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Abstract

Given a smooth compact complex surface together with a holomorphic line bundle on it, using
the theory of Hodge modules, we compute the twisted Hodge groups/numbers of Hilbert schemes (or
Douady spaces) of points on the surface with values in the naturally associated line bundle. This proves
an amended version of Boissière’s conjecture proposed by the author in his joint work with Belmans and
Krug, and extends Göttsche–Soergel’s formula for Hodge numbers and Göttsche’s formula for refined
χy-genera to any compact complex surface, without Kählerness assumption. As an application, we
determine the tangent space and the obstruction space of the formal deformation theory of Hilbert
schemes of points on compact complex surfaces. Analogous results are obtained for nested Hilbert
schemes.
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1. Introduction

1.1. Hilbert schemes of points on surfaces. Let S be a smooth projective complex surface. For a
positive integer n, the n-th symmetric power S(n), defined as the quotient of Sn by the natural action of the
symmetric group Sn, is a 2n-dimensional projective variety with Gorenstein quotient singularities ([1]). A
natural smooth birational model of S(n) is provided by the so-called Hilbert scheme of length-n subschemes
on S , denoted by HilbnS , which is a 2n-dimensional smooth projective variety by a theorem of Fogarty
[26]. The Hilbert–Chow morphism

π : Hilbn(S)→ S(n) (1.1)

is a crepant resolution of singularities, that is, π∗ωS(n) � ωHilbn(S). The above definitions make sense more
generally for a compact complex surface S , with Hilbn(S) replaced by the n-th Douady space and the
Hilbert–Chow morphism replaced by the Douady–Barlet morphism. Although almost all the results in
this paper, whenever make sense, work in the more general complex analytic setting, we will keep using
the algebraic notation and terminology. For standard references, see the lecture notes of Göttsche [32],
Nakajima [51], and Lehn [46].

A general principle is that invariants of HilbnS can often be expressed in terms of the same type of
invariants of S . To put our results in the context, let us list below some known results exemplifying this
principle. Considering all the Hilbert schemes {HilbnS}n∈N simultaneously often leads to a neater formula,
and renders extra representation-theoretic structures more transparent. For this reason, results in this
paper are stated in an all-n-together form, as isomorphisms of multi-graded vector spaces or equalities of
generating series. From them, the formulas for an individual Hilbert scheme, which we omit, can be easily
deduced.

• Betti numbers (Göttsche [31]):∑
n≥0

∑
i≥0

bi(HilbnS)xitn =
∏
k≥1

∏
i≥0

(1− (−1)ixi+2k−2tk)−(−1)
i bi (S). (1.2)

• Cohomology and Hodge structures (Göttsche–Soergel [35]):

⊕
n≥0

H ∗(HilbnS,Q)(n)[2n]tn � Sym•
⊕
k≥1

H ∗(S,Q)(1)[2]tk
 , (1.3)

where −(m) := − ⊗ Q(m) stands for the m-th Tate twist of a Hodge structure, [m] is the stan-
dard degree shifting, and Sym• is the total symmetric power of the bigraded super vector space⊕

k≥1H
∗(S,Q)(1)[2]tk subject to the super-sign rule with respect to the cohomological degree ∗.

Moreover, thanks to the work of Nakajima [50, 51] and Grojnowski [37], the left-hand side of (1.3) is
identified with the Fock space representation of the Heisenberg Lie algebra associated with H ∗(S,Q).

The next two formulas are direct consequences of (1.3) (see [32, Theorem 2.3.14]):

• Hodge numbers:∑
n≥0

∑
p,q≥0

hp,q(HilbnS)xpyqtn =
∏
k≥1

∏
p,q≥0

(1− (−1)p+qxp+k−1yq+k−1tk)−(−1)
p+qhp,q(S). (1.4)

• χy-genera: ∑
n≥0

χ−y(HilbnS)tn = exp

∑
m≥1

tm

m
·
χ−ym(S)

1− (yt)m

 . (1.5)
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• Hochschild homology (by the Hochschild–Kostant–Rosenberg isomorphism and (1.3)):

⊕
n≥0

HH∗(HilbnS)tn � Sym•
⊕
k≥1

HH∗(S)t
k

 . (1.6)

As a generalization:

• Hochschild–Serre cohomology (Belmans–Fu–Krug [6]), for any k ∈ Z:

⊕
n≥0

HS∗k(HilbnS)tn � Sym•
⊕
i≥1

HS∗1+(k−1)i(S)t
i

 . (1.7)

Setting k = 0:

• Hochschild cohomology (Belmans–Fu–Krug [6]) :

⊕
n≥0

HH ∗(HilbnS)tn � Sym•
⊕
i≥1

HS∗1−i(S)t
i

 . (1.8)

• In the Grothendieck ring of varieties (Göttsche [33]):

∑
n≥0

[HilbnS] ·L−ntn = Sym•
∑
k≥1

[S] ·L−1tk
 . (1.9)

• Chow motives (de Cataldo–Migliorini [18]):

⊕
n≥0

h(HilbnS)(n)tn � Sym•
⊕
k≥1

h(S)(1)tk
 . (1.10)

• Derived categories of perfect complexes (Bridgeland–King–Reid [13] and Haiman [38]):

Db
coh(HilbnS) �Db

coh([S
n/Sn]) � SymnDb

coh(S), (1.11)

where Symn is in the sense of Ganter–Kapranov [29].

Now if the smooth projective complex surface S is equipped with a line bundle L, the line bundle
L�n := p∗1L ⊗ · · · ⊗ p∗nL on Sn is endowed with a natural Sn-linearization. We define the following line
bundle on the symmetric power S(n) by the invariant push-forward:

L(n) :=$∗(L
�n)Sn , (1.12)

where $ : Sn→ S(n) is the quotient map and −Sn stands for the (exact) functor of taking invariants. Pulling
back via the Hilbert–Chow morphism π : Hilbn(S)→ S(n), we define the following1 naturally associated
line bundle Ln on HilbnS :

Ln := π
∗L(n). (1.13)

Note that (OS )n � OHilbnS and (ω⊗kS )n �ω
⊗k
HilbnS for any k ∈ Z.

Similarly to the above exemplified principle, many invariants of the pair (HilbnS,Ln) can be expressed
in terms of invariants of the pair (S,L). For example:

1Our notation for this natural line bundle Ln follows [23]. This bundle is denoted by µ(L) in [34], while the notation Ln in [34]
refers to what we denote by L(n).
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• χy-genera with coefficients (Göttsche [34, Corollary 1.2] as reformulated in [6, Proposition 5.11]):∑
n≥0

χ−y(HilbnS,Ln)t
n =

∏
k≥1

∏
p≥0

(
1− yp+k−1tk

)−(−1)pχ(S,Ωp
S⊗L⊗k) . (1.14)

The right-hand side can also be reorganized into an expression in terms of the χy-genera of S with
coefficients in powers of L, see [6, Remark 5.12] or (1.35) below.

• Hochschild homology with coefficients (Belmans–Fu–Krug [6, Corollary 3.22]):

⊕
n≥0

HH∗(HilbnS,Ln)t
n � Sym•

⊕
k≥1

HH∗(S,L
⊗k)tk

 . (1.15)

The main goal of the paper, achieved in Theorem 1.1 and Theorem 1.2 below, is to establish a common
refinement of Göttsche–Soergel’s (1.4), Göttsche’s (1.14) and Belmans–Fu–Krug’s (1.15), by computing the
so-called twisted Hodge groups of the pair (HilbnS,Ln).

1.2. Main result: twisted Hodge groups/numbers. Given a compact complex manifold X equipped
with a holomorphic line bundle L, for any integers p,q, we define, following Boissière [8], the (p,q)-th
twisted Hodge group as

Hp,q(X,L) :=Hq(X,Ωp
X ⊗L), (1.16)

whose dimension
hp,q(X,L) := dimHq(X,Ωp

X ⊗L) (1.17)

is called the (p,q)-th twisted Hodge number of the pair (X,L). Note that Hp,q(X,L) is the Dolbeault
cohomology of X with values in L. The usual Hodge numbers correspond to the case where L � OX . If
L is not trivial or X is not Kähler, the twisted Hodge numbers are in general not the (p,q)-summands of
some natural Hodge structure; this makes their computation often inaccessible by topological methods.

Keeping the notation as before, the first main result of the paper is to express all the twisted Hodge
groups Hp,q(Hilbn(S),Ln) in terms of the twisted Hodge groups of S with values in tensor powers of L:

Theorem 1.1. Let S be a smooth compact complex surface. Let L be a holomorphic line bundle on S . Let Ln be the
line bundle in (1.13) on the Douady space HilbnS . We have a canonical isomorphism of tri-graded vector spaces:

⊕
n≥0

2n⊕
p,q=0

Hp,q(HilbnS,Ln)x
pyqtn � Sym•

⊕
k≥1

2⊕
p,q=0

Hp,q(S,L⊗k)xp+k−1yq+k−1tk
 . (1.18)

where Sym• is taken in the super sense 2 with respect to the total degree of x and y but in the ordinary sense with
respect to the grading given by the degree of t.

Writing in a more succinct way the isomorphism of tri-graded vector spaces:

⊕
n≥0

H#,?(HilbnS,Ln)t
n � Sym•

⊕
k≥1

H#,?(S,L⊗k)[1− k,1− k]tk
 . (1.19)

where [1− k,1− k] denotes the shift of the bigrading (#,?).

Taking the dimensions in (1.18), we get the generating series for the twisted Hodge numbers of (HilbnS,Ln):

2That is, Sym• is the total symmetric power of the tri-graded super vector space
⊕

k≥1
⊕2

p,q=0H
p,q(S,L⊗k)xp+k−1yq+k−1tk

where the parity of a homogeneous element is the parity of its total degree of x and y.
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Theorem 1.2. Notation is as in Theorem 1.1. We have the following equality of generating series in three variables:

∑
n≥0

2n∑
p,q=0

hp,q(HilbnS,Ln)x
pyqtn =

∏
k≥1

2∏
p,q=0

(
1− (−1)p+qxp+k−1yq+k−1tk

)−(−1)p+qhp,q(S,L⊗k)
. (1.20)

Remark 1.3 (Boissière’s conjecture). The generating series (1.20) for the twisted Hodge numbers of the
pair (Hilbn(S),Ln), when S is projective, was conjectured in Belmans–Fu–Krug [6, Conjecture E] as an
amendment3 of Boissière’s conjecture [8, Conjecture 1]. The initial clue for us in [6] was the computation
of the Hochschild homology with coefficients as mentioned above in (1.15), together with Göttsche–Soergel’s
formula (1.4).

We will prove the following analogous result for nested Hilbert schemes Hilbn,n+1S ; see Section 7 for
the definitions and notations.

Theorem 1.4. Let S be a smooth compact complex surface. Let L,L′ be two holomorphic line bundles on S . We
have a canonical isomorphism of tri-graded vector spaces:

⊕
n≥0

⊕
p,q≥0

Hp,q(Hilbn,n+1S,φ∗Ln ⊗ ρ∗L′)xpyqtn �

⊕
n≥0

⊕
p,q≥0

Hp,q(HilbnS,Ln)x
pyqtn


⊗

⊕
j≥0

2⊕
p,q=0

Hp,q(S,L⊗j ⊗L′)xp+jyq+jtj
 ,

(1.21)

where φ : Hilbn,n+1S→HilbnS , ρ : Hilbn,n+1S→ S are the natural morphisms.
More succinctly,

⊕
n≥0

H#,?(Hilbn,n+1S,φ∗Ln ⊗ ρ∗L′)tn �

⊕
n≥0

H#,?(HilbnS,Ln)t
n

⊗
⊕
j≥0

H#,?(S,L⊗j ⊗L′)[−j,−j]tj
 .
(1.22)

Taking dimensions, we get the following generating series:∑
n≥0

∑
p,q≥0

hp,q(Hilbn,n+1S,φ∗Ln ⊗ ρ∗L′)xpyqtn

=

∏
k≥1

2∏
p,q=0

(
1− (−1)p+qxp+k−1yq+k−1tk

)−(−1)p+qhp,q(S,L⊗k) ·
∑
j≥0

2∑
p,q=0

hp,q(S,L⊗j ⊗L′)xp+jyq+jtj
 .

