speaking, we have:

Lemma 2.1 Keeping the notation (2), (3), (4), the cubic fourfold X is preserved by f if and
only if there exists a j ∈ Z/nZ such that the defining polynomial T ∈ ⊕

α∈� j
C · x α .

Let us deal now with the symplectic condition for the induced action on F(X). First of all,
let us recall some basic constructions and facts. The following subvariety of the Grassmannian
Gr(P1,P5)

F(X) :=
{
[L] ∈ Gr(P1,P5) | L ⊂ X

}
(5)

is called the Fano variety of lines1 of X . It is well-known that F(X) is a 4-dimensional smooth
projective variety equipped with the restriction of the Plücker polarization of the ambient
Grassmannian. Consider the incidence variety (i.e. the universal projective line over F(X)):

P(X) := {(x, [L]) ∈ X × F(X) | x ∈ L}.
We have the following natural correspondence:

P(X)
q

��

p

��

X

F(X)

.

Theorem 2.2 (Beauville–Donagi [4]) Using the above notation,

(i) F(X) is a 4-dimensional irreducible holomorphic symplectic projective variety, i.e. F(X)
is simply-connected and H2,0(F(X)) = C ·ω withω a nowhere degenerate holomorphic
2-form.

(ii) The correspondence

p∗q∗ : H4(X,Z) → H2(F(X),Z)

is an isomorphism of Hodge structures.

In particular, p∗q∗ : H3,1(X)
�−→ H2,0(X) is an isomorphism. If X is equipped with an action

f as before, we denote by f̂ the induced automorphism of F(X). Since the construction of
the Fano variety of lines F(X) and the correspondence p∗q∗ are both functorial with respect
to X , the condition that f̂ is symplectic, namely f̂ ∗(ω) = ω forω a generator of H2,0(F(X)),
is equivalent to the condition that f ∗ acts as identity on H3,1(X). Working this out explicitly,
we arrive at the following

1 In the scheme-theoretic language, F(X) is defined to be the zero locus of sT ∈ H0
(

Gr(P1,P5), Sym3 S∨)
,

where S is the universal tautological subbundle on the Grassmannian, and sT is the section induced by T using
the morphism of vector bundles Sym3 V ∨ ⊗ O → Sym3 S∨ on Gr(P1,P5).
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Lemma 2.3 Let f be the linear automorphism in (2), and X be a cubic fourfold defined by
equation T . Then the followings are equivalent:

• f preserves X and the induced action f̂ on F(X) is symplectic;
• There exists a j ∈ Z/nZ satisfying the equation

e0 + e1 + · · · + e5 = 2 j mod n, (6)

such that the defining polynomial T ∈ ⊕
α∈� j

C · x α , where as in (4)

� j :=
{
α = (α0, . . . , α5) ∈ N5 | α0+···+α5=3

e0α0+···+e5α5= j mod n

}
.

Proof Firstly, the condition that f preserves X is given in Lemma 2.1. As is remarked before
the lemma, f̂ is symplectic if and only if f ∗ acts as identity on H3,1(X). On the other hand,
by Griffiths’ theory of the Hodge structures of hypersurfaces (cf. [21, Chapter 18]), H3,1(X)
is generated by the residue Res 	

T 2 , where	 := ∑5
i=0(−1)i xi dx0 ∧· · ·∧ d̂xi ∧· · ·∧dx5 is a

generator of H0(P5, KP5(6)). f given in (2), we get f ∗	 = ζ e0+···+e5	 and f ∗(T ) = ζ j T .
Hence the action of f ∗ on H3,1(X) is multiplication by ζ e0+···+e5−2 j , from which we obtain
Eq. (6). �

3 Reduction to 1-cycles on cubic fourfolds

The objective of this section is to prove Corollary 3.3. It allows us in particular to reduce the
main Theorem 1.5, which is about the action on 0-cycles on the Fano variety of lines, to the
study of the action on 1-cycles of the cubic fourfold itself (see Theorem 4.3).

To this end, we want to make use of Voisin’s equality (see Proposition 3.1(i i)) in the
Chow group of 0-cycles of the Fano variety of a cubic fourfold. Let X be a (smooth) cubic
fourfold, F := F(X) be its Fano variety of lines and P := P(X) be the universal projective
line over F fitting into the diagram below:

P

p

��

q
�� X

F

For any line L contained in X , we denote the corresponding point in F by l. Define Sl :={
l ′ ∈ F | L ′ ∩ L �= ∅

}
to be the surface contained in F parameterizing lines in X meeting a

give line L . As algebraic cycles,

L = q∗ p∗(l) ∈ CH1(X); (7)

Sl = p∗q∗(L) ∈ CH2(F). (8)

The following relations are discovered by Voisin in [22]:

Proposition 3.1 Let I := {
(l, l ′) ∈ F × F | L ∩ L ′ �= ∅

}
be the incidence subvariety. We

denote by g ∈ CH1(F) the Plücker polarization, and by c ∈ CH2(F) the second Chern class
of the restriction to F of the tautological rank 2 subbundle on Gr(P1,P5).

(i) There is a quadratic relation in CH4(F × F):

I 2 = α�F + I · � + �′,
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where α �= 0 is an integer,� is a degree 2 polynomial in pr∗1 g, pr∗2 g, and�′ is a weighted
degree 4 polynomial in pr∗1 g, pr∗2 g, pr∗1 c, pr∗2 c.

(ii) For any l ∈ F, we have an equality in CH0(F):

S2
l = α · l + βSl · g2 + �′′, (9)

where α �= 0 and β are constant integers, �′′ is a polynomial in g2 and c of degree 2
with integral coefficients independent of l.

Proof For the first equality (i), cf. [22, Proposition 3.3]. For (i i), we restrict the relation in
(i) to a fiber {l} × F , then I |{l}×F = Sl and �F |{l} × F = l. Hence the Eq. (9). �

Corollary 3.2 Given an automorphism f of a cubic fourfold X, let L be a line contained in
X and l ∈ CH0(F), Sl ∈ CH2(F) be the cycles as above. Then the followings are equivalent:

(i) f̂ (l) = l in CH0(F);
(ii) f (L) = L in CH1(X);

(iii) f̂ (Sl) = Sl in CH2(F).

The same equivalences hold also for Chow groups with rational coefficients.

Proof (i) ⇒ (i i): by (7) and the functorialities of p and q .
(i i) ⇒ (i i i): by (8) and the functorialities of q and p.
(i i i) ⇒ (i): by (9) and the fact that g, c are all invariant by f̂ , we obtain α(l − f̂ (l)) = 0

in CH0(F)with α �= 0. However by Roitman theorem CH0(F) is torsion-free, thus l = f̂ (l)
in CH0(F).

Of course, the same2 proof gives the same equivalences for Chow groups with rational
coefficients. �

In particular, we have:

Corollary 3.3 Let f be an automorphism of a cubic fourfold X and F be the Fano variety
of lines of X, equipped with the induced action f̂ . Then the followings are equivalent:

(i) f̂ acts on CH0(F) as identity;
(ii) f̂ acts on CH0(F)Q as identity;

(iii) f acts on CH1(X) as identity;
(iv) f acts on CH1(X)Q as identity.

Proof By the result in [20]3 that CH1(X) is generated by the lines contained in X , the
previous corollary gives the equivalences (i) ⇔ (i i i) and (i i) ⇔ (iv). On the other hand, F
is simply-connected and thus its Albanese variety is trivial. Therefore CH0(F) is torsion-free
by Roitman’s theorem, hence (i) ⇔ (i i). �

We remark that this corollary allows us to reduced Theorems 1.5–1.6 which is stated
purely in terms of the action on the Chow group of the 1-cycles of the cubic fourfold itself.

