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Introduction générale

Voici un résumé de mon parcours de recherche, qui s’est plongé dans les con-
nexions profondes entre les structures algébriques et la géométrie. Voici de brèves
descriptions des principaux sujets de mes recherches. Une description plus détaillée
peut être trouvée dans les sections suivantes.

Commencant par le travail fondateur de M. Kapranov en 1997, une analogie
entre la classe d’Atiyah du fibré tangent d’une variété complexe et les constantes
de structure d’une algèbre de Lie a été établie. Dans [Mar09], j’ai approfondi
cette observation. J’ai construit un cadre rigoureux décrivant l’interaction entre la
cohomologie et l’homologie de Hochschild, la classe d’Atiyah jouant un rôle central.
Ce formalisme a ouvert la voie à l’établissement d’un dictionnaire profond entre les
algèbres de Lie et les variétés lisses, éclairant leurs connexions intrinsèques. Par
la suite, mes recherches se sont étendues à l’application de ces concepts dans une
démonstration alternative du théorème de Riemann-Roch.

Un autre sujet assez différent qui m’intéresse est celui des structures de Poisson
de Feigin-Odesski. Une structure de Poisson sur une variété est un objet intéressant,

Date: September 5, 2024.

1



2 NIKITA MARKARIAN

décrivant une déformation non commutative du premier ordre de l’algèbre des fonc-
tions. La structure de Poisson de Feigin-Odesski est une classe intéressante de telles
structures sur les espaces projectifs, les grassmanniennes, etc. Elles sont associées
à une courbe elliptique, et leur structure reflète la géométrie algébrique de cette
courbe elliptique et son plongement dans les espaces mentionnés. Ainsi, l’étude de
la structure de Poisson de Feigin-Odesski est un exercice intéressant en géométrie
algébrique classique. De plus, on peut supposer que presque toutes les structures
de Poisson jouant un rôle important en physique mathématique sont une sorte de
dégénérescence de celles de Feigin-Odesski, en particulier, elles sont associées à (une
dégénérescence d’) une courbe elliptique, ou du moins à une catégorie 1-Calabi-Yau.
L’article [Fin+99] en est un exemple de cette approche.

Mes contributions à ce sujet sont diverses. Dans [GM24], nous avons étudié les
structures générales des structures de Poisson de Feigin-Odesski. Sur cette base,
dans [MP23; MP24], nous avons examiné une nouvelle caractéristique intrigante de
ces structures : la présence de grandes familles de structures compatibles. Je crois
que cette étude ouvrira de nouvelles perspectives sur ce sujet.

Le thème qui me préoccupe beaucoup est le lien entre les opérades, la topologie
des variétés et la géométrie algébrique. La factorisation homologique est un sujet
vaste qui réunit la physique mathématique, les catégories supérieures, la topolo-
gie algébrique, etc. Je les ai appliqués pour comprendre et étudier les invariants
d’ordre fini des variétés de basse dimension et des nœuds. Dans [AS92], une for-
mule explicite de l’invariant de Chern–Simons perturbatif est donnée. Ma première
percée dans ce domaine a été un lien direct entre cette formule et la factorisation
homologique de certaines en-algèbres, que j’ai appelées n-algèbres de Weyl. En-
suite, je les ai appliquées pour étudier les invariants des nœuds et le morphisme de
formalité de M. Kontsevich. Je crois que ce sujet est loin d’être épuisé.

Mes intérêts plus récents se situent de l’autre côté de ce thème. On sait que
l’opérade des petits disques est équipée d’une structure algébrique supplémentaire.
Il s’ensuit que le groupe de Grothendieck–Teichmüller, qui est essentiellement le
groupe des automorphismes de cette opérade, contient le groupe de Galois mo-
tivique, un objet d’une grande importance pour la géométrie algébrique moderne.
Bien que ce sujet soit intensément étudié, il reste assez mystérieux. J’ai un projet
pour étudier ces structures sur l’opérade des petits disques. Le premier pas dans
cette direction est [Mar23].

Ci-dessous se trouve un aperçu plus détaillé de mon travail. La liste de mes
articles sur lesquels cette revue est basée peut être trouvée ci-dessous, après le
texte.

General introduction

Here is a summary of my research journey, which has delved into the profound
connections between algebraic structures and geometry. Here are short outlines of
the main subjects of my research. A more detailed description may be found in the
subsequent sections.