(1.23)

In the above statement, we used twisted Hodge groups of HilbnS with values in Ln as building blocks
on the right-hand side. Combining with Theorem 1.1, one can express everything in terms of twisted Hodge
groups of S with values in powers of L.

1.3. Application I: deformation theory of Hilbert schemes. One of our motivations to study the
twisted Hodge groups is to understand the deformation theory of HilbnS . Indeed, the relevant cohomology
groups

Hq(HilbnS,THilbnS ) �H
2n−1,q(HilbnS,ω∨n ) (1.24)

are twisted Hodge groups, and taking L = ω∨S = ∧2TS in Theorem 1.1 allows us to compute them and thus
provides information on the formal deformation theory of HilbnS , for any compact complex surface S .

More precisely, we have the following result, whose proof is given in Section 6, together with some
examples.

3Counter-examples to the original generating series of Boissière were found in [39, Appendix B], and in [6, Example 5.7]. The
only difference with respect to Boissière’s formula is that we added an exponent k to L on the right-hand side.
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Theorem 1.5 (Deformation theory of HilbnS). Let S be a compact complex surface. For any q ∈ N, we have a
canonical isomorphism

Hq(HilbnS,THilbnS ) �H
q(Sn,TSn)

Sn ⊕Hq−1(S(n−2),O)⊗H0(S,∧2TS )

⊕Hq−2(S(n−2),O)⊗H1(S,∧2TS )

⊕Hq−3(S(n−2),O)⊗H2(S,∧2TS ).

(1.25)

In particular, if S is connected and n ≥ 2, we have canonical isomorphisms:

H0(HilbnS,THilbnS ) �H
0(S,TS ); (1.26)

H1(HilbnS,THilbnS ) �H
1(S,TS ) ⊕ H0(S,TS )⊗H1(S,OS ) ⊕ H0(S,∧2TS ); (1.27)

H2(HilbnS,THilbnS ) �H
2(S,TS ) ⊕ H1(S,TS )⊗H1(S,OS )

⊕ H0(S,TS )⊗H2(S,OS ) ⊕ H0(S,TS )⊗∧2H1(S,OS )

⊕ H1(S,OS )⊗H0(S,∧2TS ) ⊕ H1(S,∧2TS ).
(1.28)

Remark 1.6. The relation (1.26) says that S and HilbnS have the same infinitesimal automorphisms. This was
first proved by Boissière [8, Corollaire 1] and rediscovered in [6, Corollary 5.1] by an alternative argument.
Our proof here is identical to Boissière’s.

The relation (1.27) describes the tangent space of the deformation space of HilbnS . The fact that both
sides of (1.27) have the same dimension was already proved in Belmans–Fu–Krug [6, Corollary B], when S
is projective, using non-commutative methods, but no canonical isomorphism was provided there, due to
the use of a cancellation argument. Here we not only construct a canonical isomorphism, but also extend
the result to all compact complex surfaces. The isomorphism (1.27) recovers as special cases the results of
Fantechi [25, Theorem 0.1, Theorem 0.3] and Hitchin [40, §4.1]; see Section 6 for the statements of their
results.

The relation (1.28) computes the obstruction space of the deformation theory of HilbnS .

Remark 1.7 (Schouten–Nijenhuis bracket). Recall that for a compact complex manifold X, we have the
Schouten–Nijenhuis bracket [27, 53]

[−,−] : Hq(X,∧pTX)⊗Hq′ (X,∧p
′
TX)→Hq+q′ (X,∧p+p

′−1TX). (1.29)

A necessary condition for an infinitesimal deformation direction ξ ∈ H1(X,TX) to be unobstructed is
that [ξ,ξ] = 0 in H2(X,TX). In the case of Douady space of complex surfaces, we expect that via the
decompositions (1.27) and (1.28), the Schouten–Nijenhuis bracket

[−,−] : H1(HilbnS,THilbnS )×H1(HilbnS,THilbnS )→H2(HilbnS,THilbnS ) (1.30)

is given by the Schouten–Nijenhuis bracket on S :

[−,−] : H i(S,∧jTS )×H i′ (S,∧j
′
TS )→H i+i′ (S,∧j+j

′−1TS ). (1.31)

Assuming this, the Kuranishi space Def(HilbnS), as a germ of analytic space, is determined up to quadratic
approximation by (1.27) and (1.28). We plan to pursue this direction in a follow-up work.

1.4. Application II: extending formulas beyond the Kähler setting. Theorem 1.1 and Theo-
rem 1.2 recover various aforementioned results by specializing, and therefore proving them for any compact
complex surface S , without any algebraicity or Kählerness assumption.

Setting L = OS in (1.20):
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Corollary 1.8. Göttsche–Soergel’s formula (1.4) for Hodge numbers of Douady spaces holds for any compact complex
surface S :

∑
n≥0

EHilbnS(x,y)t
n :=

∑
n≥0

∑
p,q≥0

hp,q(HilbnS)xpyqtn =
∏
k≥1

2∏
p,q=0

(1− (−1)p+qxp+k−1yq+k−1tk)−(−1)
p+qhp,q(S).

Corollary 1.9. For any compact complex surface S and any positive integer n, the Frölicher spectral sequence for
the Douady space HilbnS

E
p,q
1 =Hq(HilbnS,Ωp

HilbnS )⇒Hp+q(X,C) (1.32)

degenerates at E1-page.

Similarly, setting L = L′ = OS in (1.23) in Theorem 1.4, we obtain the following extension of Cheah’s
formula [16, P.485] for all compact complex surfaces:

Corollary 1.10. For any compact complex surface S , we have the following equality of Hodge polynomials:

∑
n≥0

EHilbn,n+1S(x,y)t
n =

∑
n≥0

EHilbnS(x,y)t
n

 ·ES(x,y) · 1
1− xyt

. (1.33)

Remark 1.11 (Hodge numbers in non-Kähler situation). For a non-Kähler compact complex surface S , the
Douady spaces HilbnS and Hilbn,n+1S are not Kähler for n > 0. To the best of my knowledge, Corollary 1.8
and Corollary 1.10 are the first time that these Hodge numbers are computed in this generality in the litera-
ture. Indeed, Göttsche–Soergel [35] and Cheah [16] needed the Kählerness assumption in their argument to
recover Hodge numbers from the Hodge structures on the cohomology of HilbnS and Hilbn,n+1S . (Never-
theless, the Göttsche formula (1.2) for Betti numbers is established in the general complex analytic setting
by de Cataldo–Migliorini [17, Theorem 5.2.1].)

Here is an example: for an Inoue or a Hopf surface S (see [2, Chapter V, §§18, 19]), its Hodge polynomial
is 1+ y + x2y + x2y2 (not symmetric in x and y), and (1.8) gives the Hodge polynomial∑

n≥0

∑
p,q≥0

hp,q(HilbnS)xpyqtn =
∏
k≥1

(1 + xk−1yktk)(1 + xk+1yktk)
(1− xk−1yk−1tk)(1− xk+1yk+1tk)

, (1.34)

again, not symmetric in x and y. Below are the Hodge diamonds4 of S , Hilb2S and Hilb3S :

1
1 0

0 0 0
0 1
1

1
1 0

0 1 0
0 1 1 0

0 0 2 0 0
0 1 1 0
0 1 0
0 1
1

1
1 0

0 1 0
0 2 1 0

0 1 3 0 0
0 0 2 2 0 0

0 0 0 4 0 0 0
0 0 2 2 0 0
0 0 3 1 0
0 1 2 0
0 1 0
0 1
1

For a secondary Kodaira surface, the Hodge polynomials of its Douady spaces are given by (1.34) with x and
y switched, hence their Hodge diamonds are obtained from the above ones by reflecting with respective to
the middle vertical line. For more examples of Hodge diamonds of Douady spaces of non-Kähler surfaces,
we recommend the package [5] which implements Theorem 1.2 and Corollary 1.8.

On a different note, we mention that the Göttsche–Soergel formula of Hodge numbers can fail in positive
characteristics, as is shown by Srivastava [68] for Hilbert schemes of supersingular Enriques surfaces in
characteristic 2.

4These Hodge diamonds are produced using Pieter Belmans’ Hodge diamond cutter package [5].
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Setting y = −1 and renaming x by −y in (1.20), we get:

Corollary 1.12. Göttsche’s formula (1.14) for the refined χy-genera of Douady spaces holds for any compact complex
surface S :∑
n≥0

χ−y(HilbnS,Ln)t
n =

∏
k≥1

∏
p≥0

(
1− yp+k−1tk

)−(−1)pχ(S,Ωp
S⊗L⊗k) = exp

∑
m≥1

tm

m

∑
k≥1

(ty)(k−1)mχ−ym(S,L
⊗k)

 .
(1.35)

Remark 1.13. i) The second equality in (1.35) is purely elementary; see [6, Remark 5.12].

ii) Our proof of (1.35) does not use the Riemann–Roch theorem. To recover Göttsche’s original formula
[34, Corollary 1.2], one only needs to apply the Riemann–Roch formula for the surface S (but not for
HilbnS).

iii) Of course Göttsche–Soergel’s formula (1.5) for χy-genera is also recovered and extended to the non-
Kähler setting, but this was already proved by Ellingsrud–Göttsche–Lehn [23, Theorem 1.3] since
their argument of cobordism works without the projectivity (or Kählerness) assumption.

Setting x = y−1 in (1.18) and using the Hochschild–Kostant–Rosenberg isomorphism, we obtain the
following consequence. The proof is given at the end of Section 5.

Corollary 1.14. Belmans–Fu–Krug’s formula (1.15) for Hochschild homology with coefficients holds for any com-
pact complex surface S . In particular, the same is true for the formulas for Hochschild homology (1.6), Hochschild
cohomology (1.8), and Hochschild–Serre cohomology (1.7).

1.5. Method of proof. In [6], our proof of (1.15) is essentially "non-commutative" in the sense that we used
the equivalence of derived categories established by Bridgeland–King–Reid [13] to reduce the computation
of the Hochschild homology of HilbnS with values in Ln to the Hochschild homology of the symmetric
quotient stack [Sn/Sn] with values in L�n (equipped with Sn-linearization).

However in this paper, our method is more classical: it relies on a study of the Hilbert–Chow morphism
(or Douady–Barlet morphism) from the Hilbert scheme to the symmetric power

π : HilbnS→ S(n).

The key point is to exploit the "relative Hodge theory" of π, namely, the Hodge modules naturally produced
via π by Saito’s decomposition theorem. In this sense, this paper is a natural continuation of the seminal
work of Göttsche–Soergel [35]. A crucial intermediate result is Proposition 5.6, whose statement does not
involve Hodge modules, and it can be of independent interest.

Remark 1.15 (Non-compact case). We would like to point out that for any smooth complex surface S , not
necessarily algebraic or Kähler, or even compact, the Hilbert–Chow morphism π is always a projective
morphism. This is the basic reason why our results are valid without the Kählerness assumption. Moreover,
compactness condition is nowhere used in any proof in this paper, hence all our results remain valid if we
replace the compactness assumption by the assumption that all the numbers and dimensions appearing in
the formulas are finite; the latter finite dimensionality is indeed guaranteed by the compactness condition
by the classical theorem of Cartan–Serre [14] and Grauert [36].