2 In fact easier, because we do not need to invoke Roitman theorem.
3 For rational coefficients it can be easily deduced by the argument in [13].
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4 Reduction to the general member of the family

Our basic approach to the main theorem 1.5 is to vary the cubic fourfold in family and make
use of certain good properties of the total space (cf. Sect. 5) to get some useful information
for a member of the family. To this end, we give in this section a family version of previous
constructions, and then by combining with Corollary 3.3, we reduce the main Theorems
4.3–1.5 which is a statement for 1-cycles of a general member in the family.

Fix n ∈ N+, fix f as in (2) and fix a solution j ∈ Z/nZ of (6). Consider the projective
space parameterizing certain possibly singular cubic hypersurfaces in P5.

B = P

⎛

⎝
⊕

α∈� j

C · x α

⎞

⎠,

where � j is defined in (4). Let us denote the universal family by

X

π

��

B

whose fibre over the a point b ∈ B is a cubic hypersurface in P5 denoted by Xb. Let B ⊂ B
be the Zariski open subset parameterizing the smooth ones. By base change, we have over
B the universal family of smooth cubic fourfolds with a (constant) fiberwise action f , and
similarly the universal Fano variety of lines F equipped with the corresponding fiberwise
action f̂ :

f̂ � F

����
��

��
��

�
X

π

��

� � �� B × P5 � f

pr1
������������

B

(10)

The fibre over b ∈ B of F is denoted by Fb = F(Xb), on which f̂ acts symplectically by
construction.

By the following general fact, we claim that to prove the main theorem 1.5, it suffices to
prove it for a very general member in the family:

Lemma 4.1 Let F → B be a smooth projective fibration with a fibrewise action f̂ (for
example in the situation (10) before). If for a general point b ∈ B, f̂ acts as identity on
CH0(Fb), then the same thing holds true for any b ∈ B.

Proof For any b0 ∈ B, we want to show that f̂ acts as identity on CH0(Fb0). Given any
0-cycle Z ∈ CH0(Fb0), we can find a generically finite dominant base-change

F ′ ��

�
��

F

��

B ′ �� B

and a cycle Z ∈ CHdim B′(F ′), such that Z |F ′
b′
0

= Z , where b′
0 ∈ B ′ is a preimage of b0 ∈ B.

(For example, when Z is just one point, we can take B ′ to be the transversal intersection of
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(dim F − dim B) general hyperplane sections of F passing through this point. By iterating
this construction, one can treat the general case when Z is a 0-cycle.) Hence F ′

b′
0

= Fb0 .

Now consider � := f̂ ∗Z − Z ∈ CHdim B′(F ′), by assumption it satisfies �|F ′
b′ = 0 in

CH0(F ′
b′) for a general point b′ ∈ B ′. However, by an argument of Hilbert scheme (cf. [21,

Chapter 22]), the set of points b′ ∈ B ′ satisfying �|F ′
b

= 0 is a countable union of closed
algebraic subsets. Thus together with the preimage of the locus where b ∈ B does not satisfy
the condition in the lemma (which is again a countable union of proper closed algebraic
subsets by assumption), they cover B ′. By Baire theorem, in this countable collection there
exists one which is in fact the entire B ′, i.e. �|F ′

b′ = 0 holds for every b′ ∈ B ′. In particular,

for b′
0, we have f̂ ∗ Z − Z = �|Fb0

= �|F ′
b′
0

= 0. �

Remark 4.2 Thanks to this lemma, instead of defining B as the parameter space of smooth
cubic fourfolds, we can and we will feel free to shrink B to any of its Zariski open subsets
whenever we want to in the rest of the paper.

To summarize this section, we reduce the main Theorem 1.5 into the following statement:

Theorem 4.3 Let n = pm be a power of a prime number, f be an automorphism of P5 given
by (2):

f : [x0 : x1 : · · · : x5] 	→ [ζ e0 x0 : ζ e1 x1 : · · · : ζ e5 x5],
and j ∈ Z/nZ be a solution to (6): e0 + e1 + · · · + e5 = 2 j mod n.

If for a general point b ∈ B := P
(⊕

α∈� j
C · x α

)
, Xb is smooth, then f acts as identity

on CH1(Xb)Q, where

� j :=
{
α = (α0, . . . , α5) ∈ N5 | α0+···+α5=3

e0α0+···+e5α5= j mod n

}

as in (4).

Theorem 4.3 ⇒ Theorem 1.5. First of all, in order to prove the main Theorem 1.5, we can
assume that the order of f is a power of a prime number: suppose the prime factorization of
the order of f is

n = pa1
1 pa2

2 · · · par
r .

Let gi = f np
−ai
i for any 1 ≤ i ≤ r , then gi is of order pai

i . Since f̂ acts symplectically
on F(X), so do the gi ’s. Then by assumption, ĝi acts as identity on CH0(F(X)) for any i .
Now by Chinese remainder theorem, there exist b1, . . . , br ∈ N such that f = ∏r

i=1 gbi
i .

Therefore, f̂ = ∏r
i=1 ĝbi

i acts as identity on CH0(F(X)) as well. Secondly, the parameter
space B comes from the constraints we deduced in Lemma 2.3. Thirdly, Lemma 4.1 allows
us to reduce the statement to the case of a (very) general member in the family. Fourthly, we
can switch from CH0(Fb) to CH1(Xb)Q by Corollary 3.3. Finally, the reformulation in terms
of the polarization is explained in Proposition 7.1. �

5 The Chow group of the total space

As a key step toward the proof of Theorem 4.3, we establish in this section the following
result.
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Proposition 5.1 Consider the direct system consisting of the open subsets B of B, then we
have

lim−→
B

CH4(X ×B X )Q,hom = 0.

More precisely, for an open subset B of B, and for any homologically trivial codimension 4
Q-cycle z of X ×B X , there exists a dense open subset B ′ ⊂ B, such that the restriction of
z to the base changed family X ′ ×B′ X ′ is rationally equivalent to 0.

We achieve this in two steps: the first one is to show that homological equivalence and
rational equivalence coincide on a resolution of singularities of the compactification X ×B X
(see Proposition 5.2 below); in the second step, to pass to the open variety X ×B X , we need
to ‘extend’ a homologically trivial cycle of the open variety to a cycle homologically trivial
of the compactification or rather its resolution (see Proposition 5.3 below). More precisely,
let B be an open subset of B:

Proposition 5.2 (Step 1) There exists a resolution of singularities τ : W → X ×B X , such
that the rational equivalence and homological equivalence coincide on W when tensored
with Q (see Definition 5.4 below). In particular, CH4(W )Q,hom = 0.

Proposition 5.3 (Step 2) Let τ : W → X ×B X be a resolution of singularities. For
any homologically trivial cycle z ∈ CH4(X ×B X )Q,hom, there exist a dense open subset
B ′ ⊂ B and a homologically trivial cycle z ∈ CH4(W )Q,hom, such that

z|X ′×B′X ′ = τ ′∗ (z|W ′) ∈ CH4(X ′ ×B′ X ′)Q, (11)

where X ′ = X ×B B ′, W ′ = W ×B B ′ are obtained by base change. We denote by
τ ′ : W ′ → X ′ ×B′ X ′ the restriction of τ to W ′.

Propositions 5.2 and 5.3 will be proved in Sects. 5.1 and 5.2 respectively. Admitting them,
Proposition 5.1 becomes obvious:

Prop. 5.2 + Prop. 5.3 ⇒ Prop. 5.1. Let W, τ be as in Proposition 5.2. For a given z ∈
CH4(X ×B X )Q,hom , let B ′,X ′, z, τ ′,W ′ be as in Proposition 5.3. Since z is homologically
trivial, z is (rationally equivalent to) zero by Proposition 5.2, hence so is its restriction z|W ′
to the open subset W ′. Therefore by (11),

z|X ′×B′X ′ = τ ′∗ (z|W ′) = 0.