Beginning with the seminal work of M. Kapranov in 1997, an analogy between
the Atiyah class of the tangent bundle of a complex manifold and the structure
constants of a Lie algebra was established. In [Mar09], I further developed this
observation. I constructed a rigorous framework describing the interplay between
Hochschild cohomology and homology, with the Atiyah class playing a central role.
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This formalism paved the way for establishing a profound dictionary between Lie al-
gebras and smooth manifolds, shedding light on their intrinsic connections. Moving
forward my research extended to the application of these concepts in an alternative
proving the Riemann-Roch theorem.

Another pretty different subject of my interest is Feigin–Odesski Poisson struc-
tures. A Poisson structure on a manifold is an interesting gadget on a manifold,
describing a first-order non-commutative deformation of the algebra of functions.
Feigin–Odesski Poisson structure is an interesting class of such structures on pro-
jective spaces, Grassmannians, and so on. They are associated with an elliptic
curve, and their structure reflects the algebraic geometry of this elliptic curve and
its embedding to the mentioned spaces. Thus, the study of Feigin–Odesski Poisson
structure is an interesting exercise in classical algebraic geometry. Besides, one
may suppose that nearly all Poisson structures playing important in mathematical
physics are some sort of degeneration of Feigin–Odesski ones, in particular, they are
associated with (a degeneration of) an elliptic curve, or at least with a 1-Calabi-Yau
category. Paper [Fin+99] is an example of this approach.

My contributions to the subject are diverse. In [GM24] we studied the general
structures of Feigin-Odesski Poisson structures. Based on it in [MP23; MP24]
we investigate an intriguing new feature of these structures: the presence of big
families of compatible ones. I believe that this study will lead to new insights into
this subject.

The theme that concerns me a lot is the connection between the operads, the
topology of manifolds, and algebraic geometry. Factorization homology is a wide
subject uniting mathematical physics, higher categories, algebraic topology, and
others. I applied them to understand and study so-called finite-order invariants
of low-dimensional manifolds and knots. In [AS92], an explicit formula of the
perturbative Chern–Simons invariant is given. My first breakthrough in this subject
was a direct connection between this formula and the factorization homology of
certain en-algebras, which I called Weyl n-algebras. Then, I applied them to study
invariants of knots and the formality morphism of M. Kontsevich. I believe that
this topic is far from being exhausted.

My more recent interests lie on the other side of this theme. It is known that
the operad of little 2-disks is equipped with some additional algebraic structure. It
follows, that the Grothendieck–Teichmüller group, which is essentially the group of
automorphisms of this operad, contains the motivic Galois group, an object of great
importance for modern algebraic geometry. Being intensively studied this topic is
still rather mysterious. I have a project to investigate these structures on the little
2-disks operad. The first step in this direction is [Mar23].

Below is a more detailed overview of my job. The list of my papers on which
this review is based may be found below, after the text.

1. Atiyah class and Riemann–Roch theorem

As far as I know, an analogy between the Atiyah class of the tangent bundle of a
complex manifold and the structure constants of a Lie algebra first appeared in the
pioneering paper of M. Kapranov [Kap97]. I developed this observation in [Mar09]
keeping in mind the question posed to me by B. Feigin: ”Why does the Todd class
look like the invariant volume form on a Lie group?” The answer is, in a sense,
contained in the proof of Proposition 1.3 below. On this way, I was able to develop
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a dictionary between Lie algebras and smooth manifolds. In modern terms, it is
explainable in the paradigm of derived algebraic geometry. Indeed, the Chevalley
complex of Lie algebra is a function ring of a supermanifold.

Firstly, I developed a formalism describing the Hochschild cohomology and ho-
mology and the relations between them. Essentially, I introduce a global analog of
Hochschild–Kostant–Rosenberg isomorphism from [HKR62]. In this development,
the Atiyah class plays a crucial role. One may consider the Atiyah class as a mor-
phism from the identity functor to tensoring by the cotangent bundle functor shifted
by one on the derived category D(X) of coherent sheaves on a smooth manifold:

(1) at : id → · ⊗ Ω1[1]

One may think about (1) as an action of an object T [−1] dual to Ω1 on D(X).
Iterating this action one can make the tensor power of T [−1] (in fact, the symmetric
power) act on D(X).