Acknowledgment. : I am very grateful to Wanchun Shen, Chuanhao Wei and Ruijie Yang for helpful
discussions on Hodge modules. I thank Pieter Belmans, Samuel Boissière, Andreas Krug, and Claire Voisin
for their comments and questions. I am benefited from my visit to Shanghai Center for Mathematical
Sciences (SCMS) in summer 2024. I want to thank Zhi Jiang and Zhiyuan Li for organizing the very nice
summer school and for their hospitality during my stay. My research is supported by the University of
Strasbourg Institute for Advanced Study (USIAS), and by the Agence Nationale de la Recherche (ANR)
under projects ANR-20-CE40-0023 and ANR-24-CE40-4098.
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2. Hodge modules

This section recalls some basic theory of Hodge modules that we need. We refer to the original paper of M.
Saito [58] for more details. Roughly speaking, Hodge modules are generalizations of variations of Hodge
structures by replacing local systems by more general perverse sheaves and replacing flat connections by
more general D-modules, such that these two data are related by the Riemann–Hilbert correspondence
established by Kashiwara [41] and Mebkhout [49, 48].

2.1. The notion of Hodge modules. Let X be a complex manifold of dimension d. For an integer w,
we denote by HM(X,w) the abelian category of (pure) Hodge modules of weight w on X. The subcategory
of weight-w polarizable (pure) Hodge modules is denoted by HMp(X,w).

A Hodge module on X is a filtered regular holonomicDX-module with a rational structure that is subject
to some conditions. These conditions are based on Schmid’s work [64] on degenerations of variations of
Hodge structures. We refer to the original paper of M. Saito [58] as well as the surveys [59] and [66] for the
precise definition. Let us simply recall here the underlying basic structure (see for example [66, Definition
7.1.]): a filtered regular holonomic DX -module with a rational structure is the datum M = (M,M,F•M)
consisting of a perverse sheaf with Q-coefficients M ∈ PervQ(X), a regular holonomic right DX-module
M, and an increasing exhaustive filtration F• of M by coherent OX-modules that is compatible with the
natural filtration on DX ,

FiM·FjDX ⊂ Fi+jM, (2.1)

and is good in the sense that there exists i such that for all j ≥ 0

FiM·FjDX = Fi+jM,

such that the complexification MC ∈ PervC(X) andM are related by the Riemann–Hilbert correspondence,
that is, MC is isomorphic to the de Rham complex associated with the right DX-moduleM:

MC �DR(M). (2.2)

Recall that the de Rham complex is defined as the following complex living in degrees −d, . . . ,0:

DR(M) :=

M⊗ d∧
TX →M⊗

d−1∧
TX → ·· · →M⊗ TX →M

 . (2.3)

It is equipped with the following filtration: for any p ∈ Z,

FpDR(M) :=

Fp−dM⊗ d∧
TX → Fp−d+1M⊗

d−1∧
TX → ·· · → Fp−1M⊗ TX → FpM

 . (2.4)

The associated graded pieces are the following complexes of OX-modules living in degrees −d, . . . ,0:

grFpDR(M) =

grFp−dM⊗ d∧
TX → grFp−d+1M⊗

d−1∧
TX → ·· · → grFp−1M⊗ TX → grFpM

 . (2.5)

Remark 2.1 (Hodge modules on singular spaces). Given a possibly singular complex analytic space X,
Hodge modules on X are defined via some ambient complex manifold Y into which X is embedded (such
embedding exists for instance when X is quasi-projective; otherwise one uses local embeddings and glues
constructions as in Saito [60]). More precisely, given such an embedding X ↪→ Y , define the category of
Hodge modules on X of weight w

HM(X,w) (2.6)

to be the subcategory of Hodge modules of weight w on Y with support in X. This definition is independent
of the choice of the ambient manifold Y (the key ingredient being Kashiwara’s equivalence [42]); see [66,
§14].
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Remark 2.2. Given a Hodge module M = (M,M,F•M) ∈ HM(X) on a singular analytic space X, as in
Remark 2.1, M is defined via an ambient complex manifold Y . Although M is a D-module on Y , the
associated graded pieces grF•DR(M) are well-defined objects in the derived category of coherent OX-
modules, and are independent of the embedding of X into Y , by Schnell [65, Lemma 7.3].

2.2. Basic examples. In order to fix notations, we introduce some examples of Hodge modules that will
be used in the paper.

2.2.1. Constant Hodge module Given a complex manifold X of dimension d, we have the following
basic example of polarizable pure Hodge module of weight d:

QH
X [d] := (QX[d],ωX ,F•) ∈ HMp(X,d), (2.7)

called the constant Hodge module on X, where ωX denotes the canonical bundle viewed as a right DX-
module, the filtration is determined by requiring F−dωX = ωX and F−d−1ωX = 0. The de Rham complex
of the underlying right DX-module ωX , living in degrees −d, . . . ,0, is the d-shift of the classical de Rham
complex:

DR(ωX) =
[
OX →Ω1

X → ·· · →Ωd
X

]
=Ω•X[d]. (2.8)

The induced filtration is given as follows:

F0DR(ωX) =Ω
•
X[d]

F−d−1DR(ωX) = 0;

F−pDR(ωX) =
[
Ω
p
X → ·· · →Ωd

X

]
for 0 ≤ p ≤ d.

In particular, for any p ∈ Z, we have

grF−pDR(ωX) =Ω
p
X[d − p]. (2.9)

2.2.2. Variations of Hodge structure More generally, let V = (V,V ,∇,F•) ∈ VHSp(X,w) be a polar-
izable variation of (pure) Hodge structure of weight w over a d-dimensional complex manifold X, where V
is the underlying local system, (V ,∇) is the flat connection and F• is the Hodge filtration. We can naturally
associate to V a polarizable Hodge module of weight w+ d as follows:

V H [d] := (V[d],ωX ⊗OX V ,F•) ∈ HM
p(X,w+ d), (2.10)

where the filtration is defined as Fp(ωX ⊗OX V ) = ωX ⊗OX F
−p−dV for any p ∈ Z. Note that V is naturally a

left DX-module, and after tensoring with ωX we convert it into a right DX-module.

2.2.3. IC Hodge module Given an irreducible complex analytic space X of dimension d, let V =
(V,V ,∇,F•) ∈ VHSp(U,w) be a polarizable variation of Hodge structure of weight w on a non-empty
smooth Zariski open subset U of X. One main achievement in Saito [60] is that there is a canonical
extension of V H [d] ∈ HMp(U,w+ d) to a polarizable Hodge module on X, denoted by

ICX(V ) ∈ HMp(X,w+ d), (2.11)

whose underlying perverse sheaf is ICX(V), the intermediate extension of V[d] from U to X.
In particular, viewing Q as the trivial variation of Hodge structure on a smooth Zariski open subset

of X, the Hodge module ICX(Q) ∈ HMp(X,d) has as underlying perverse sheaf ICX = ICX(Q), and its
underlying filtered DX-module is often denoted simply by ICX .

More generally, let Z be an irreducible subvariety of a complex analytic space X. Let i : Z→ X be the
closed immersion and let dZ be the dimension of Z . Let V ∈ VHSp(U,w) be a polarizable variation of
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Hodge structure of weight w on a smooth Zariski open dense subvariety U of Z . By Saito [60], we have the
following polarizable Hodge module on X with i∗ICZ(V) as underlying perverse sheaf:

i∗ICZ(V ) ∈ HMp(X,w+ dZ ). (2.12)

Note that i∗ICZ(V ) has strict support Z, and the structure theorem of Saito [60] says that every object in
HMp(X) with strict support Z is of this form:

HMp
Z(X) = {i∗ICZ(V ) | V ∈ VHSp(U ),U ⊂ Z open smooth } . (2.13)

Moreover, Saito’s strict support decomposition theorem [58] (see also [66, Theorem 15.1]) says that as abelian
categories

HMp(X) �
⊕
Z⊂X

HMp
Z(X), (2.14)

with Z running through all integral subvarieties of X.

2.3. Constant Hodge module and Du Bois complex. For an irreducible complex algebraic variety
X of dimension d, the Du Bois complex of X, denoted by Ω•X , constructed by Deligne and Du Bois [22], is
a filtered complex of sheaves (defined up to quasi-isomorphism). For any p ∈ N, the Du Bois complex of
p-forms is defined as its associated graded pieces:,

Ω
p
X := grF−pΩ

•
X[p] := grpFΩ

•
X[p].

Note that this is a well-defined object in the derived category of coherent OX-modules [55, Proposition
7.24]. If X is smooth, this recovers the usual holomorphic de Rham complex: Ω•X � Ω

•
X with the stupid

filtration, and Ω
p
X �Ω

p
X in Db

coh(X). For the construction and basic properties about the Du Bois complex,
we refer to the original source [22] as well as to [69] and [55, §7.3].

Thanks to Saito [61], the Du Bois complex is closely related to Hodge modules. Recall that the constant
Hodge module on a possibly singular complex analytic space X, denoted by QH

X [d], which in general is a
mixed Hodge module, is defined as the inverse image of the trivial Hodge module Q on a point via the
structural map X→ pt. We denote the underlying filtered DX-module by the same notation QH

X [d].
Saito [61, Theorem 0.2] gives a precise relation between the Du Bois complex and the de Rham complex

of the constant Hodge module. Let us only give the following characterization on the associated graded
pieces:

Ω
p
X � grF−pDR(QH

X [d])[p − d]. (2.15)

In [22, Section 5], Du Bois identified, for normal algebraic varieties with finite quotient singularities
(V-manifolds), his complex with the de Rham complex of reflexive differentials; see Section 3 below for the
terminology about V-manifolds.

Theorem 2.3 (Du Bois [22, Théorème 5.3]). For an algebraic V-manifold X, there is a canonical isomorphism
between the Du Bois complex and the de Rham complex of reflexive differentials as objects in the derived category
of filtered complexes of sheaves:

Ω•X �Ω
[•]
X . (2.16)

In particular, Ω
[p]
X �Ω

p
X for any p ∈ Z.

2.4. Strictness of direct images. The following theorem due to Saito on the strictness of direct image
is the key ingredient which allows us to access the direct image of sheaves of differential forms:

Theorem 2.4 (Saito [58, 2.3.7], see also [66, Theorem 28.1]). Let f : X→ Y be a projective morphism between
complex manifolds. LetM = (M,M,F•M) be a Hodge module on X. Then for any p ∈ Z, we have isomorphisms

Rf∗gr
F
pDR(M) � grFpDR(f+M) �

⊕
i∈Z

grFpDR(Hif+M)[−i]. (2.17)
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Remark 2.5 (Singular target). Let us point out that the smoothness assumption on Y in Theorem 2.4 is not
necessary: the same result holds true for Y a complex analytic space that is embeddable into a complex
manifold. This is probably well-known to experts. But since we will need to apply the theorem in this more
general setting, let us give the argument here. Let i : Y ↪→ Z be an embedding of Y into a complex manifold
Z, and let g := i ◦ f be the composed morphism X→ Z . Then by Theorem 2.4, we have isomorphisms

i∗Rf∗gr
F
pDR(M) � Rg∗gr

F
pDR(M) � grFpDR(g+M). (2.18)

However, by construction, theDZ-module g+M is supported on Y , hence by [65, Lemma 7.3], grFpDR(g+M)
is a well-defined (independent of i and Z) complex of coherent OY -modules up to quasi-isomorphism,
namely, by definition:

grFpDR(g+M) � i∗gr
F
pDR(f+M). (2.19)

Since i∗ is conservative, we conclude that Rf∗grFpDR(M) � grFpDR(f+M).

2.5. Finite birational morphisms.

Lemma 2.6. Let ν : X → Y be a finite birational morphism (e.g. normalization) between complex algebraic
varieties (or bimeromorphic map between normal complex analytic spaces). Let U be a Zariski-open subvariety of
X over which ν is an isomorphism. Let V be a polarizable variation of Hodge structures over U . Then we have
an isomorphism of Hodge modules over Y :

ν∗ICX(V ) � ICY (V ). (2.20)

Proof. Denote by j : U → X and j ′ : U → Y the open immersions, where j ′ = ν ◦ j . Let d = dim(X). By
definition,

ICX(V ) = j!∗(V
H [d]) := Im(H0j!V

H [d]→H0j∗V
H [d]). (2.21)

Here H0 is taken in the derived category of Hodge modules (corresponding to the perverse pH0 for the
underlying complex of constructible sheaves). Since ν is finite, ν∗ = ν! is t-exact, hence commutes with H0

and preserves kernels, cokernels and images. Therefore,

ν∗ICX(V ) � Im(H0ν!j!V
H [d]→H0ν∗j∗V

H [d]) � Im(H0j ′!V
H [d]→H0j ′∗V

H [d]) = ICY (V ). (2.22)

3. V-manifolds and reflexive differentials

A V-manifold is a normal complex analytic space with finite quotient singularities; see Satake’s original
papers for the generalities [62, 63]. For the Hodge theory of V-manifolds, we refer to Steenbrink [69] as the
basic reference.