�
5.1 The Chow group of the compactification

In this subsection, we prove Proposition 5.2.
We first recall the following notion due to Voisin [24, §2.1]:

Definition 5.4 We say a smooth projective variety X satisfies property P , if the cycle class
map is an isomorphism

[−] : CH∗(X)Q
�−→ H∗(X,Q).

Here we provide some examples and summarize some operations that preserve this property
P . For details, cf. [24].
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Lemma 5.5 (i) Homogeneous variety of the form G/P satisfies property P , where G is a
linear algebraic group and P is a parabolic subgroup. For example, projective spaces,
Grassmannians, flag varieties, etc.

(ii) If X and Y satisfy property P , then so does X × Y .
(iii) If X satisfies property P , and E is a vector bundle on it, then the projective bundle

P(E) satisfies property P .
(iv) If X satisfies property P , and Z ⊂ X is a smooth subvariety satisfying property P ,

then so is the blow up variety BlZ X.
(v) Let f : X → X ′ be a surjective generic finite morphism. If X satisfies property P , then

so does X ′.
Since some toric geometry will be needed in the sequel, let us also recall some standard
definitions and properties, see [11,14] for details. Given a lattice N and a fan � in NR, one
can construct a toric variety of dimension rank(N ), which will be denoted by X (�). By
definition, X (�) is the union of affine toric varieties Spec(C[N∨ ∩ σ∨]), where N∨ is the
dual lattice, σ∨ is the dual cone in N∨

R and σ runs over the cones in�. A fan� is said regular
if each cone in� is generated by a part of a Z-basis of N . Let N ′ be another lattice and�′ be
a fan in N ′

R. Then a homomorphism (as abelian groups) f : N → N ′ induces a rational map
of the toric varieties φ : X (�) ��� X (�′). Such maps are called equivariant or monomial.

Proposition 5.6 Using the above notation for toric geometry, then we have:

(i) X (�) is smooth if and only if � is regular.
(ii) φ : X (�) ��� X (�′) is a morphism if and only if for any cone σ ∈ �, there exists a

cone σ ′ ∈ �′ such that f sends σ into σ ′.
(iii) Any fan admits a refinement consisting of regular cones.
(iv) Any smooth projective toric variety satisfies property P .
(v) φ admits an elimination of indeterminacies:

X (�̃)

τ

��

φ̃

����
��

��
��

�

X (�)
φ

����� X (�′)

such that X (�̃) is smooth projective satisfying property P .

Proof For (i), [11, Theorem 3.1.19]; for (i i), [11, Theorem 3.3.4]; for (i i i), [11, Theorem
11.1.9]; for (iv), [11, Theorem 12.5.3]. Finally, (v) is a consequence of the first four: by
(i i i), we can find a regular refinement of�∪ f −1(�′), denoted by �̃, then X (�̃) is smooth
by (i) and satisfies property P by (iv). Moreover, (i i) implies that φ ◦ τ : X (�̃) → X (�′)
is a morphism. �

Turning back to our question, we adopt the previous notation as in Theorem 4.3.
We can view B = P(

⊕
α∈� j

C · x α) as an incomplete linear system on P5 associated to

the line bundle OP5(3). We remark that by construction in Sect. 2, each member of B (which
is a possibly singular cubic fourfold) is preserved under the action of f . Consider the rational
map associated to this linear system:

φ := φ|B| : P5 ��� B
∨
,

where B
∨

is the dual projective space consisting of the hyperplanes of B. We remark that
since B

∨
has a basis given by monomials, the above rational map φ is a monomial map

between two toric varieties (cf. the definition before Proposition 5.6).
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Lemma 5.7 (i) There exists an elimination of indeterminacies of φ:

P̃5

τ

��

φ̃

��
��

��
��

��

P5
φ

����� B
∨

such that P̃5 is smooth projective satisfying property P .

(ii) The strict transform of X ⊂ P5 ×B, denoted by X̃ , is the incidence subvariety in

P̃5 × B:

X̃ =
{
(x, b) ∈ P̃5 × B | b ∈ φ̃(x)

}
.

Proof (i) By Proposition 5.6(v).
(i i) follows from the fact that for x ∈ P5 not in the base locus of B, b ∈ φ(x) if and only

if (x, b) ∈ X . �

Corollary 5.8 X̃ is smooth and satisfies property P .

Proof Thanks to Lemma 5.7(i i i), X̃ ⊂ P̃5 × B is the incidence subvariety with respect to

φ̃ : P̃5 → B
∨
. Therefore the first projection X̃ → P̃5 is a projective bundle (whose fiber

over x ∈ P̃5 is the hyperplane of B determined by φ̃(x) ∈ B
∨

), hence smooth. By Lemma

5.5(i i i), X̃ satisfies property P . �

We remark that the action of f on P5 lifts to P̃5 because the base locus of B is clearly
preserved by f . Correspondingly, the linear system B pulls back to P̃5 to a base-point-free
linear system, still denoted by B, with each member preserved by f , and the morphism φ̃

constructed above is exactly the morphism associated to this linear system.
To deal with the (possibly singular) variety X ×B X , we follow the same recipe as before

(see Lemmas 5.9, 5.10 and Proposition 5.2). The morphism φ̃ × φ̃ : P̃5 × P̃5 → B
∨ × B

∨

induces a rational map

ϕ : P̃5 × P̃5 ��� Bl�
B∨

(
B

∨ × B
∨)
.

We remark that this rational map ϕ is again monomial, simply because φ : P5 ��� B
∨

is so.

Lemma 5.9 There exists an elimination of indeterminacies of ϕ:

˜̃
P5 × P̃5

τ

��

ϕ̃
�� Bl�(B

∨ × B
∨
)

��

P̃5 × P̃5

ϕ

��������
φ̃×φ̃

�� B
∨ × B

∨

such that
˜̃

P5 × P̃5 is smooth projective satisfying property P .

Proof It is a direct application of Proposition 5.6(v). �
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Consider the rational map B
∨× B

∨ ��� Gr(B, 2) defined by ‘intersecting two hyperplanes’,
where Gr(B, 2) is the Grassmannian of codimension 2 sub-projective spaces of B. Blowing
up the diagonal will resolve the indeterminacies:

Bl�
B∨

(
B

∨ × B
∨)

�������������

��

B
∨ × B

∨ ������� Gr(B, 2)

Composing it with ϕ̃ constructed in the previous lemma, we obtain a morphism

ψ : ˜̃
P5 × P̃5 → Gr(B, 2).

As in Lemma 5.7, we have

Lemma 5.10 Consider the following incidence subvariety of
˜̃

P5 × P̃5 × B with respect to
ψ:

W :=
{
(z, b) ∈ ˜̃

P5 × P̃5 × B | b ∈ ψ(z)
}
.

(i) The first projection W → ˜̃
P5 × P̃5 is a projective bundle, whose fiber over z ∈ ˜̃

P5 × P̃5

is the codimension 2 sub-projective space determined by ψ(z) ∈ Gr(B, 2).
(ii) W has a birational morphism onto X ×B X .

Proof (i) is obvious.
(i i) We have a natural morphism W → P5 × P5 ×B. We claim that this morphism is

birational onto its image X ×B X : since for two general points x1, x2 in P5, ψ(x1, x2) =
φ(x1)∩ φ(x2), thus (x1, x2, b) ∈ W is by definition equivalent to b ∈ φ(x1)∩ φ(x2), which
is equivalent to (x1, x2, b) ∈ X ×B X . �

Now we can accomplish our first step of this section:

Proof of Proposition 5.2 Since W is a projective bundle (Lemma 5.10(i)) over the vari-

ety
˜̃

P5 × P̃5 satisfying property P (Lemma 5.9(i i)), W satisfies also property P (Lemma
5.5(iii)). Then we conclude by Lemma 5.10(i i).