Then, I proved the Riemann–Roch theorem as an application of the apparatus
developed in the first part combined with the Serre duality. The Riemann–Roch
theorem in the form of Grothendieck describes how the Chern character behaves
under taking the direct image. There are different forms of the theorem, depending
on which definition of the Chern character one uses. If one works with an algebraic
manifold and the Chern character takes value in the Chow group, then one should
use the intersection theory ([BGI71]); if one works on a complex–analytic manifold
and the Chern character is the topological one, then the Atiyah–Singer theorem
is appropriate ([Hir66]). We use the Chern character taking value in the Hodge
cohomology (see [Ill71]). Of course, one could prove the Riemann–Roch theorem
in this case, using some comparison theorems between cohomology theories, but it
is more plausible to have independent proof.

Essentially we follow [OTT81]. But instead of explicit calculations with the
Čech cocycles we work in the derived category and use our algebraic–differential
calculus. The proof consists of two parts: the first says what one needs to calculate
(the dual class of the diagonal in the framework of [OTT81]) and the second one is
the calculation.

In [Mar01], I applied these methods to prove also the holomorphic Lefschetz
formula. This approach was generalized and developed in terms of 2-categories
[KP20] following the pioneering ideas suggested in [BN].

Here are some details of my approach.

1.1. Atiyah class. We begin with the Atiyah class. Usually, one considers this
class for vector bundle as an obstruction to the existence of a connection ([Ati57a]):
with any vector bundle one may associate the filtered vector (bundle of first jets)
of its sections at the first infinitesimal neighborhood of a point. A splitting of this
filtration gives a connection on the vector bundle. The extension obstructing such
a splitting is the Atiyah class. I showed that it is very instructive to consider this
class for coherent sheaves and complexes of coherent sheaves. And importantly, this
class defines a morphism of functors (or natural transformation) from the derived
category of complexes on the manifold under consideration to itself.

Let X be a smooth algebraic variety over a field k of characteristic 0 or bigger
than dimX. Everything works for the complex analytic case as well. Let ∆ ⊂
X ×X be the diagonal and let I denote the ideal sheaf of ∆. Then, by definition,
O∆ = OX×X/I and Ω1

∆ = I/I2. The two-step filtration on OX×X/I
2 by powers
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of I gives rise to the exact sequence

(2) 0 −−−−→ Ω1
∆ −−−−→ OX×X/I

2 −−−−→ O∆ −−−−→ 0

Since the terms of the sequence (2) are supported on the diagonal, one may consider
(2) as a sequence of sheaves of OX -OX -bimodules on X. Let E be a sheaf of O-
modules or a complex of such sheaves on X. Take its tensor product with (2) with
respect to the left O module structure, and consider it as a right O module. In
other words, tensor (2) by p∗1E and take the direct image p2∗. Because all terms in
(2) are locally free left O-modules, this operation is exact, and one gets an exact
sequence

(3) 0 −−−−→ E ⊗ Ω1 −−−−→ J1(E) −−−−→ E −−−−→ 0.

Here J1(E) denotes E ⊗O/I2 with the right O-module structure and is called the
sheaf of the first jets.

Definition 1.1 ([Ati57a; Ill71]). For a sheaf of O-modules or a complex of such
sheaves E on X the class of extensions represented by (3) is called the Atiyah class
at(E) ∈ Ext1(E,E ⊗ Ω1) of E.

Sheaves on X × X may be thought as kernel of endofunctors of the derived
category: the functor given by such a sheaf is given by pullback, tensor product
with a sheaf, and the pushforward, as above. The extension (2) may be considered
as an extension of such kernels of functors on the derived category. It follows that
the Atiyah class is natural, that is a morphism of functors.

Example 1.1. Consider the simplest example of on locally free sheaf. Let O0 be
the structure sheaf of the origin point of A1. It has a free resolution:

OA1
x−−−−→ OA1 −−−−→ O0 −−−−→ 0

Let us identify Ω1
A1 with OA1 by means of section dx of the former. Then one may

see, that the Atiyah class is given by the following map of complexes:

OA1
x−−−−→ OA1

1

y
OA1

x−−−−→ OA1

Note that the Atiyah class in the example above is the derivative of the differ-
ential of the complex. More generally, one may prove the following useful lemma.