Let X be a V-manifold of dimension d. According to Prill [56, Proposition 6], each singular point x ∈ X
admits an open neighborhood Ux with orbifold chart (Vx,Gx,Ux

�−→ Vx/Gx) with Gx a finite subgroup of
GLd(C) and 0 ∈ Vx ⊂ Cd an open subset stable under Gx, such that the fixed loci for all g ∈ Gx\{id} are
of codimension ≥ 2. The group Gx is uniquely determined up to conjugation, called the local fundamental
group, or the stabilizer group, at x. These orbifold charts determines a unique effective analytic Deligne–
Mumford stack X with stacky locus of codimension ≥ 2 and with underlying coarse moduli space X. The
data of X and X are thus equivalent data.
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3.1. V-bundles. We recall the notion of V -bundles (see for example [7, Section 2]). Keep the notations as
above. A V-bundle on a V-manifold X is a reflexive coherent OX-module F such that for any orbifold chart

(Vx,Gx,Ux
�−→ Vx/Gx) as above, F̂ = $∗(F|Ux )

∨∨ is a vector bundle on Vx, where $ : Vx → Vx/Gx
�−→ Ux

is the natural map. The reflexive sheaf F can be recovered from the vector bundle F̂ endowed with the
natural Gx-linearization via invariant push-forward: F|Ux � ($∗F̂)Gx .

In general, for a finite group G acting on a complex manifold V with fixed loci for all g ∈ Gx\{id} of
codimension ≥ 2, let U = V /G be the corresponding V-manifold and $ : V →U the natural map. There is
an equivalence of categories between the category of V-bundles on U , and the category of vector bundles
on V with G-linearization given as follows:

{V-bundles on U } �−→ {Vector bundles on V with G-linearization}
F 7→$∗(F)∨∨

(3.1)

with inverse given by F̂ 7→ $∗(F̂)G. This also gives an equivalence of categories between vector bundles on
X and V-bundles on X.

3.2. Reflexive differentials.

Definition 3.1 (Reflexive differentials). Let X be a V-manifold of dimension d. For any 0 ≤ p ≤ d, we define
the sheaf of reflexive p-differentials as

Ω
[p]
X := j∗Ω

p
Xreg

, (3.2)

where j : Xreg→ X is the open immersion of the smooth locus of X. Note that when X is algebraic, Ω
[p]
X is

nothing but the analytification of the reflexive hull of the Kähler p-differentials Ω
p
X and it is a V-bundle.

One can form the de Rham complex of reflexive differentials Ω[•]
X , living in degrees {0, . . . ,d}. It is

naturally equipped with the stupid filtration: F−pΩ
[•]
X = [Ω[p]

X → Ω
[p+1]
X → ·· · → Ω

[d]
X ], which lives in

degrees {p,p+1, . . . ,d}.

The twisted Hodge groups and numbers defined in (1.16) naturally generalize for V-manifolds.

Definition 3.2. Given a V-manifold X and a holomorphic line bundle L on it, for any p,q, the (p,q)-th
twisted Hodge group is the following cohomology using reflexive differentials:

Hp,q(X,L) :=Hq(X,Ω[p]
X ⊗L), (3.3)

whose dimension is denote by hp,q(X,L), called the (p,q)-th twisted Hodge number.

3.3. Relation with constant Hodge module. Let X be a V-manifold of dimension d, then X is a
rational homology manifold, and

ICX(Q) �QX[d]. (3.4)

The IC Hodge module ICX(Q) = (QX[d],ICX ,F•) coincides with the constant Hodge module QH
X [d].

The relation (2.9) between the constant Hodge module and the differentials for complex manifold
naturally extends to V-manifolds, upon replacing differentials by reflexive differentials:

Proposition 3.3. Let X be a V-manifold of dimension d. Let ICX be the underlying filtered DX -module of the
IC (or constant) Hodge module of X. For any integer p, there is a canonical isomorphism of coherent OX -modules:

Ω
[p]
X � grF−pDR(ICX)[p − d]. (3.5)
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Proof. In the algebraic setting, since X is a V-manifold, ICX = QH
X [d], and Ω

[p]
X � Ω

p
X by Du Bois’

Theorem 2.3. Now the assertion follows from Saito’s characterization of Du Bois differentials (2.15).

In the complex analytic setting, this can be deduced as follows. For any local orbifold chart (V ,G,U
�−→

V /G) of X, denote $ : V →U the natural map. Consider the canonical morphism of Hodge modules

QH
U [d]→ R$∗QH

V [d]. (3.6)

By Saito’s decomposition theorem for Hodge modules, which holds since $ is projective, (3.6) admits a
retraction with complement supported in a proper subvariety of U . Applying the functor grF−p ◦DR to
the morphism of underlying D-modules in (3.6), we get a canonical morphism admitting a retraction with
complement having proper support:

grF−p(DR(ICU ))→ grF−p(DR($+ωV )) � R$∗gr
F
−pDR(ωV ) � R$∗Ω

p
V [d − p] �Ω

[p]
U [d − p], (3.7)

where the three isomorphisms use Theorem 2.4, (2.9), and [69, Lemma 2.46] respectively.

Now since the Ω
[p]
U [d − p] is torsion-free hence cannot have a non-zero direct summand with proper

support, (3.7) must be an isomorphism. Therefore all the canonical isomorphisms (3.7) from all orbifold
charts glue into an isomorphism as claimed.

4. Semismall morphisms

4.1. Basic definitions and notations. Recall that a proper surjective morphism π : X → Y between
irreducible varieties (or complex analytic spaces) is called semismall if

dim(X ×Y X) ≤ dim(X); (4.1)

or equivalently, for any integer k ≥ 1,

codim{y ∈ Y | dimf −1(y) ≥ k} ≥ 2k. (4.2)

Note that there exists a smooth dense open subset U of Y with complement of codimension at least 2, such
that π is finite over U . In particular, dim(X) = dim(Y ).

Let π : X → Y be a semismall morphism. By the Thom–Mather theory ([30]), one can stratify Y by
locally closed smooth subvarieties

Y =
⊔
α

Yα ,

such that πα : Xα → Yα is a topological fiber bundle, where Xα = π−1(Yα) and πα = π|Xα . The semis-
mallness condition says that dim(Xα ×Yα Xα) ≤ dimX, or equivalently, 1

2 codim(Yα) is at least the relative
dimension of πα .

A stratum Yα is called relevant if dim(Xα ×Yα Xα) = dimX. In this case, denote by

cα := codim(Yα), (4.3)

which is an even integer, then the dimension of fibers over Yα is 1
2cα . We have the following local system

on Xα :
Lα := Rcαπα,∗QXα . (4.4)

Note that for dimension reason, the local system Lα is completely determined by the permutation action
of π1(Yα) on the set of top-dimensional irreducible components of the fibers over Yα , in particular, it is
semisimple. The local system Lα naturally underlies a variation of Hodge structure of weight cα and of
Tate type (i.e. the only nontrivial summand is in degree ( cα2 ,

cα
2 )), which we denote by

Lα = (Lα ,Lα ,∇,F•). (4.5)
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Denote by Yα the closure of Yα and
iα : Yα→ Y (4.6)

the natural closed immersion.

4.2. Decomposition theorems for semismall morphisms. The decomposition theorem of Beilinson–
Bernstein–Deligne–Gabber [4] says that the pushforward of the intersection complex via a proper morphism
decomposes into a direct sum of shifts of perverse sheaves. In general, it can be difficult to determine the
supports and local systems appearing in the result of decomposition theorem. However, in the semismall
case, the decomposition theorem takes a much simpler and more precise form:

Theorem 4.1 (Borho–MacPherson [9]). Let π : X → Y be a proper semismall morphism between varieties of
dimension d. The notations Yα ,Lα , iα are as above. Assume that X is smooth5. Then we have an isomorphism of
perverse sheaves

Rπ∗QX[d] �
⊕

α relevant

iα,∗ICYα (Lα), (4.7)

where ICYα (Lα) = jα,!∗Lα[d − cα] is the intermediate extension of the perverse sheaf Lα[d − cα] on Yα to Yα ,
where jα : Yα ↪→ Yα is the open immersion.

Saito lifts the decomposition theorem to the level of Hodge modules [60]. In the semismall case, it takes
the following more precise form, enriching both sides of (4.7) with the structure of pure Hodge modules.

Theorem 4.2. Let π : X→ Y be a proper semismall morphism between varieties of dimension d. The notations
Yα ,Lα , iα are as above. Assume that X is smooth. Then we have an isomorphism of Hodge modules

Rπ∗QH
X [d] �

⊕
α relevant

iα,∗ICYα (Lα), (4.8)

where ICYα (Lα) is the unique pure Hodge module on Y with strict support Yα that restricts to the (shifted)
variation of Hodge structure Lα on Yα .

Proof. Göttsche–Soergel [35, Theorem 5] proved the special case where Lα has trivial local system, but their
proof can be easily adapted to show the general statement. Since we cannot find this precise statement in
the literature, let us include a proof here for the convenience of the reader.

By Saito’s theory of mixed Hodge modules, Rπ∗QH
X [d] is an (a priori mixed) Hodge module and the

strict support decomposition of cohomologies of Rπ∗QH
X [d] must be the one given by the decomposi-

tion (4.7) at the level of perverse sheaves in Borho–MacPherson’s Theorem 4.2. Therefore, we have an
isomorphism of pure Hodge modules

Rπ∗QH
X [d] �

⊕
α relevant

iα,∗ICYα (L
′
α), (4.9)

for some variation of Hodge structure L′α on some dense open subvariety of Yα with the underlying local
system Lα same as Lα .

For a relevant stratum indexed by α, to determine the variation of Hodge structure L′α , we apply the
functor H0 ◦ j∗α ◦ i∗α to (4.9) and obtain that

H0j∗αi
∗
α(Rπ∗QH

X [d]) � L
′H
α [dα]. (4.10)

By base change, j∗αi
∗
α(Rπ∗QH

X [d]) � Rπα,∗QH
Xα
[d]. Since πα : Xα → Yα is a topological fibration, we have

an isomorphism of variations of Hodge structures:

L′α � Rcαπα,∗QXα = Lα . (4.11)

5It suffices to assume rational smoothness, for example, varieties with quotient singularities.
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5. Proof of the main results

We prove Theorem 1.1, Theorem 1.2, Corollary 1.9 and Corollary 1.14 in this section. Let S be a compact
complex surface. Set X = Hilbn(S) and Y = S(n).