5.2 Extension of homologically trivial algebraic cycles

In this subsection we prove Proposition 5.3.
To pass from the compactification X ×B X to the space X ×B X which concerns us,

we would like to mention Voisin’s ‘conjecture N’ ([24, Conjecture 0.6]):

Conjecture 5.11 (Conjecture N) Let X be a smooth projective variety, and let U ⊂ X be
an open subset. Assume an algebraic cycle Z ∈ CHi (X)Q has cohomology class [Z ] ∈
H2i (X,Q) which vanishes when restricted to H2i (U,Q). Then there exists another cycle
Z ′ ∈ CHi (X)Q, which is supported on X\U and such that [Z ′] = [Z ] ∈ H2i (X,Q).

This Conjecture N is equivalent to the surjectivity of CHi (X)Q,hom → CHi (U )Q,hom , hence
implies the following conjecture (cf. [26, Lemma 4.20]):
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Conjecture 5.12 Let X be a smooth projective variety, and U be an open subset of X. If
CHi (X)Q,hom = 0, then CHi (U )Q,hom = 0.

According to this conjecture, Proposition 5.2 would have implied the desired result Propo-
sition 5.1. To get around this conjecture N, our starting point is the following observation in
[24, Lemma 1.1].

Lemma 5.13 Conjecture N is true for i ≤ 2. In particular, for i ≤ 2 and for any Zo ∈
CHi (U )Q,hom, there exists W ∈ CHi (X)Q,hom such that W |U = Zo.

Now the crucial observation is that the Chow motive of a cubic fourfold does not exceed
the size of Chow motives of surfaces, so that we can reduce the problem to a known case
of Conjecture N, namely Lemma 5.13. To illustrate, we first investigate the situation of one
cubic fourfold (absolute case), then make the construction into the family version.

Absolute case
Let X be a (smooth) cubic fourfold. Recall the following diagram as in the proof of the

unirationality of cubic fourfold:

P (TX |L)
q

�����

��

X

L

Here we fix a line L contained in X , and the vertical arrow is the natural P3-fibration, and
the rational map q is defined in the following classical way: for any (x, v) ∈ P(TX |L) where
v is a non-zero tangent vector of X at x ∈ L , then as long as the line P(C · v) generated
by the tangent vector v is not contained in X , the intersection of this line P(C · v) with X
should be three (not necessarily distinct) points with two of them x . Let y be the remaining
intersection point. We define q : (x, v) 	→ y. By construction, the indeterminacy locus of q
is {(x, v) ∈ P(TX |L) | P(C · v) ⊂ X}. Note that q is dominant of degree 2.

By Hironaka’s theorem, we have an elimination of indeterminacies:

˜P (TX |L)

τ

��

q̃

		 		��
��

��
��

�

P (TX |L)

��

q
����� X

L

where τ is the composition of a series of successive blow ups along smooth centers of
dimension ≤ 2, and q̃ is surjective thus generically finite (of degree 2).

We follow the notation of [2] to denote the category of Chow motives with rational
coefficients by CHMQ, and to write h for the Chow motive of a smooth projective variety,
which is a contravariant functor

h : SmProjop → CHMQ.

Denote M := P (TX |L) and M̃ := ˜P (TX |L). Let Si be the blow up centers of τ and
ci = codim Si ∈ {2, 3, 4}. By the blow up formula and the projective bundle formula for
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Chow motives (cf. [2, 4.3.2]),

h
(
M̃

) = h (P (TX |L |))⊕
⊕

i

ci −1⊕

l=1

h(Si )(−l) =
(

3⊕

l=0

h(L)(−l)

)

⊕
(

⊕

i

ci −1⊕

l=1

h(Si )(−l)

)

,

and since L � P1,

h
(
M̃

) = (
1⊕1(−1)⊕2⊕1(−2)⊕2 ⊕ 1(−3)⊕2 ⊕ 1(−4)

)⊕
(

⊕

i

ci −1⊕

l=1

h(Si )(−l)

)

, (12)

where 1 := h(pt) is the trivial motive. On the other hand, since q̃∗q̃∗ = deg(̃q) = 2 · id,

h(X) is a direct factor of h
(

˜P (TX |L)
)

, which has been decomposed in (12). This gives a

precise explanation of what we mean by saying that h(X)does not exceed the size of motives
of surfaces above.

By the monoidal structure of CHMQ (cf. [2, 4.1.4]), the motive of M̃× M̃ has the following
form:

h
(
M̃ × M̃

) =
⊕

k∈J

h(Vk × V ′
k)(−lk), (13)

where J is the index set parameterizing all possible products, and Vk × V ′
k is of one of the

following forms:

• pt × pt and lk = 0 or 1;
• pt ×Si or Si × pt and lk = 1;
• lk ≥ 2.

For each summand h(Vk × V ′
k)(−lk) in (13), the inclusion of this direct factor

ιk ∈ HomCHMQ

(
h(Vk × V ′

k)(−lk), h
(
M̃ × M̃

))
(14)

determines a natural correspondence from Vk × V ′
k to M̃ × M̃ .

Similarly, for each k ∈ J , the projection to the k-th direct factor

pk ∈ HomCHMQ

(
h

(
M̃ × M̃

)
, h(Vk × V ′

k)(−lk)
)

(15)

determines also a natural correspondence from M̃ × M̃ back to Vk × V ′
k . By construction

pk ◦ ιk = id ∈ EndCHMQ

(
h(Vk × V ′

k)(−lk)
)
, for any k ∈ J ;

∑

k∈J

ιk ◦ pk = id ∈ EndCHMQ

(
h(M̃ × M̃)

)
.

Equivalently, the last equation says

∑

k∈J

ιk ◦ pk = �M̃×M̃ in CH∗(M̃ × M̃ × M̃ × M̃)Q. (16)

Construction in family We now turn to the family version of the above constructions. To this
end, we need to choose a specific line for each cubic fourfold in the family, and also a specific
point on the chosen line. Therefore a base change (i.e. T → B constructed below) will be
necessary to construct the family version of the previous pk and ιk’s (see Lemma 5.14).
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Precisely, consider the universal family X of cubic fourfolds over B, and the universal
family of Fano varieties of lines F as well as the universal incidence varieties P:

P



	
		

		
		

	

��













F

��
		

		
		

		
X

��













B

By taking general hyperplane sections of P , we get T a subvariety of it, such that the induced
morphism T → B is generically finite. In fact, by shrinking4 B (and also T correspondingly),
we can assume T → B is finite and étale, and hence T is smooth.

By base change construction, we have over T a universal family of cubic fourfolds Y ,
a universal family of lines L contained in Y and a section σ : T → L corresponding to
the universal family of the chosen points in L . We summarize the situation in the following
diagram:

L
� � ��

���
��

��
��

� Y

π ′
��

r ��

�

X

π

��

T ��
σ



B

(17)

where for any t ∈ T with image b in B, the fiber Yt = Xb, Lt is a line contained in it and
σ(t) ∈ Lt . As T → B is finite and étale, so is r : Y → X .

Now we define

M := P
(
TY /T |L

)
,

and a dominant rational map of degree 2

q : M ����� Y .

Over t ∈ T , the fiber of M is Mt = P
(
TYt |Lt

)
, and the restriction of q to this fiber is exactly

the rational map P
(
TYt |Lt

)
��� Yt constructed before in the absolute case.