Proposition 1.1. Let E = (Ei, di : Ei → Ei+1) be a complex of sheaves of O-
modules. Assume given a connection ∇i on Ei. Then, at(E) is represented by

(∇d)i def
= (di ◦ ∇i −∇i+1 ◦ di) : Ei → Ei+1 ⊗ Ω1.

Example 1.2. Consider a smooth affine variety Spec(A). The structure sheaf of
the diagonal O∆ has the standard resolution B = (Bi, di), i ⩾ 0 defined as follows:
Bn is a free A⊗A-module generated by tensor power A⊗n over the base field and
the differential is given by

(4) d(a1 ⊗ a2 ⊗ · · · ⊗ an−1 ⊗ an) =

a1(a2 ⊗ · · · ⊗ an)− (a1a2 ⊗ · · · ⊗ an) + · · ·+ (−1)n(a1 ⊗ a2 ⊗ · · · ⊗ an−1)an.



6 NIKITA MARKARIAN

The terms of the standard resolution are free modules, hence they are equipped
with canonical connections. Applying Proposition 1.1 to the standard resolution
one obtains the following expression for the Atiyah class of O∆:

at(O∆) : (a1 ⊗ a2 ⊗ · · · ⊗ an−1 ⊗ an) 7→
da1(a2 ⊗ · · · ⊗ an−1 ⊗ an) + (−1)n(a1 ⊗ a2 ⊗ · · · ⊗ an−1)dan,

where d is the exterior differential. This formula is an explicit form of action (7)
below.

Consider the Atiyah class of the cotangent bundle

(5) at(Ω1) : Ω1 → Ω1 ⊗ Ω1[1]

Proposition 1.2. (1) at(Ω1) is symmetric, i. e. invariant under the permu-
tation of factors in Ω1 ⊗ Ω1.

(2) at(Ω1) obeys the Jacobi identity, i. e. the projection of at(Ω1)⊗ id ◦ at(Ω1)
onto the part of Ω1⊗Ω1⊗Ω1 invariant under permutations is equal to zero.

It follows that there is a structure of a Lie (super)algebra in the derived category
D(X) on the shifted tangent bundle T [−1], as it was observed in [Kap97]. The map
dual to (5) is the bracket. Denote this Lie algebra by T :

[ , ] : T ⊗L T → T .
Formally following the analogous construction for Lie algebras one may define

the enveloping algebra and the Hopf-dual object, the ring of functions on the formal
Lie group. They turn to be Hochschild cochain complex by

U = Rp1∗RHom
•
X×X(O∆,O∆),

and Hochschild chain complex defined by

(6) F = Rp1∗(O∆ ⊗L O∆),

where ∆ is the diagonal in X ×X.
Still following this analogy, one expect an analog of action of the universal en-

veloping algebra, which is the algebra of left-invariant differential operators, on the
ring of functions. This canonical action of U on F

(7) D: U⊗L F → F

is given by

U = Ext(O∆,O∆)
−⊗id−→ Ext(O∆ ⊗L O∆,O∆ ⊗L O∆) = Ext(F,F).

An analog of the Poincaré–Birkhoff–Witt isomorphism is the Hochschil-d-Kostant–
Rosenberg isomorphism ([HKR62]), which establishes an isomorphism between U

and the sum of shifted polyvector fields
⊕

i Λ
iT [−i], and between F and the sum

of shifted differential forms
⊕

i Ω
i[i]. In the same way, as for Lie algebras, these

isomorphisms neither respect the product on U, nor the action of U on F.
The problem for Lie algebras is the following. Poincaré–Birkhoff–Witt isomor-

phism identifies an element of the symmetric power of a Lie algebra with an element
of the universal enveloping algebra by taking an average of products of Lie algebra
elements forming the former element in all possible orders. Product of two such
symmetric elements is not symmetric in an obvious way. The product in terms of
Poincaré–Birkhoff–Witt isomorphism is given by the Baker–Campbell–Hausdorff
formula. But if one of the factors is linear, the formula simplifies, the formula is
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known as the one for left-(or right-)invariant vector fields in exponential coordi-
nates.

The analog of the mentioned formula for left-invariant vector fields on a Lie
group in exponential coordinates is the following. Let

L :
⊕
i

Ωi[i] → (
⊕
i

Ωi[i])⊗ Ω1[1]

denote the morphism defined by the formula

(8) L =
∑

lnL
n

where
∑
lnz

n = z/(ez − 1).
The following theorem provides a description of the action of T ⊂ U on F which

allows us to obtain the action of all of U.