5.1. Stratification and semismallness. The Hilbert–Chow morphism

π : X→ Y (5.1)

is semismall. There is a natural stratification of π by the types of supports of subschemes. More precisely,
for a partition λ of n, we always write

λ = (λ1 ≥ λ2 · · · ≥ λ`) = (1a12a2 · · · rar ), (5.2)

where for any k ≥ 1, ak ≥ 0 is the number of k’s appearing in the partition (λ1 ≥ λ2 · · · ≥ λ`). In particular,

r∑
k=1

kak = n (5.3)

and the length of λ is

|λ| = ` =
r∑
k=1

ak . (5.4)

The natural stratification of π is indexed by the partitions of n as follows: given a partition λ a n as
above, define the locally closed subvariety

Yλ := S
(n)
λ :=

∑̀
i=1

λixi | xi ∈ S are distinct

 . (5.5)

Then Y =
⊔
λanYλ is a stratification by locally closed subvarieties with smooth strata. Note that dim(Yλ) =

2|λ| and its codimension in Y is
cλ = 2(n− |λ|). (5.6)

Let Xλ := π−1(Yλ) and πλ := π|Xλ . The morphism πλ : Xλ→ Yλ is an isotrivial fibration with all fibers
isomorphic to

Fλ :=
∏̀
i=1

Bλi , (5.7)

where Bm = Hilbm(C2)0 is the m-th Briançon variety parametrizing subschemes of C2 of length m sup-
ported at the origin, which is an irreducible variety of dimension m−1 by [12]. Therefore, the fiber dimension
of πλ is

dim(Fλ) =
∑̀
i=1

(λi − 1) = n− |λ|, (5.8)

which is exactly half of the codimension of Yλ. Hence all strata are relevant.
For each λ a n, since Fλ is irreducible, the local system Lλ is the trivial one, hence the variation of

Hodge structure Lλ has to be the Tate object Q(− cλ2 ) =Q(|λ| −n) of weight cλ.
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5.2. Normalization of strata. Now we study each stratum. Given a partition λ = (1a12a2 · · · rar ) of n,
the closure of the stratum Yλ in S(n), denoted by Yλ, is in general not normal. Its normalization admits the
following natural description:

νλ : S
(a1) × · · · × S(ar )→ Yλ

(z1, . . . , zr ) 7→
r∑
k=1

kzk ,

where we identify a point in S(a) with an effective zero-cycle of length a on S . The morphism νλ is an
isomorphism over Yλ, hence is a birational morphism. Moreover, by construction, νλ is finite. We denote
the closed immersion

iλ : Yλ→ S(n), (5.9)

and the composition
ιλ := iλ ◦ νλ : S(a1) × · · · × S(ar )→ S(n). (5.10)

Lemma 5.1. For any line bundle L on S , let L(n) be the induced natural line bundle on S
(n) defined as in (1.12).

Then for any partition λ = (1a12a2 · · · rar ) of n, we have an isomorphism:

ι∗λL(n) � L(a1)�L
⊗2
(a2)

� · · ·�L⊗r(ar ). (5.11)

Proof. Consider the commutative diagram:

Sa1 × · · · × Sar Sn

S(a1) × · · · × S(ar ) S(n)

ι̃λ

$′ $

ιλ

(5.12)

where the top arrow sends (xk,j ;1 ≤ k ≤ r,1 ≤ j ≤ ak) to the sequence with xk,j repeated k times for each
k, j .

By construction, $∗L(n) = L�n, hence

$′∗ι∗λL(n) � ι̃λ
∗(L�n) � L�a1 � (L⊗2)�a2 � · · ·� (L⊗r )�ar . (5.13)

Therefore, by (3.1),

ι∗λL(n) �$
′
∗(L

�a1 � (L⊗2)�a2 � · · ·� (L⊗r )�ar )Sa1×···×Sar � L(a1)�L
⊗2
(a2)

� · · ·�L⊗r(ar ), (5.14)

as is claimed.

Remark 5.2. Lemma 5.1 does not generalize to vector bundles of higher rank. The reason is that for a vector
bundle E on S of rank r > 1, the coherent sheaf E(n) := $∗(E�n)Sn is not locally free but only reflexive (in
fact a V-bundle). In general ι∗λE(n) is not a tensor product of sheaves pulling back from the factors.

5.3. Twisted Hodge groups of symmetric powers. As a preparation towards the computation of
twisted Hodge groups/numbers of the pair (HilbnS,Ln), we first need to compute the twisted Hodge
groups/numbers of the pair (S(n),L(n)). Note that S(n) is not smooth but is a V-manifold. The twisted
Hodge groups are defined using reflexive differentials; see Definition 3.2.
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Proposition 5.3. Let S be a compact complex surface and let L be a holomorphic line bundle on S . Then for any
integer n ≥ 0, we have a canonical isomorphism of bigraded vector spaces:

⊕
p,q≥0

Hp,q(S(n),L(n))x
pyq � Symn

⊕
i,j≥0

H i,j(S,L)xiyj
 . (5.15)

Here Symn is taken in the super sense with respect to the grading given by the total degree of x and y.
More succinctly,

H#,?(S(n),L(n)) � Symn
(
H#,?(S,L)

)
. (5.16)

Proof. Denote by $ : Sn→ S(n) the natural quotient map. Then Ω
[p]
S(n)

� ($∗Ω
p
Sn)

Sn is a V-bundle on S(n);

see for example [55, Lemma 2.46]. Therefore, ($∗Ω[p]
S(n)

)∨∨ �Ωp
Sn ; see (3.1). Since $∗L(n) � L

�n, we have

$∗(Ω[p]
S(n)
⊗L(n))∨∨ �Ω

p
Sn ⊗L

�n. (5.17)

This implies that (see (3.1))

Ω
[p]
S(n)
⊗L(n) �$∗(Ω

p
Sn ⊗L

�n)Sn . (5.18)

Now we can compute the cohomology group that we are interested in:

Hq(S(n),Ω[p]
S(n)
⊗L(n))

� Hq(Sn,Ωp
Sn ⊗L

�n)Sn

�

 ⊕
i1+···in=p

Hq(Sn,�n
k=1(Ω

ik
S ⊗L))


Sn

�


⊕

i1+···in=p
j1+···jn=q

n⊗
k=1

H jk (S,Ωik
S ⊗L)


Sn

,

where the first isomorphism uses the exactness of the functor −Sn , the second isomorphism uses Ω
p
Sn �∧p(p∗1Ω

1
S ⊕ · · · ⊕ p

∗
nΩ

1
S ), and the last isomorphism is the Künneth formula. Taking the direct sum over all

p,q ≥ 0, this implies that ⊕
p,q≥0

Hp,q(S(n),L(n))x
pyq

�


⊕
i1,··· ,in
j1,··· ,jn

n⊗
k=1

H ik ,jk (S,L)xikyjk


Sn

�

 n⊗
k=1

⊕
i,j≥0

H i,j(S,L)xiyj


Sn

� Symn

⊕
i,j≥0

H i,j(S,L)xiyj
 .

This is exactly (5.15).
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5.4. Isomorphism of Hodge modules and of D-modules. Let the notation be as above: X =
HilbnS , Y = S(n).

Proposition 5.4. We have an isomorphism of pure polarizable Hodge modules of weight 2n on Y :

Rπ∗QH
X [2n] �

⊕
λan

λ=(1a1 ...rar )

ιλ,∗ICS(a1) � · · ·� ICS(ar )(Q(|λ| −n)). (5.19)

Proof. This is [35, Theorem 4], we include the proof for the convenience of the reader. Applying Theo-
rem 4.2 to the semismall morphism π : X→ Y , we obtain an isomorphism in HMp(Y ,2n):

Rπ∗QH
X [2n] �

⊕
λan

iλ,∗ICYλ(Q(|λ| −n)), (5.20)

where ICYα (Q(|λ| − n)) is the unique pure polarizable Hodge module with strict support Yα that restricts
to the weight cλ variation of Hodge structure Q(|λ| −n) on Yα .

For each partition λ of n, write λ = (1a1 . . . rar ) as before, since the normalization νλ : S(a1)×· · ·×S(ar )→
Yλ is finite and birational, by Lemma 2.6,

νλ,∗ICS(a1)×···×S(ar )(Q(|λ| −n)) � ICYλ(Q(|λ| −n)). (5.21)

Since ιλ := iλ ◦ νλ, combining (5.20) and (5.21), and using ICS(a1)×···×S(ar ) � ICS(a1) � · · ·�ICS(ar ) , we obtain
(5.19).

Taking the underlying filtered D-modules on both sides of (5.19) in Proposition 5.4, we get the following
result.

Corollary 5.5. Notation is as above. Let ICS(a) denote the underlying right D-module of the Hodge module
ICS(a)(Q). We have an isomorphism of filtered right DY -modules:

π+(ωX ,F•) �
⊕
λan

λ=(1a1 ...rar )

ιλ,+(ICS(a1) � · · ·� ICS(ar ) ,F•−|λ|+n), (5.22)

where the filtration on the left-hand side is the usual one (see (2.7)), and the filtration on the right-hand side is
the tensor product of the usual ones shifted by |λ| −n.

5.5. Putting everything together. The following proposition contains the key computation of the
proof.

Proposition 5.6. We have a canonical isomorphism in Db
coh(S

(n)):

Rπ∗Ω
p
HilbnS �

⊕
λan

λ=(1a1 ...rar )

⊕
∑
ik=p+|λ|−n

ιλ,∗

(
Ω

[i1]
S(a1)

� · · ·�Ω[ir ]
S(ar )

[|λ| −n]
)
. (5.23)

Proof. We apply the functor grF−p ◦DR to both sides of (5.22) in Corollary 5.5. On the left-hand side, by
Saito’s Theorem 2.4 on strictness of direct images (and Remark 2.5), together with (2.9), we have

grF−pDR(π+ωX) � Rπ∗gr
F
−pDR(ωX) � Rπ∗(Ω

p
X[2n− p]). (5.24)
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Similarly, for the right-hand side, for any partition λ = (1a12a2 · · · rar ) of n, we have isomorphisms

grF−pDR(ιλ,+(ICS(a1) � · · ·� ICS(ar ) ,F•−|λ|+n))

� grF−p−|λ|+nDR(ιλ,+(ICS(a1) � · · ·� ICS(ar )))

� ιλ,∗(gr
F
−p−|λ|+nDR(ICS(a1) � · · ·� ICS(ar )))

� ιλ,∗

 ⊕
∑
ik=p+|λ|−n

grF−i1DR(ICS(a1))� · · ·� grF−irDR(ICS(ar ))


� ιλ,∗

 ⊕
∑
ik=p+|λ|−n

Ω
[i1]
S(a1)

[2a1 − i1]� · · ·�Ω
[ir ]
S(ar )

[2ar − ir ]


�

⊕
∑
ik=p+|λ|−n

ιλ,∗

(
Ω

[i1]
S(a1)

� · · ·�Ω[ir ]
S(ar )

[|λ| − p+n]
)

where the second isomorphism uses Saito’s Theorem 2.4 (and Remark 2.5), the fourth isomorphism follows
from Proposition 3.3.

According to the above computations, applying the functor grF−p ◦DR to both sides of (5.22) yields the
claimed isomorphism.

Proposition 5.7. For any nonnegative integers p,q,n, we have a canonical isomorphism

Hp,q(HilbnS,Ln) �
⊕
λan

λ=(1a1 ...rar )

⊕
∑
ik=p+|λ|−n∑
jk=q+|λ|−n

r⊗
k=1

H ik ,jk (S(ak),L⊗k(ak)). (5.25)

Proof. Still denote X = HilbnS . We have the following chain of isomorphisms:

Hq(X,Ωp
X ⊗Ln)

� Hq(Y ,Rπ∗Ω
p
X ⊗L(n))

�
⊕
λan

⊕
∑
ik=p+|λ|−n

Hq+|λ|−n(S(a1) × · · · × S(ar ),Ω[i1]
S(a1)

� · · ·�Ω[ir ]
S(ar )
⊗ ι∗λL(n))

�
⊕
λan

⊕
∑
ik=p+|λ|−n

Hq+|λ|−n(S(a1) × · · · × S(ar ), (Ω[i1]
S(a1)

� · · ·�Ω[ir ]
S(ar )

)⊗ (L(a1)� · · ·�L
r
(ar )

)).

�
⊕
λan

⊕
∑
ik=p+|λ|−n

Hq+|λ|−n

 r∏
k=1

S(ak),�r
k=1(Ω

[ik]
S(ak )
⊗Lk(ak))

 .
�

⊕
λan

⊕
∑
ik=p+|λ|−n∑
jk=q+|λ|−n

r⊗
k=1

H jk (S(ak),Ω[ik]
S(ak )
⊗Lk(ak)),

(5.26)

where the first isomorphism uses the definition Ln = π∗L(n) and the projection formula, the second iso-
morphism uses (5.23) in Proposition 5.6, the third isomorphism follows from Lemma 5.1, and the last
isomorphism is by the Künneth formula.