By Hironaka’s theorem, we have an elimination of indeterminacies of q:

M̃

τ

��

q̃

���
��

��
��

�

M

��

q
����� Y

����
��
��
��
��
��
��

L

��

T

(18)

4 Recall that we are allowed to shrink B whenever we want, see Remark 4.2.
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such that, up to shrinking B (and also T correspondingly), τ consists of blow ups along smooth
centers which are smooth over T (by generic smoothness theorem) of relative dimension
(over T ) at most 2. Suppose the blow up centers are Si , whose codimension is denoted by
ci ∈ {2, 3, 4}. A fiber of M̃ , M , Si is exactly M̃ , M , Si respectively constructed in the
absolute case. In the same fashion, we denote by Vk and V ′

k the family version of the varieties
Vk and V ′

k in the absolute case, which is nothing else but of the form Si ×T S j or T ×T Si

etc. Let dk (resp. d ′
k) be the dimension of Vk (resp. V ′

k ), i.e. when Vk = pt, Vk = σ(T ) and
dk = 0; when Vk = Si , Vk = Si and dk = 4 − ci , similarly for V ′

k .
We can now globalize the correspondences (14) and (15) into their following family

versions. Here we use the same notation:

Lemma 5.14 (i) For any k ∈ J , there exist natural correspondences (over T )

ιk ∈ CHdk+d ′
k+lk

(
Vk ×T V ′

k ×T M̃ ×T M̃
)

Q ,

pk ∈ CH8−lk
(
M̃ ×T M̃ ×T Vk ×T V ′

k

)
Q,

such that the following two identities hold on each fiber: for any t ∈ T , we have

(pk ◦ ιk)t = �Vk,t ×V ′
k,t

for any k ∈ J ;
∑

k∈J

(ιk ◦ pk)t = �M̃t ×M̃t
. (19)

(ii) Up to shrinking B and T correspondingly, we have in CH∗(M̃ ×T M̃ ×T M̃ ×T M̃ )Q,
∑

k∈J

ιk ◦ pk = �M̃×T M̃ . (20)

Proof (i). For the existence, it suffices to remark that the correspondences ιk and pk can
in fact be universally defined over T , because when we make the canonical isomorphisms
(12) or (13) precise by using the projective bundle formula and blow up formula, they are
just compositions of inclusions, pull-backs, intersections with the relative O(1) of projective
bundles, each of which can be defined in family over T . Note that in this step of the con-
struction, we used the section σ to make the isomorphism h(Lt ) � 1⊕1(−1) well-defined
in family over T , because this isomorphism amounts to choose a point on the line.

Finally, equality (19) is exactly equality (16) in the absolute case.
(i i). Equation (20) is a direct consequence of (19), thanks to the Bloch–Srinivas type

argument of spreading rational equivalences (cf. [8,21, Corollary 10.20]). �

Keeping the notation in Diagram (17) and Diagram (18), we consider the generic finite
morphism

q̃ × q̃ : M̃ ×T M̃ → Y ×T Y ,

and the finite étale morphism

r × r : Y ×T Y → X ×B X .

For each k ∈ J , composing the graphs of these two morphisms with ιk , we get a correspon-
dence over B from Vk ×T V ′

k to X ×B X :

�k := �r×r ◦ �q̃×q̃ ◦ ιk ∈ CHdk+d ′
k+lk

(
Vk ×T V ′

k ×B X ×B X
)

Q; (21)
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similarly, composing pk with the transposes of their graphs, we obtain a correspondence over
B in the other direction:

�′
k := pk ◦ (t�q̃×q̃

) ◦ (t�r×r
) ∈ CH8−lk

(
X ×B X ×B Vk ×T V ′

k

)
Q. (22)

Lemma 5.15 The sum of compositions of the above two correspondences satisfies:
∑

k∈J

�k ◦ �′
k = 4 deg(T/B) · id,

as correspondences from X ×B X to itself.

Proof It is an immediate consequence of Eq. (20) and the projection formula (note that
deg(r × r) = deg(T/B) and deg(̃q × q̃) = 4). �

For any k ∈ J , fix a smooth projective compactification Vk ×T V ′
k of Vk ×T V ′

k such that

the composition Vk ×T V ′
k ��� T → B → B is a morphism. Recall that X ×B X is a

(in general singular) compactification of X ×B X and τ : W → X ×B X is a resolution
of singularities. Put W o := W ×B B, and τ o : W o → X ×B X the restriction of τ .
(See the end of this section for a diagram.) Consider the composition of the correspondence
�k ∈ CHdk+d ′

k+lk
(
Vk ×T V ′

k ×B X ×B X
)

Q constructed above, with the pull-back by τ o

viewed as a correspondence t�τ o ∈ CH8 (X ×B X ×B W o), we have a correspondence

t�τ o ◦ �k ∈ CHdk+d ′
k+lk

(
Vk ×T V ′

k ×B W o)
Q .

Taking its closure, we obtain a correspondence between their smooth compactifications:

t�τ o ◦ �k ∈ CHdk+d ′
k+lk

(
Vk ×T V ′

k ×B W
)

Q
.

For some technical reasons in the proof below, we have to separate the index set J into two
parts and deal with them differently. Recall that below Eq. (13), we observed that there are
three types of elements (Vk × V ′

k , lk) in J . Define the subset consisting of elements of the
third type:

J ′ := {
k ∈ J | (Vk × V ′

k , lk) satisfies lk ≥ 2
}
.

And define J ′′ to be the complement of J ′: elements of the first two types. Note that for any
k ∈ J ′′, the corresponding (Vk × V ′

k , lk) satisfies always

dim(Vk × V ′
k) < 4 − lk for any k ∈ J ′′. (23)

We can now accomplish the main goal of this subsection:

Proof of Proposition 5.3 Let z ∈ CH4(X ×B X )Q,hom . To simplify the notation, we will
omit the lower star for the correspondences �k , �′

k and t�τ o ◦ �k since we never use their
transposes.

An obvious remark: when k ∈ J ′′, for any b ∈ B, the fiber
(
�′

k

)
t (zb) ∈ CH4−lk (Vk,t ×

V ′
k,t )Q = 0 by dimension reason (cf. (23)), thus

(
∑

k∈J ′′
�k ◦ �′

k(z)

)

b

= 0. (24)

123



On the action of symplectic automorphisms on the CH0-groups

As a result, for any b ∈ B, in CH4(Xb × Xb)Q,

(
∑

k∈J ′
�k

(
�′

k(z)
)
)

b

=
(

∑

k∈J

�k
(
�′

k(z)
)
)

b

= 4 deg(T/B) · zb, (25)

where the first equality comes from (24) and the second equality is by Lemma 5.15.
On the other hand, �′

k(z) ∈ CH4−lk
(
Vk ×T V ′

k

)
Q,hom is homologically trivial. We claim

that for any k ∈ J ′, the cycle �′
k(z) ‘extends’ to a homologically trivial algebraic cycle in

the compactification, i.e. there exists ξk ∈ CH4−lk
(
Vk ×T V ′

k

)

Q,hom
such that ξk |Vk×BV ′

k
=

�′
k(z). Indeed, since 4 − lk ≤ 2 for k ∈ J ′ and Vk ×T V ′

k is smooth by construction, we can
apply Lemma 5.13 to find ξk .

Now for any k ∈ J ′, let us consider the cycle t�τ o ◦ �k (ξk) ∈ CH4(W )Q,hom . Its fiber
over a point b ∈ B is:

t�τ o ◦ �k (ξk)b =
(

t�τ o ◦ �k(ξk |Vk×BV ′
k
)
)

b
= (t�τ o ◦ �k ◦ �′

k(z)
)

b .