Theorem 1.1. The diagram

T ⊗ F
D−−−−→ F

id⊗E

y E

y
T ⊗

⊕
i Ω

i[i][−1]
L−−−−→

⊕
i Ω

i[i]

is commutative.

1.2. Riemnn-Roch theorem. For X a proper algebraic variety (or a compact
analytical one), there is a map

∫
: HdimX(ω) → k, where ω is the canonical sheaf,

such that for any E ∈ D(X) the composition of maps

(9) Hi(E)⊗HdimX−i(E∨ ⊗L ω)
Tr−→ HdimX(ω)

∫
−→ k

gives a perfect (super)symmetric pairing, where Tr is the trace map. This statement
is called the Serre duality, see [Har66], [Con00]. The Serre duality obeys numerous
naturality conditions.

As we have seen above, the Atiyah class allows us to produce morphisms of
endofunctors of D(X). Taking a particular composition of these morphisms one may
produce a morphism from id to ⊗Lω[dimX] functor. Given an object E ∈ D(X),

it gives a morphism ExtdimX(E,E ⊗L ω). Taking trace and applying
∫

we get a
number. Thus, we get a function on the set of objects of D(X). This function is
the Euler characteristic of the cohomology of the object. It is our version of the
Riemann–Roch theorem in a nutshell. Here are some details.

For E ∈ D(X) let K denote the composition

(10) OX×X
1−→ E ⊠ E∨ ⊗L O∆

can⊗E⊠E∨

−→ E ⊠ (E∨ ⊗L ω)[dimX],

where the first arrow is given by the identity operator O → E ⊗ E∨. By the
second statement of the theorem, K ∈ H∗(E)⊗H∗(E∨⊗ω) = H∗(E)⊗H∗(E)∨ =
EndH∗(E) is equal to the identity operator.

By the first statement of the theorem, the trace of the restriction of K to the
diagonal ∆∗K ∈ H∗(E ⊗ E∨ ⊗ ω) followed by

∫
is equal to the supertrace of the

identity operator on H∗(E), that is, to the Euler characteristic :

χ(E)
def
=
∑
i

(−1)i dimHi(E).
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To state the Riemann-Roch theorem, we need to factorize the morphism
∫
∆∗K ∈

H∗(E ⊗E∨ ⊗ ω). Restricting (10) to the diagonal and taking the trace, we obtain

(11) OX
1⊗O∆−−−−→ E⊗LE∨⊗L F

id⊗(can⊗O∆)−−−−−−−−−→ E⊗LE∨⊗L ω[dimX]
Tr−→ ω[dimX],

where F is defined by (6). Interchanging the last two arrows, we obtain

OX
1⊗O∆−−−−→ E ⊗L E∨ ⊗L F

Tr⊗id−−−−→ F
can⊗O∆−−−−−−→ ω[dimX].

We introduce the following notations: let

(12) Ch(E) : OX
1⊗O∆−−−−→ E ⊗L E∨ ⊗L F

Tr⊗id−−−−→ F

and let

(13) Td: F
can⊗O∆−−−−−−→ ω[dimX].

Theorem 1.2 (Riemann-Roch theorem). For E ∈ D(X)

χ(E) =

∫
Td ◦Ch(E).

The classes Ch and Td may be calculated explicitly using the formalism described
in the previous Subsection.

The key statement here is the following Proposition.

Proposition 1.3. Let

(14) td = exp(
∑

ti ch(Ω
1)) ∈

⊕
i

Hi(Ωi),

where
∑
tiz

i = log(z/(ez − 1)). Then, the class Td from (13) may be expressed as
the composition

Td: F
E−→
⊕
i

Ωi[i]
∧ td−→

⊕
i

Ωi[i] ↠ ω[dimX],

where the last arrow is the projection onto the differential forms of the top degree.

The proof is based on the Theorem 1.1 above.