Now we can conclude:
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Proof of Theorem 1.1. By Proposition 5.7, the left-hand side of (1.18) can be computed as follows:⊕
n≥0

⊕
p,q≥0

Hp,q(HilbnS,Ln)x
pyqtn

�
⊕
n≥0

⊕
p,q≥0


⊕
λan

λ=(1a1 ...rar )

⊕
∑
ik=p+|λ|−n∑
jk=q+|λ|−n

r⊗
k=1

H ik ,jk (S(ak),Lk(ak))

xpyqtn.
�

⊕
r≥0

⊕
a1,...,ar≥0

⊕
i1,...,ir
j1,...,jr

 r⊗
k=1

H ik ,jk (S(ak),Lk(ak))

x∑ ik+
∑
(k−1)aky

∑
jk+

∑
(k−1)ak t

∑
kak .

�
⊕
r≥0

⊕
a1,...,ar≥0

⊕
i1,...,ir
j1,...,jr

r⊗
k=1

(
H ik ,jk (S(ak),Lk(ak))x

ikyjk (xk−1yk−1tk)ak
)
.

�
⊕
r≥0

⊕
a1,...,ar≥0

r⊗
k=1

⊕
ik ,jk

H ik ,jk (S(ak),Lk(ak))x
ikyjk (xk−1yk−1tk)ak

 .
where the first isomorphism is by Proposition 5.7, the second isomorphism is obtained by a change of
summation order and by noting the following numerical identities: |λ| =

∑
k ak , n =

∑
k kak , and p =

(
∑
k ik) +n− |λ| =

∑
k(ik + (k − 1)ak), q = (

∑
k jk) +n− |λ| =

∑
k(jk + (k − 1)ak).

The right-hand side of (1.18) can be computed using Proposition 5.3:

Sym•
⊕
k≥1

⊕
p,q≥0

Hp,q(S,Lk)xp+k−1yp+k−1tk


�
⊕
r≥0

⊕
a1,...,ar≥0

r⊗
k=1

Symak

⊕
p,q

Hp,q(S,Lk)xp+k−1yq+k−1tk


�
⊕
r≥0

⊕
a1,...,ar≥0

r⊗
k=1

Symak

⊕
p,q

Hp,q(S,Lk)xpyq
 · (xk−1yk−1tk)ak


�

⊕
r≥0

⊕
a1,...,ar≥0

r⊗
k=1

⊕
p,q

Hp,q(S(ak),Lk(ak))x
pyq · (xk−1yk−1tk)ak


where Proposition 5.3 is used in the last isomorphism.

Comparing the two end results above, we conclude that (1.18) holds.

Proof of Theorem 1.2. This follows from Theorem 1.1 by applying [6, Lemma 3.3].

Proof of Corollary 1.9. Given any compact complex surface S , Göttsche’s formula (1.2) for Betti numbers
holds by de Cataldo–Migliorini [17, Theorem 5.2.1], and Göttsche–Soergel’s formula for Hodge numbers
holds by Corollary 1.8. Therefore for any integer i, we have

bi(HilbnS) =
∑
p+q=i

hp,q(HilbnS). (5.27)

This implies that the Frölicher spectral sequence dengerates at E1-page.
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Proof of Corollary 1.14. By Schuhmacher [67], the Hochschild–Kostant–Rosenberg isomorphism holds for
any complex manifold. Therefore for any compact complex surface and any holomorphic line bundle L on
S , we have an isomorphism for any i,n:

HHi(HilbnS,Ln) �
⊕
q−p=i

Hp,q(HilbnS,Ln). (5.28)

Consequently, ⊕
n≥0

⊕
i

HHi(HilbnS,Ln)y
itn

�
⊕
n≥0

⊕
p,q

Hp,q(HilbnS,Ln)y
q−ptn

� Sym•
⊕
k≥1

⊕
i

⊕
q−p=i

Hp,q(S,L⊗k)yitk


� Sym•
⊕
k≥1

⊕
i

HHi(S,L
⊗k)yitk

 ,
(5.29)

where the second isomorphism follows from (1.18) by setting x = y−1. Now (1.15) is proved for any compact
complex surface S .

To deduce (1.6) , (1.8) and (1.7) for any compact complex surface S , it suffices to further specialize to
L = OS , ω

∨
S and ωk−1S respectively in (1.15), since (ωS )n �ωHilbnS as well as their tensor powers.

6. Deformation theory of Hilbert schemes of points on surfaces

Let us first mention some previously known results on the deformation theory of HilbnS .

• Fantechi [25, Theorems 0.1 and 0.3] showed that for a smooth projective surface S with H1(S,OS )⊗
H0(S,TS ) = 0 and H0(S,ω∨S ) = 0 (for example when S is of general type, or an Enriques surface),
the natural map between the Kuranishi spaces Def(S)→ Def(HilbnS) is an isomorphism (as germs
of analytic spaces).

• Hitchin [40, §4.1] showed that for a compact complex surface with H1(S,OS ) = 0, we have a split
short exact sequence

0→H1(S,TS )→H1(HilbnS,THilbnS )→H0(S,ω∨S )→ 0. (6.1)

Clearly, both results can be recovered from Theorem 1.5.

Proof of Theorem 1.5. Specializing to L =ω∨S in Proposition 5.7, we get

Hq(HilbnS,THilbnS ) �H
2n−1,q(HilbnS,ω∨n ) �

⊕
λan

λ=(1a1 ...rar )

⊕
∑
pk=n−1+|λ|∑
qk=q+|λ|−n

r⊗
k=1

Hpk ,qk (S(ak),ω−k(ak)). (6.2)

Now in the summation, we can assume pk ≤ 2ak for any k. Therefore,

2
∑
k

ak ≥
∑
k

pk = n− 1+ |λ| = −1+
∑
k

(k +1)ak , (6.3)
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hence
∑
k(k−1)ak ≤ 1. As a result, a2 = 0 or 1, and ak = 0 for all k ≥ 3. In other words, only two partitions

can contribute in the above direct sum, namely, λ = (1n) and (1n−221).
For λ = (1n), we have r = 1, p1 = 2n− 1, q1 = q, hence the contribution is

H2n−1,q(S(n),ω∨
S(n)

) �Hq(Sn,TSn)
Sn . (6.4)

For λ = (1n−221), we have r = 2, p1 = 2n− 4, p2 = 2, q1 + q2 = q − 1, hence the contribution is⊕
q1+q2=q−1

H2n−4,q1(S(n−2),ω∨
S(n−2)

)⊗H2,q2(S,ω−2S )

�
⊕

q1+q2=q−1
Hq1(S(n−2),O)⊗Hq2(S,ω∨S ).

(6.5)

Summing the two contributions (6.4) and (6.5) proves (1.25). Then (1.26), (1.27) and (1.28) follow immediately.

6.1. Examples.

• For S = P2, which is rigid, its Hilbert scheme however has non-trivial deformations, related to the
non-commutative deformations of P2 via Sklyanin algebras by Nevins–Stafford [52] and Naeghel–Van
den Bergh [20]. More generally, as explained in Hitchin [40], Poisson structures on a complex surface
S , related to its non-commutative deformations, give rise to geometric deformations of HilbnS . See
[47] when S is a del Pezzo surface.

• If S is a surface of general type, or regular of Kodaira dimension 1, or an Enriques surface, then
Fantechi’s result applies, and the natural map Def(S)→ Def(HilbnS) is an isomorphism. For ex-
ample, for curves C1,C2 of genus ≥ 2, Def(Hilbn(C1 ×C2)) � Def(C1) ×Def(C2), and for a curve
C of genus ≥ 3, Def(Hilbn(C(2))) � Def(C(2)) � Def(C). Compare these to the classical fact that
Def(C) �Def(C(n)) for a curve C of genus at least 3, by Fantechi [24] (generalizing Kempf [44]).

• If S is Kähler and has torsion canonical bundle, then HilbnS is also Kähler and has torsion canonical
bundle. By the Bogomolov–Tian–Todorov theorem, generalized by Ran [57] and Kawamata [43],
Def(HilbnS) is unobstructed (i.e. smooth).

• For S a K3 surface, and n > 1, Def(HilbnS) is smooth of dimension 21, hence 1-dimensional higher
than Def(S). In view of Hitchin’s result, the anti-canonical section is responsible for the extra
direction of deformations. This universal family is most naturally studied in the context of compact
hyper-Kähler manifolds, see Beauville [3] and Fujiki [28].

• If S is a 2-dimensional complex torus, and n > 1, Def(HilbnS) is smooth of dimension 9. Let us
describe the deformations for n > 2: we have Hilbn(S) = Kn−1(S) ×Γn S , where Γn � (Z/nZ)4 is the
group of n-torsion points of S , acting diagonally on the product of the generalized Kummer variety
Kn−1(S) and S . Note that Kn−1(S) is a compact hyper-Kähler manifold with dimDef(Kn−1(S)) =
dimDef(S) + 1 = 5. A general deformation of Hilbn(S) is of the form K ×Γn A, where K is a
deformation of Kn−1(S) and A is a deformation of S , the diagonal action of (Z/nZ)4 persists after
deformations.

• If S is a bielliptic surface, since h0(S,TS ) = h1(S,OS ) = 1 and H0(S,ω∨S ) = 0, (1.27) implies that for
n > 1,

dimDef(HilbnS) = dimDef(S) + 1 =

3 if ord(ωS ) = 2;

2 if ord(ωS ) = 3,4,6;
(6.6)

The extra (unobstructed) deformation direction is related to the extra deformation direction of the
(2n−1)-dimensional strict Calabi–Yau manifold constructed in [54, Theorem 3.5]. Note that this case
is not covered by the results of Fantechi and Hitchin. See also the discussion in [6, Section 4.3 and
Example 5.6].
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7. Nested Hilbert schemes

7.1. Basic definitions. Let S be a compact complex surface and n a positive integer. Let Hilbn,n+1S
be the nested Hilbert scheme parametrizing (ξ,ξ ′) with ξ ∈HilbnS and ξ ′ ∈Hilbn+1S such that the ideal
sheaves satisfy Iξ ′ ⊂ Iξ . Hilbn,n+1S is sometimes denoted by S[n,n+1] in the literature. By Cheah [15],
Hilbn,n+1S is a compact complex manifold of dimension 2n+2.

There are natural morphisms

φ : Hilbn,n+1S→HilbnS

(ξ,ξ ′) 7→ ξ,

ψ : Hilbn,n+1S→Hilbn+1S

(ξ,ξ ′) 7→ ξ ′ ,

ρ : Hilbn,n+1S→ S

(ξ,ξ ′) 7→ ξ ′/ξ,

(7.1)

where ξ ′/ξ denotes the residual point of ξ in ξ ′ . It is clear that the morphism

(φ,ρ) : Hilbn,n+1S→HilbnS × S
(ξ,ξ ′) 7→ (ξ,ξ ′/ξ)

(7.2)

is a birational map; in fact, it can be identified with the blow-up morphism of HilbnS×S along the universal
subscheme Zn ⊂HilbnS × S ; see Lehn [46, Proposition 3.8].