Therefore by (25), the restrictions of the following two cycles5 to a fiber Wb

β :=
∑

k∈J ′
t�τ o ◦ �k(ξk) and 4 deg(T/B) · τ o∗

(z)

are the same in CH4(Wb)Q for any b ∈ B, where Wb := W ×B {b}. Again by the argument
of Bloch and Srinivas (cf. [8,21, §10.2], [26, §2]), there exists a dense open subset B ′ ⊂ B,
such that

β|W ′ = (
4 deg(T/B) · τ o∗

(z)
) |W ′ = τ ′∗ (

4 deg(T/B) · z|X ′×B′X ′
) ∈ CH4(W ′)Q, (26)

whereX ′ = X ×B B ′, W ′ = W ×B B ′ are obtained by base change:

W ′ � � ��

τ ′
��

�

W o � � ��

�τ o

��

W

τ

��

X ′ ×B′ X ′

�

� � ��

��

X ×B X
� � ��

��

�

X ×B X

��

B ′ � � �� B
� � �� B

Define z := 1
4 deg(T/B)β ∈ CH4(W )Q. By (26) and the projection formula for τ ′, we have

the required property (11) in Proposition 5.3:

τ ′∗ (z|W ′) = τ ′∗τ ′∗ (
z|X ′×B′X ′

) = z|X ′×B′X ′ ∈ CH4(X ′ ×B′ X ′)Q,

To conclude Proposition 5.3, it suffices to remark that z is by construction homologically
trivial: since the ξk’s are homologically trivial, so is β = ∑

k∈J ′ t�τ o ◦ �k(ξk) and hence z.
�

5 Here τo∗ is well-defined cause W o and X ×B X are both smooth.
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6 Proof of Theorem 4.3

The content of this section is the proof of Theorem 4.3.
We keep the notation n, f , j ,� j , B as in the statement of Theorem 4.3. Let B be an open

subset of B parameterizing smooth cubic fourfolds. In the following diagram,

Xbfb

��
� � ��

��

�

X f
��

π

��

b
� � �� B

(27)

π is the universal family equipped with a fiberwise action f ; for each b ∈ B, we write fb the
restriction of f on the cubic fourfold Xb if we need to distinguish it from f . By construction,
for any b ∈ B, fb is an automorphism of Xb of order n which acts as identity on H3,1(Xb).

To begin with, we study the Hodge structures of the fibers:

Lemma 6.1 For any b ∈ B,

(i) f ∗ is an order n automorphism of the Hodge structure H4(Xb,Q) and f∗ = ( f ∗)−1 =
( f ∗)n−1.

(ii) There is a direct sum decomposition into sub-Hodge structures

H4(Xb,Q) = H4(Xb,Q)inv ⊕⊥ H4(Xb,Q)#, (28)

where the first summand is the f ∗-invariant part, and the second summand is its orthog-
onal complement with respect to the intersection product < −,− >.

(iii) H3,1(Xb) ⊂ H4(Xb,C)inv .
(iv) H4(Xb,Q)# is generated by the classes of some codimension 2 algebraic cycles.

Proof (i) is obvious since f ∗ must preserve the Hodge structure. The last equality comes
from f∗ f ∗ = f ∗ f∗ = id and ( f ∗)n = id.

(i i) Since f ∗ is of finite order, it is semi-simple: H4(Xb,Q) decomposes as direct sum of
eigenspaces, where H4(Xb,Q)inv corresponds to eigenvalue 1 and H4(Xb,Q)# is the
sum of other eigenspaces. Moreover, f ∗ preserves the intersection pairing < −,− >,
thus the invariant eigenspace is orthogonal to any other eigenspace.

(i i i) This is our assumption that f ∗ acts as identity on H3,1(X).
(iv) By (i i i), H4(Xb,Q)# ⊂ H3,1

R (Xb)
⊥ = H2,2

R (Xb), i.e. H4(Xb,Q)# is generated by
rational Hodge classes of degree 4. However, the Hodge conjecture is known to be true
for cubic fourfolds [27]. We deduce that H4(Xb,Q)# is generated by the classes of
some codimension 2 subvarieties in Xb.

�

Define the algebraic cycle

π inv := 1

n

(
�X + � f + · · · + � f n−1

) ∈ CH4(X ×B X )Q. (29)

Here π inv can be viewed as a family of self-correspondences of Xb parameterized by B,
more precisely:

π inv|Xb×Xb =: π inv
b = 1

n

(
�Xb + � fb + · · · + � f n−1

b

)
∈ CH4(Xb × Xb)Q. (30)
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It is now clear that π inv
b acts on H4(Xb,Q) by:

[π inv
b ]∗ = 1

n

(
I d + f ∗

b + · · · + (
f ∗
b

)n−1
)
,

which is exactly the orthogonal projector onto the invariant part in the direct sum decompo-
sition (28). On the other hand, π inv

b acts as identity on H0(Xb,Q), H2(Xb,Q), H6(Xb,Q),
H8(Xb,Q).

Define another cycle

� := �X − π inv ∈ CH4(X ×B X )Q. (31)

Then �b := �|Xb×Xb = �Xb − 1
n

(
�Xb + � fb + · · · + � f n−1

b

)
∈ CH4(Xb × Xb)Q acts on

H4(Xb,Q) as the orthogonal projector onto H4(Xb,Q)# and acts as zero on H0(Xb,Q),
H2(Xb,Q), H6(Xb,Q), H8(Xb,Q). Now we have some control over the cohomology class
of ‘fibers’ of �:

Proposition 6.2 For any b ∈ B,

(i) Let �b := �|Xb×Xb ∈ CH4(Xb × Xb)Q. Then its cohomology class [�b] ∈ H8(Xb ×
Xb,Q) is contained in H4(Xb,Q)# ⊗ H4(Xb,Q)#.

(ii) The cohomology class [�b] is supported on Yb × Yb, where Yb is a closed algebraic
subset of Xb of codimension at least 2.

(iii) Moreover, there exists an algebraic cycle �′
b ∈ CH4(Xb × Xb)Q, which is supported on

Yb × Yb and such that [�b] = [�′
b] in H8(Xb × Xb,Q)

Proof (i). By Künneth formula, we make the identification

H8(Xb × Xb) = (
H0 ⊗ H8) ⊕ (

H2 ⊗ H6) ⊕ (
H6 ⊗ H2) ⊕ (

H8 ⊗ H0)

⊕
(

H4,inv ⊗ H4,inv
)

⊕
(

H4,inv ⊗ H4,#
)

⊕
(

H4,# ⊗ H4,inv
)

⊕ (
H4,# ⊗ H4,#) .

By construction and Poincaré duality, the cohomology class [�b] can only have the last
component non-zero.
(i i) is a consequence of (i i i).
(i i i). By Lemma 6.1(iv), H4(Xb,Q)# is generated by the classes of some codimension

2 subvarieties in Xb. We thus assume H4(Xb,Q)# = Q[W1]⊕ · · ·⊕ Q[Wr ], where Wi ’s are
subvarieties of codimension 2 in Xb. We can now take Yb := ⋃r

i=1 Wi to be the codimension
2 closed algebraic subset, and take �′

b to be of the form �r
i, j=1bi j Wi × W j ∈ CH4(Xb ×

Xb)Q. �
Roughly speaking, the previous proposition says that when restricted to each fiber, the cycle�
becomes homologically equivalent to a cycle supported on a codimension 2 algebraic subset
of the fiber. Now here comes the crucial proposition, which allows us to get some global
information about � from its fiberwise property. The proposition appeared in Voisin’s paper
[24]:

Proposition 6.3 In the above situation as in Proposition 6.2, there exist a closed algebraic
subset Y in X of codimension 2, and an algebraic cycle �′ ∈ CH4(X ×B X )Q which is
supported on Y ×B Y , such that for any b ∈ B, [�′|Xb×Xb ] = [�|Xb×Xb ] in H8(Xb×Xb,Q).
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Proof See [24] Proposition 2.7. �
Let Y ⊂ X be the codimension 2 closed algebraic subset introduced above, and �′ ∈

CH4(X ×B X )Q be the cycle supported on Y ×B Y , as constructed in Proposition 6.3.
Define

Z := � − �′ ∈ CH4(X ×B X )Q. (32)

Then by construction, for any b ∈ B, the ‘fiber’ Zb := Z |Xb×Xb ∈ CH4(Xb × Xb)Q has
trivial cohomology class:

[Zb] = 0 ∈ H8(Xb × Xb,Q), for any b ∈ B. (33)

The next step is to prove the following decomposition of the projector (Proposition 6.4) from
the fiberwise cohomological triviality of Z in (33).

Proposition 6.4 There exist a closed algebraic subset Y in X of codimension 2, an algebraic
cycle �′ ∈ CH4(X ×B X )Q supported on Y ×B Y , Z ′ ∈ CH4(X × P5)Q and Z ′′ ∈
CH4(P5 ×X )Q such that we have an equality in CH4(X ×B X )Q:

�X − 1

n

(
�X + � f + · · · + � f n−1

) = �′ + Z ′|X ×BX + Z ′′|X ×BX . (34)

To pass from the fiberwise equality (33) to the global equality (34) above, we have to
firstly deduce from (33) some global equality up to homological equivalence, then use the
result of Sect. 5 to get an equality up to rational equivalence. The argument of Leray spectral
sequence due to Voisin [24, Lemma 2.11] (in our equivariant case) can accomplish the first
step.

By Deligne’s theorem [12], the Leray spectral sequence associated to the smooth projective
morphism π × π : X ×B X → B degenerates at E2:

E p,q∞ = E p,q
2 = H p(B, Rq(π × π)∗Q) ⇒ H p+q (X ×B X ,Q).

In other words,

Gr p
L H p+q(X ×B X ,Q) = H p(B, Rq(π × π)∗Q),

where L• is the resulting Leray filtration on H∗(X ×B X ,Q). The property (33) is thus
equivalent to

Lemma 6.5 The cohomology class [Z ] ∈ L1 H8(X ×B X ,Q).

Proof The image of [Z ] ∈ H8(X ×B X ,Q) in the first graded piece Gr0
L H8(X ×B

X ,Q) = H0(B, R8(π × π)∗Q) is a section of the local system R8(π × π)∗Q, whose
fiber over b ∈ B is H8(Xb × Xb,Q). The value of this section on b is given exactly by
[Zb] ∈ H8(Xb × Xb,Q), which vanishes by (33). Therefore [Z ] ∈ H8(X ×B X ,Q)
becomes zero in the quotient Gr0

L , hence is contained in L1. �
Consider the Leray spectral sequences associated to the following three smooth projective

morphisms to the base B:

X × P5

π◦pr1
�� X ×B X� �id ×i

�� � � i×id
��

π×π
��

P5 ×X

π◦pr2
�������������

B

and the restriction maps for cohomology induced by the two inclusions. We have the following
lemma, where all the cohomology groups are of rational coefficients.
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Lemma 6.6 Let L• be the Leray filtrations corresponding to the above Leray spectral
sequences.

(i) The Künneth isomorphisms induce canonical isomorphisms

L1 H8(X × P5) =
⊕

i+ j=8

L1 Hi (X )⊗ H j (P5),

L1 H8(P5 ×X ) =
⊕

i+ j=8

Hi (P5)⊗ L1 H j (X ).

(ii) The natural restriction map

L1 H8(X × P5)⊕ L1 H8(P5 ×X ) � L1 H8(X ×B X )

is surjective.

Proof By snake lemma (or five lemma) and induction, it suffices to prove the corresponding
results for the graded pieces.
(i) We only prove the first isomorphism, the second one is similar. For any p ≥ 1, the

isomorphism

Gr p
L H8(X × P5) =

⊕

i+ j=8

Gr p
L Hi (X )⊗ H j (P5)

by Deligne’ theorem is equivalent to

H p(B, R8−p(π ◦ pr1)∗Q) = H p

⎛

⎝B,
⊕

i+ j=8

(
Ri−pπ∗Q

)
⊗Q H j (P5)

⎞

⎠ .

However, R8−p(π ◦ pr1)∗Q is a local system with fiber H8−p(Xb × P5,Q), which is by
Künneth formula isomorphic to ⊕i+ j=8 Hi−p(Xb)⊗ H j (P5), which is exactly the fiber of
the local system ⊕i+ j=8

(
Ri−pπ∗Q

) ⊗Q H j (P5). Thus (i) is a consequence of the relative
Künneth formula.
(i i)Using (i), for any p ≥ 1, the surjectivity of Gr p

L H8(X ×P5)⊕Gr p
L H8(P5 ×X ) �

Gr p
L H8(X ×B X ) is by Deligne’s theorem equivalent to the surjectivity of

H p

⎛

⎝B,
⊕

i+ j=8

(
Ri−pπ∗Q

)
⊗Q H j (P5)

⎞

⎠ ⊕ H p

⎛

⎝B,
⊕

i+ j=8

Hi (P5)⊗Q

(
R j−pπ∗Q

)
⎞

⎠

� H p(B, R8−p(π × π)∗Q).

By relative Künneth isomorphism, R8−p(π × π)∗Q = ⊕
k+l=8−p Rkπ∗Q ⊗ Rlπ∗Q. Since

8 − p ≤ 7, either k < 4 or l < 4. Recall that Hodd(Xb) = 0 and the restriction map
H2i (P5) → H2i (Xb) is an isomorphism for i = 0, 1, 3, 4, thus R8−p(π × π)∗Q is a
direct summand of the local system

⊕
k+l=8−p Rkπ∗Q⊗Q Hl(P5)⊕⊕

k+l=8−p Hk(P5)⊗Q

Rlπ∗Q. Therefore the above displayed morphism is induced by the projection of a local
system to its direct summand, which is of course surjective on cohomology. �
Combining Lemmas 6.5 and 6.6, we can decompose the cohomology class [Z ] as follows:

[Z ] =
4∑

i=0

pr∗1 Ai · pr∗2[h]4−i +
4∑

j=0

pr∗1[h]4− j · pr∗2 B j ∈ H8(X ×B X ,Q), (35)
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where pri : X ×B X → X is the i-th projection, Ai ∈ H2i (X ,Q), B j ∈ H2 j (X ,Q) and
h ∈ CH1(X ) is the pull back by the natural morphism X → P5 of the hyperplane divisor
c1(OP5(1)).

We remark that Ai and B j must be algebraic, that is, they are the cohomology classes of
algebraic cycles of X . The reason is very simple: [Z ] being algebraic, so is

pr1,∗
(
[Z ] · pr∗2[h]i

)
= 3Ai + (a rational number) [h]i ,

thus Ai is algebraic. The algebraicity of B j is similar. We denote still by Ai ∈ CHi (X )Q and
B j ∈ CH j (X )Q for the algebraic cycles with the respective cohomology classes. Therefore
(35) becomes

[Z ] =
4∑

i=0

[pr∗1 Ai · pr∗2 h4−i ] +
4∑

j=0

[pr∗1 h4− j · pr∗2 B j ] ∈ H8(X ×B X ,Q).