Recall that for any line bundle L on S , in (1.13) we have defined a natural line bundle Ln on HilbnS .
Now given any two line bundles L,L′ on S , we have the following natural line bundle on Hilbn,n+1S :

φ∗Ln ⊗ ρ∗L′ . (7.3)

Remark 7.1. Pulling back line bundles of the form Ln+1 via ψ does not give extra new line bundles on
Hilbn,n+1S . Indeed, from the following commutative diagram

Hilbn,n+1S
(φ,ρ) //

ψ
��

π

''

HilbnS × S

πn×idS
��

Hilbn+1S

πn+1 ''

S(n) × S

s
��

S(n+1)

(7.4)

together with the fact that s∗L(n+1) � L(n)�L (as they both pull-back to L�(n+1) on Sn+1) we see that there
is an isomorphism of line bundles:

φ∗Ln ⊗ ρ∗L � ψ∗Ln+1. (7.5)

7.2. Proof of Theorem 1.4. The goal of this section is to prove Theorem 1.4, which determine all the
twisted Hodge groups and twisted Hodge numbers of the Hilbn,n+1S with value in the natural line bundle
φ∗Ln ⊗ ρ∗L′ , for any line bundles L,L′ on S . We use a similar method as for HilbnS in Section 5.

Let X := Hilbn,n+1S and Y := S(n) × S . Consider the composition morphism π := (πn × idS ) ◦ (φ,ρ)

π : X→ Y . (7.6)

As is shown in Cheah [16], Göttsche [33], and de Cataldo–Migliorini [19], π is semismall and admits the
following stratification.
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For any λ a n, write λ = (1a12a2 · · · rar ) as before, and define

Iλ := {j | aj > 0} t {0}. (7.7)

Let P̃ (n) = {(λ,j) | λ a n,j ∈ Iλ}.
For any (λ,j) ∈ P̃ (n), set

Yλ,j := {(z,x) ∈ S(n) × S | multx z = j}. (7.8)

Then
Y =

⊔
λan
j∈Iλ

Yλ,j (7.9)

is a stratification by locally closed smooth subvarieties with

dimYλ,j =

2|λ|+2 if j = 0;

2|λ| if j , 0.
(7.10)

For any (λ,j) ∈ P̃ (n), the restriction of π to the preimage of Yλ,j gives rise to a fiber bundle

πλ,j : Xλ,j → Yλ,j , (7.11)

with fibers all isomorphic to

Fλ,j =


∏r
k=1B

ak
k if j = 0;∏

k,j B
ak
k ×B

aj−1
j ×Hilbj,j+1(C2)0 if j , 0,

(7.12)

where Bm denotes the Briançon variety, and Hilbj,j+1(C2)0 is the Hilbert scheme parametrizing nested
subschemes of C2 of length j and j + 1 supported at the origin, both are irreducible by [12] and by [15]
respectively, with dimension

dimFλ,j =

n− |λ| if j = 0;

n− |λ|+1 if j , 0.
(7.13)

Comparing (7.10) and (7.13), we see that all strata are relevant. Note also that the variation of Hodge
structure is

dimVλ,j �

Q(|λ| −n) if j = 0;

Q(|λ| −n− 1) if j , 0.
(7.14)

Lemma 7.2. Let (λ,j) ∈ P̃ (n). Let L and L′ be two line bundles on S .

i) If j = 0, then

ιλ,j : S
(a1) × · · · × S(ar ) × S→ S(n) × S

(z1, . . . , zr ,x) 7→ (
∑
k

kzk ,x)
(7.15)

is a finite birational morphism, and factorizes through the normalization of Yλ,j . We have

ι∗λ,j(L(n)�L
′) � L(a1)�L

2
(a2)

� · · ·�Lr(ar )�L
′ . (7.16)
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ii) If j , 0, then

ιλ,j : S
(a1) × · · ·S(aj−1) × · · · × S(ar ) × S→ S(n) × S

(z1, . . . , zr ,x) 7→ (jx+
∑
k

kzk ,x)
(7.17)

is a finite birational morphism, and factorizes through the normalization of Yλ,j . We have

ι∗λ,j(L(n)�L
′) � L(a1)�L

2
(a2)

� · · ·Lj(aj−1)� · · ·�L
r
(ar )

� (Lj ⊗L′). (7.18)

Proof. The assertions about the maps are due to Cheah [16]. The computation of pullback line bundles is
straightforward and similar to Lemma 5.1. We omit the details.

Proof of Theorem 1.4. The overall proof scheme is as the proof of Theorem 1.1. We only sketch some main
steps.

Step 1. Similarly to Proposition 5.4, applying Theorem 4.2 to the semismall map π : X → Y , and use
Lemma 7.2 and Lemma 2.6, we get an isomorphism in HMp(Y ,2n+2):

Rπ∗QH
X [2n+2] �

⊕
λan

(ιλ,0)∗(ICS(a1) � · · ·� ICS(ar ) � ICS )(Q(|λ| −n))

⊕
⊕

(λ,j)∈P̃ (n)
j,0

(ιλ,j )∗(ICS(a1) � · · ·� ICS(aj−1) � · · ·� ICS(ar ) � ICS )(Q(|λ| −n− 1)) (7.19)

Similarly to Corollary 5.5, taking the isomorphism of underlying filtered D-modules:

π+(ωX ,F•) �
⊕
λan

(ιλ,0)+(ICS(a1) � · · ·� ICS(ar ) � ICS ,F•−|λ|+n)

⊕
⊕

(λ,j)∈P̃ (n)
j,0

(ιλ,j )+(ICS(a1) � · · ·� ICS(aj−1) � · · ·� ICS(ar ) � ICS ,F•−|λ|+n+1).
(7.20)

Step 2. Similarly to Proposition 5.6, applying the functor grF−p ◦DR to both sides of (7.20), and use

Theorem 2.4, we get an isomorphism in Db
coh(Y):

Rπ∗Ω
p
X[2n+2− p] �

⊕
λan

λ=(1a1 ...rar )

(ιλ,0)∗gr
F
−p−|λ|+nDR(ICS(a1) � · · ·� ICS(ar ) � ICS )

⊕
⊕

(λ,j)∈P̃ (n)
j,0

(ιλ,j )∗gr
F
−p−|λ|+n+1DR(ICS(a1) � · · ·� ICS(aj−1) � · · ·� ICS(ar ) � ICS )

(7.21)

As a result, we get the analogue of Proposition 5.6: in Db
coh(Y), we have an isomorphism

Rπ∗Ω
p
X �

⊕
λan

λ=(1a1 ...rar )

⊕
p0+···pr=p+|λ|−n

(ιλ,0)∗
(
Ω

[p1]
S(a1)

� · · ·�Ω[pr ]
S(ar )

�Ω
[p0]
S [|λ| −n]

)

⊕
⊕
λan

λ=(1a1 ...rar )
j,0,aj>0

⊕
p0+···pr=p+|λ|−n−1

(ιλ,j )∗
(
Ω

[p1]
S(a1)

� · · ·�Ω[pj ]

S(aj−1)
� · · ·�Ω[pr ]

S(ar )
�Ω

[p0]
S [|λ| −n− 1]

)

(7.22)
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Step 3. Similarly to Proposition 5.7, we tensor (7.22) with line bundle L(n) � L′ and take hyper-
cohomology. Using Lemma 7.2 and Proposition 5.3, together with projection formula and Künneth formula,
we obtain

Hp,q(X,φ∗Ln ⊗ ρ∗L′)
�Hq(X,Ωp

X ⊗π
∗(L(n)�L

′))

�
⊕
λan

⊕
p0+···+pr=p+|λ|−n
q0+···+qr=q+|λ|−n

 r⊗
k=1

Hpk ,qk (S(ak),Lk(ak))⊗H
p0,q0(S,L′)


⊕

⊕
λan

λ=(1a1 ...rar )
j,0,aj>0

⊕
∑r
k=0 pk=p+|λ|−n−1∑r
k=0 qk=q+|λ|−n−1

(
Hp1,q1(S(a1),L(a1))⊗ · · · ⊗H

pj ,qj (S(aj−1),Lj )⊗ · · · ⊗Hpr ,qr (S(ar ),Lr(ar ))⊗H
p0,q0(S,Lj ⊗L′)

)
.

(7.23)

Step 4. Multiplying (7.23) by xpyqtn, and summing over all p,q,n ∈ N, one can conclude by an
elementary but slightly more tedious computation similar to the end of Proof of Theorem 1.1 in Section 5.

8. Final remarks and questions

In the seminal paper of Ellingsrud, Göttsche and Lehn [23], it is shown that for a compact complex surface
S , the cobordism class of HilbnS is determined by that of S . As a consequence, for any genus, its value on
HilbnS is determined by its value on S . For the χy-genus, the relation is given by (1.14) in the introduction.
More generally, the case of elliptic genus is worked out by Borisov–Libgober [10, 11], based on Dijkgraaf–
Moore–Verlinde–Verlinde [21]: ∑

n≥0
Ell(HilbnS)tn =

1
L(Ell(S), t)

(8.1)

where for any power series f =
∑
m,l cm,lq

myl ∈Q[[q,y]], its Borcherds-type lift is defined as

L(f , t) :=
∏
k≥1

∏
m,l

(1− tkqmyl)ckm,l .

Ellingsrud–Göttsche–Lehn [23] actually proved the following stronger statement. Recall that for a vector
bundle F on S , the tautological bundle F[n] on HilbnS is the vector bundle of rank nrk(F) whose fiber at
ξ ∈HilbnS is H0(ξ,F|ξ ). We have the relation ([23, Section 5])

det(F[n]) � det(F)n ⊗O(E)⊗rk(F). (8.2)

where O(E) = det(O[n]
S ) is the line bundle associated to the divisor −12D with D the exceptional divisor of

the Hilbert–Chow morphism.

Theorem 8.1 ([23, Theorem 4.1]). Let S be a smooth projective complex surface and let F1, · · · ,Fm be holomorphic
vector bundles on S with rk(Fi) = ri . For any polynomial P in Chern classes of THilbnS and Chern classes of

F
[n]
1 , · · · ,F[n]m , there exists a universal polynomial P̃ depending only on the ranks r1, · · · , rm, Chern classes of TS
and the Chern classes of F1, · · · ,Fm, such that ∫

HilbnS
P =

∫
S
P̃ . (8.3)
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Remark 8.2. Y.-P. Lee and Pandharipande [45] developped a more general theory of algebraic cobordism of
pairs, where a pair consists of a smooth variety and a vector bundle on it. Theorem 8.1 implies that for any
vector bundle F on S , the cobordism class of the pair (HilbnS,F[n]) is determined by the cobordism class
of the pair (S,F). In particular, thanks to (8.2), for any line bundle L, the cobordism class of (HilbnS,Ln)
is determined by the cobordism class of (S,L).

In [34, Theorem 1.3], Göttsche established a formula computing the elliptic genus with coefficients
Ell(HilbnS,Ln ⊗ O(rE)), for any r ∈ Z, hence in particular a formula for χy(HilbnS,Ln ⊗ O(rE)) ([34,
Corollary 1.4]).

Question 8.3. Can we refine Göttsche’s formula for χy(HilbnS,Ln ⊗ O(rE)) by computing the following
twisted Hodge groups

Hp,q(HilbnS,Ln ⊗O(rE)) (8.4)

or at least their dimensions?
By (8.2), it is equivalent to computing for any vector bundle F on S , the twisted Hodge groups:

Hp,q(HilbnS,det(F[n])). (8.5)

Question 8.4. Can we compute the following cohomology groups

Hq(HilbnS,Ωp ⊗F[n]), (8.6)

in terms of cohomology groups on powers of S with values in some natural coherent sheaves involving F?