In other words, there exist algebraic cycles

Z ′ :=
4∑

i=0

pr∗1 Ai · pr∗2 h4−i ∈ Im
(

CH4(X × P5)Q → CH4(X ×B X )Q

)
, and

Z ′′ :=
4∑

j=0

pr∗1 h4− j · pr∗2 B j ∈ Im
(

CH4(P5 ×X )Q → CH4(X ×B X )Q

)
,

such that
[Z ] = [Z ′ + Z ′′] ∈ H8(X ×B X ,Q). (36)

This is an equality up to homological equivalence. Now enters the result of Sect. 5: thanks to
Proposition 5.1, up to shrinking B to a dense open subset (still denoted by B), the cohomo-
logical decomposition (36) in fact implies the following equality up to rational equivalence
in Chow groups:

Z = Z ′|X ×BX + Z ′′|X ×BX ∈ CH4(X ×B X )Q.

Combining this with (29), (31), Proposition 6.3 and (32), we obtain a decomposition of
the projector (34) announced in Proposition 6.4.

Now we can deduce Theorem 4.3 from this decomposition as follows. For any b ∈ B
(thus general in B), taking the fiber of (34) over b, we get an equality in CH4(Xb × Xb)Q.

�Xb = 1

n

(
�Xb + � f + · · · + � f n−1

) + �′
b + Z ′

b|Xb×Xb + Z ′′
b |Xb×Xb , (37)

where we still write f for fb the restriction of the action on fiber Xb, �′
b is supported on

Yb × Yb with Yb a closed algebraic subset of codimension 2 in Xb, and Z ′
b (resp. Z ′′

b ) is a
cycle of Xb × P5 (resp. P5 ×Xb) with rational coefficients.

For any homologically trivial 1-cycle γ ∈ CH1(Xb)Q,hom , let both sides of (37) act on it
by correspondences. We have in CH1(Xb)Q:

• �∗
Xb
(γ ) = γ ;

• 1
n

(
�Xb + � f + · · · + � f n−1

)∗
(γ ) = 1

n

(
γ + f ∗γ + · · · + ( f ∗)n−1 γ

)
;

• �′∗
b (γ ) = 0 because the support of �′

b has the projection to the first coordinate codimen-
sion 2;
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• (
Z ′

b|Xb×Xb

)∗
(γ ) = (

Z ′′
b |Xb×Xb

)∗
(γ ) = 0, since they both factorizes through

CH∗(P5)Q,hom = 0.

As a result, we have in CH1(Xb)Q,

γ = 1

n

(
γ + f ∗γ + · · · + (

f ∗)n−1
γ
)
,

where the right hand side is obviously invariant by f ∗, hence so is the left hand side. In other
words, f ∗ acts on CH1(Xb)Q,hom as identity. Finally, since H6(Xb,Q) is 1-dimensional with
f ∗ acting trivially, we have for any γ ∈ CH1(Xb)Q,

π inv,∗(γ )− γ ∈ CH1(Xb)Q,hom,

where π inv,∗ = 1
n

(
id + f ∗ + · · · + ( f ∗)n−1

)
. Therefore by what we just obtained,

f ∗ (
π inv,∗(γ )− γ

)
= π inv,∗(γ )− γ.

As π inv,∗(γ ) is obviously f ∗-invariant, we have f ∗(γ ) = γ in CH1(Xb)Q. Theorem 4.3, as
well as the main Theorem 1.5, is proved.

7 A remark

In the main Theorem 1.5, we assumed that the automorphism of the Fano variety of lines
is induced from an automorphism of the cubic fourfold itself. In this section we want to
reformulate this hypothesis.

Proposition 7.1 Let X ⊂ P5 be a (smooth) cubic fourfold, and (F(X),L )be its Fano variety
of lines equipped with the Plücker polarization induced from the ambiant Grassmannian
Gr(P1,P5). An automorphism ψ of F(X) comes from an automorphism of X if and only if
it is polarized (i.e. ψ∗L � L ).

Proof The following proof is taken from [9, Proposition 4]. Consider the projective embed-
ding of F(X) determined by the Plücker polarization L :

F(X) =: F ⊂ Gr(P1,P5) =: G ⊂ P(∧2 H0(P5,O(1))∨) =: P14 .

Ifψ is induced from an automorphism f of X , which must be an automorphism of P5, then it
is clear thatψ is the restriction of a linear automorphism of P14, thus the Plücker polarization
is preserved.

Conversely, if the automorphismψ preserves the polarization, it is then the restriction of a
projective automorphism of P14, which we denote still byψ . It is proved in [1, 1.16 (iii)] that
G is the intersection of all the quadrics containing F . It follows that ψ is an automorphism
of G, because ψ sends any quadric containing F to a quadric containing F . However any
automorphism of G is induced by a projective automorphism f of P5 (cf. [10]). As a result,
f sends a line contained in X to a line contained in X , thus f preserves X and ψ is induced
from f . �

Define Aut pol(F(X)) to be the group of polarized automorphisms of F(X) (equipped with
Plücker polarization L ). Then the previous proposition says that we have an isomorphism

Aut(X)
�−→ Aut pol(F(X))

f 	→ f̂
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This gives us the last statement in main Theorem 1.5: any polarized symplectic automorphism
of F(X) acts as identity on CH0(F(X)).

8 A consequence: action on CH2(F)Q,hom

As an application of Theorem 1.5, we study in this section the induced action on the Chow
group of 2-cycles. The conclusion is Corollary 1.7 in the introduction.

Proof of Corollary 1.7 As showed in the previous section, the polarized automorphism f̂ on
F(X) comes from an automorphism f of finite order n of the smooth cubic fourfold X . We
consider again the projector � := �F − π inv ∈ CH4(F × F)Q, where

π inv = �F + � f̂ + · · · + � f̂ n−1

n
∈ CH4(F × F)Q.

We remark that � = t� since f̂ −1 = f̂ n−1. Our main result Theorem 1.5 says in particular
that the action of � on CH0(F)Q is zero:

�∗ = 0 : CH0(F)Q → CH0(F)Q.

Equivalently speaking, the restriction of � to each fiber is zero:

�|{t}×F = 0 ∈ CH0(F)Q, ∀t ∈ F.

By the argument of Bloch–Srinivas (cf. [8,21, §10.2]), there exist an effective reduced divisor
D � X , a resolution of singularities τ : D̃ → D and an algebraic cycle �′ ∈ CH4(D̃ × F)Q
such that � = (̃τ × idF )∗�′, where τ̃ is the composition of τ and the inclusion of D into X .
Consequently, the action of � = t� on CH2(F)Q factorises as:

CH2(F)Q

�′∗
������������
�∗=�∗

�� CH2(F)Q

CH1(D̃)Q

τ̃∗

������������

.

Since these correspondences preserve the homological equivalence as well as the Abel–Jacobi
equivalence (cf. [21, Chapter 9]), we have in fact the following factorization:

CH2(F)Q,AJ

�′∗
�������������
�∗=�∗

�� CH2(F)Q,AJ

CH1(D̃)Q,AJ

τ̃∗

�������������

.

where AJ means the Abel–Jacobi kernels. However, it is well-known that for divisors the
Abel–Jacobi map is an isomorphism. Hence

CH1(D̃)Q,AJ = 0.

Now the factorization implies that � acts as zero on CH2(F)Q,AJ , thus f̂ acts as identity on
CH2(F)Q,AJ . To conclude, it suffices to remark that from the vanishing H3(F) = 0 (because
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F is deformation equivalent to the second punctual Hilbert scheme of K3 surfaces [4], which
has vanishing odd cohomology), the Abel–Jacobi kernel

CH2(F)Q,AJ := ker

(
CH2(F)Q,hom → J 3(F) := H0,3(F)⊕ H1,2(F)

H3(F,Z)
= 0

)

is equal to CH2(F)Q,hom . �
Remark 8.1 We want to remark that Corollary 1.7 is also predicted by Bloch–Beilinson
conjecture (a more general version than Conjecture 1.4, cf. [21, Chapter 11], [2, Chapitre
11]).
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