References

[1] A. G. Aramova. Symmetric products of Gorenstein varieties. J. Algebra, 146(2):482–496, 1992. 2

[2] W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven. Compact complex surfaces, volume 4 of Ergeb-
nisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in
Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag,
Berlin, second edition, 2004. 7

[3] A. Beauville. Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differential Geom.,
18(4):755–782, 1983. 23

[4] A. A. Beilinson, J. Bernstein, and P. Deligne. Faisceaux pervers. In Analysis and topology on singular
spaces, I (Luminy, 1981), volume 100 of Astérisque, pages 5–171. Soc. Math. France, Paris, 1982. 15

[5] P. Belmans. Twisted Hodge numbers for Hilbert schemes of points. doi: 10.5281/zenodo.14334379. url:
https://github.com/pbelmans/twisted-hodge-hilbert. 7

[6] P. Belmans, L. Fu, and A. Krug. Hochschild cohomology of Hilbert schemes of points on surfaces.
2023. 3, 4, 5, 6, 8, 21, 23

[7] R. Blache. Chern classes and Hirzebruch-Riemann-Roch theorem for coherent sheaves on complex-
projective orbifolds with isolated singularities. Math. Z., 222(1):7–57, 1996. 13

[8] S. Boissière. Automorphismes naturels de l’espace de Douady de points sur une surface. Canad. J.
Math., 64(1):3–23, 2012. 4, 5, 6

[9] W. Borho and R. MacPherson. Partial resolutions of nilpotent varieties. In Analysis and topology on
singular spaces, II, III (Luminy, 1981), volume 101-102 of Astérisque, pages 23–74. Soc. Math. France,
Paris, 1983. 15

https://github.com/pbelmans/twisted-hodge-hilbert


Twisted Hodge groups of Hilbert schemes of points on surfaces 29Twisted Hodge groups of Hilbert schemes of points on surfaces 29

[10] L. Borisov and A. Libgober. Elliptic genera of singular varieties. Duke Math. J., 116(2):319–351, 2003.
27

[11] L. Borisov and A. Libgober. McKay correspondence for elliptic genera. Ann. of Math. (2), 161(3):1521–
1569, 2005. 27

[12] J. Briançon. Description de H ilbnC{x,y}. Invent. Math., 41(1):45–89, 1977. 16, 25

[13] T. Bridgeland, A. King, and M. Reid. The McKay correspondence as an equivalence of derived
categories. J. Amer. Math. Soc., 14(3):535–554, 2001. 3, 8

[14] H. Cartan and J.-P. Serre. Un théorème de finitude concernant les variétés analytiques compactes. C.
R. Acad. Sci. Paris, 237:128–130, 1953. 8

[15] J. Cheah. Cellular decompositions for nested Hilbert schemes of points. Pacific J. Math., 183(1):39–90,
1998. 24, 25

[16] J. Cheah. The virtual Hodge polynomials of nested Hilbert schemes and related varieties. Math. Z.,
227(3):479–504, 1998. 7, 24, 26

[17] M. A. A. de Cataldo and L. Migliorini. The Douady space of a complex surface. Adv. Math., 151(2):283–
312, 2000. 7, 21

[18] M. A. A. de Cataldo and L. Migliorini. The Chow groups and the motive of the Hilbert scheme of
points on a surface. J. Algebra, 251(2):824–848, 2002. 3

[19] M. A. A. de Cataldo and L. Migliorini. The Chow motive of semismall resolutions. Math. Res. Lett.,
11(2-3):151–170, 2004. 24

[20] K. De Naeghel and M. Van den Bergh. Ideal classes of three dimensional Artin-Schelter regular
algebras. J. Algebra, 283(1):399–429, 2005. 23

[21] R. Dijkgraaf, G. Moore, E. Verlinde, and H. Verlinde. Elliptic genera of symmetric products and second
quantized strings. Comm. Math. Phys., 185(1):197–209, 1997. 27

[22] P. Du Bois. Complexe de de Rham filtré d’une variété singulière. Bull. Soc. Math. France, 109(1):41–81,
1981. 11

[23] G. Ellingsrud, L. Göttsche, and M. Lehn. On the cobordism class of the Hilbert scheme of a surface. J.
Algebraic Geom., 10(1):81–100, 2001. 3, 8, 27

[24] B. Fantechi. Deformations of symmetric products of curves. In Classification of algebraic varieties
(L’Aquila, 1992), volume 162 of Contemp. Math., pages 135–141. Amer. Math. Soc., Providence, RI, 1994.
23

[25] B. Fantechi. Deformation of Hilbert schemes of points on a surface. Compositio Math., 98(2):205–217,
1995. 6, 22

[26] J. Fogarty. Algebraic families on an algebraic surface. Amer. J. Math., 90:511–521, 1968. 2

[27] A. Frölicher and A. Nijenhuis. Some new cohomology invariants for complex manifolds. I, II. Indag.
Math., 18:540–552, 553–564, 1956. Nederl. Akad. Wetensch. Proc. Ser. A 59. 6

[28] A. Fujiki. On primitively symplectic compact Kähler V -manifolds of dimension four. In Classification
of algebraic and analytic manifolds (Katata, 1982), volume 39 of Progr. Math., pages 71–250. Birkhäuser
Boston, Boston, MA, 1983. 23



30 Lie Fu30 Lie Fu

[29] N. Ganter and M. Kapranov. Symmetric and exterior powers of categories. Transform. Groups, 19(1):57–
103, 2014. 3

[30] M. Goresky and R. MacPherson. Stratified Morse theory, volume 14 of Ergebnisse der Mathematik und
ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1988. 14

[31] L. Göttsche. The Betti numbers of the Hilbert scheme of points on a smooth projective surface. Math.
Ann., 286(1-3):193–207, 1990. 2

[32] L. Göttsche. Hilbert schemes of zero-dimensional subschemes of smooth varieties, volume 1572 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 1994. 2

[33] L. Göttsche. On the motive of the Hilbert scheme of points on a surface. Math. Res. Lett., 8(5-6):613–
627, 2001. 3, 24

[34] L. Göttsche. Refined Verlinde formulas for Hilbert schemes of points and moduli spaces of sheaves on
K3 surfaces. Épijournal Géom. Algébrique, 4:Art. 15, 12, 2020. 3, 4, 8, 28

[35] L. Göttsche and W. Soergel. Perverse sheaves and the cohomology of Hilbert schemes of smooth
algebraic surfaces. Math. Ann., 296(2):235–245, 1993. 2, 7, 8, 15, 19

[36] H. Grauert. Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen.
Inst. Hautes Études Sci. Publ. Math., (5):64, 1960. 8

[37] I. Grojnowski. Instantons and affine algebras. I. The Hilbert scheme and vertex operators. Math. Res.
Lett., 3(2):275–291, 1996. 2

[38] M. Haiman. Hilbert schemes, polygraphs and the Macdonald positivity conjecture. J. Amer. Math. Soc.,
14(4):941–1006, 2001. 3

[39] T. Hayashi. Universal covering Calabi-Yau manifolds of the Hilbert schemes of n-points of Enriques
surfaces. Asian J. Math., 21(6):1099–1120, 2017. 5

[40] N. Hitchin. Deformations of holomorphic Poisson manifolds. Mosc. Math. J., 12(3):567–591, 669, 2012.
6, 22, 23

[41] M. Kashiwara. The Riemann-Hilbert problem for holonomic systems. Publ. Res. Inst. Math. Sci.,
20(2):319–365, 1984. 9

[42] M. Kashiwara. Algebraic study of systems of partial differential equations. Mém. Soc. Math. France
(N.S.), (63):xiv+72, 1995. Translated by Jean-Pierre Shneiders and Andrea D’Agnolo. 9

[43] Y. Kawamata. Unobstructed deformations. A remark on a paper of Z. Ran: “Deformations of manifolds
with torsion or negative canonical bundle” [J. Algebraic Geom. 1 (1992), no. 2, 279–291; MR1144440
(93e:14015)]. J. Algebraic Geom., 1(2):183–190, 1992. 23

[44] G. R. Kempf. Deformations of symmetric products. In Riemann surfaces and related topics: Proceedings
of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), volume No. 97 of Ann.
of Math. Stud., pages 319–341. Princeton Univ. Press, Princeton, NJ, 1981. 23

[45] Y.-P. Lee and R. Pandharipande. Algebraic cobordism of bundles on varieties. J. Eur. Math. Soc. ( JEMS),
14(4):1081–1101, 2012. 28

[46] M. Lehn. Lectures on Hilbert schemes. In Algebraic structures and moduli spaces, volume 38 of CRM
Proc. Lecture Notes, pages 1–30. Amer. Math. Soc., Providence, RI, 2004. 2, 24



Twisted Hodge groups of Hilbert schemes of points on surfaces 31Twisted Hodge groups of Hilbert schemes of points on surfaces 31

[47] C. Li. Deformations of the Hilbert scheme of points on a del Pezzo surface. Mosc. Math. J., 17(2):291–321,
2017. 23

[48] Z. Mebkhout. Une autre équivalence de catégories. Compositio Math., 51(1):63–88, 1984. 9

[49] Z. Mebkhout. Une équivalence de catégories. Compositio Math., 51(1):51–62, 1984. 9

[50] H. Nakajima. Heisenberg algebra and Hilbert schemes of points on projective surfaces. Ann. of Math.
(2), 145(2):379–388, 1997. 2

[51] H. Nakajima. Lectures on Hilbert schemes of points on surfaces, volume 18 of University Lecture Series.
American Mathematical Society, Providence, RI, 1999. 2

[52] T. A. Nevins and J. T. Stafford. Sklyanin algebras and Hilbert schemes of points. Adv. Math., 210(2):405–
478, 2007. 23

[53] A. Nijenhuis. Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I, II.
Indag. Math., 17:390–397, 398–403, 1955. Nederl. Akad. Wetensch. Proc. Ser. A 58. 6

[54] K. Oguiso and S. Schröer. Enriques manifolds. J. Reine Angew. Math., 661:215–235, 2011. 23

[55] C. A. M. Peters and J. H. M. Steenbrink. Mixed Hodge structures, volume 52 of Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and
Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2008. 11,
18

[56] D. Prill. Local classification of quotients of complex manifolds by discontinuous groups. Duke Math.
J., 34:375–386, 1967. 12

[57] Z. Ran. Deformations of manifolds with torsion or negative canonical bundle. J. Algebraic Geom.,
1(2):279–291, 1992. 23

[58] M. Saito. Modules de Hodge polarisables. Publ. Res. Inst. Math. Sci., 24(6):849–995, 1988. 9, 11

[59] M. Saito. Introduction to mixed hodge modules. In Théorie de Hodge - Luminy, Juin 1987, number
179-180 in Astérisque, pages 145–162. 1989. 9

[60] M. Saito. Mixed Hodge modules. Publ. Res. Inst. Math. Sci., 26(2):221–333, 1990. 9, 10, 11, 15

[61] M. Saito. Mixed Hodge complexes on algebraic varieties. Math. Ann., 316(2):283–331, 2000. 11

[62] I. Satake. On a generalization of the notion of manifold. Proc. Nat. Acad. Sci. U.S.A., 42:359–363, 1956.
12

[63] I. Satake. The Gauss-Bonnet theorem for V -manifolds. J. Math. Soc. Japan, 9:464–492, 1957. 12

[64] W. Schmid. Variation of Hodge structure: the singularities of the period mapping. Invent. Math.,
22:211–319, 1973. 9

[65] C. Schnell. On Saito’s vanishing theorem. Math. Res. Lett., 23(2):499–527, 2016. 10, 12

[66] C. Schnell. An overview of Morihiko Saito’s theory of mixed Hodge modules. In Representation theory,
automorphic forms & complex geometry, pages 27–80. Int. Press, Somerville, MA, [2019] ©2019. 9, 11

[67] F. Schuhmacher. Hochschild cohomology of complex spaces and Noetherian schemes. Homology
Homotopy Appl., 6(1):299–340, 2004. 22



32 Lie Fu32 Lie Fu

[68] T. K. Srivastava. Pathologies of the Hilbert scheme of points of a supersingular Enriques surface. Bull.
Sci. Math., 167:Paper No. 102957, 10, 2021. 7

[69] J. H. M. Steenbrink. Mixed Hodge structure on the vanishing cohomology. In Real and complex
singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pages 525–563. Sijthoff
& Noordhoff, Alphen aan den Rijn, 1977. 11, 12, 14

Université de Strasbourg, Institut de recherche mathématique avancée (IRMA), France

lie.fu@math.unistra.fr


	Introduction
	Hodge modules
	V-manifolds and reflexive differentials
	Semismall morphisms
	Proof of the main results
	Deformation theory of Hilbert schemes of points on surfaces
	Nested Hilbert schemes
	Final remarks and questions