2. Feigin–Odesski Poisson structures

In the late 80s B. Feigin and A. Odesskii invented elliptic algebras, which are
generalizations of Sklyanin algebras. These are algebras with quadratic relations,
which are flat deformations of the polynomial algebra. The construction of algebra
depends on a choice of an elliptic curve, and the deformation parameter is a shift on
this elliptic curve. Generators of such an algebra form a space naturally isomorphic
to sections of a simple vector bundle over the elliptic curve. By [Ati57b], such
bundles up to a twist of a line bundle of degree 0, are classified by pairs of relatively
prime natural numbers (n, r), where n is degree of the bundle and r is its rank.

In [FO95] Feigin and Odesskii studied the quadratic Poisson structures associated
with these deformations. Such a homogeneous Poisson structure on vector space
gives a Poisson structure on the associated projective space. The latter Poisson
structure is called Feigin–Odesski (FO) Poisson structure. Thus, this is a Poisson
structure on Pn−1H1(C, E∨

n,r), where C is an elliptic curve, En,r is a simple vector

bundle of rank r and degree n, and we identify H1(C, E∨
n,r) with the space dual to

H0(C, En,r) by means of the Serre duality. Denote this Poisson structure by qn,r.
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I learned about FO Poisson structures in the 90s from the authors. But at
that time, the only result of my interest to this subject was the joint paper with
M. Finkelberg, A. Kuznetsov, and I. Mirković [Fin+99]. In this paper, we build
a symplectic structure on the space of G-monopoles, that is the moduli space of
maps from P1 to a semisimple complex Lie group G, which send infinity to the
Borel subgroup. If one treat P1 as an additive degeneration of an elliptic curve,
this construction is similar to the construction of the FO bracket, as I describe
below.

There are many equivalent ways to define FO Poisson structures. Essentially,
they are given by Massey products in the derived category of complexes of coherent
sheaves on the elliptic curve, see [Pol98]. Below, I give a more practical definition in
terms of a spectral sequence associated with a filtered object on the elliptic curve.
The crucial property discovered already by Feigin and Odesski is the following.
Points of the projective space classify extensions of E∨

r,n by O on the elliptic curve.
Subsets of points with isomorphic middle terms of the extension are algebraic.
One may show that such subset is a union of symplectic leaves of the FO Poisson
structure. In particular, these symplectic leaves are algebraic. One can not expect
such a property for a general Poisson structure. It makes the FO Poisson structure
so special and interesting algebrogeometric object.

Example 2.1. Consider an example of FO Poisson structure; it corresponds to
4-dimensional Sklyanin algebra introduced in [Skl83]. The vector bundle involved
is E4,1, that is a line bundle of degree 4.

This Poisson structure is on the 3-dimensional projective space P3, which is the
projectivization of the space dual to the space of sections of our line bundle.

There is a canonical embedding of the elliptic curve C ↪→ P3 to this vector space,
this is a normal curve of degree 4. This curve defines a pencil of quadrics passing
through it. There are four singular quadrics in this pencil.

Let us describe symplectic leaves of this Poisson structure. Leaves of rank zero
are points of the embedded elliptic curve plus 4 singular points of singular quadrics
in the pencil. Each quadric is the closure of a leaf of rank 2.

As we mentioned above, leaves of the FO Poisson structure correspond to iso-
morphism classes of the middle terms of non-trivial extensions given by points of
the projective spaces, that is non-zero elements of H1(C, E4,1) up to a scalar. Let us
describe these classes. Points on the embedded elliptic curves correspond to bun-
dles of type E3,1 ⊕ E1,1, points on non-singular quadrics out of C ↪→ P3 correspond
to E2,1⊕E ′

2,1 (sum of two non-isomorphic line bundles), points on singular quadrics
out of E3,1⊕E1,1 and singular points correspond to the non-trivial extension of E2,1
with itself, and singular points of singular quadrics correspond to E2,1 ⊕ E2,1 (sum
of two isomorphic line bundles).

One may notice that the FO Poisson structure around a singular point of a
quadric resembles the Kirillov–Kostant–Souriau Poisson structure, corresponding
to Lie algebra sl2. This fact has an explanation: by Theorem 2.2 below, the
linearization at a point of rank 0 of the FO Poisson structure is the Kirillov–
Kostant–Souriau Poisson structure of the Lie algebra of traceless endomorphisms
of the corresponding vector bundle. In our case, the vector bundle is E2,1⊕E2,1 and
the algebra of its endomorphisms is 2× 2 matrices.

Note that each quadric in the pencil is a variety formed by lines passing through
two points of C with a fixed sum in the sense of the group law on the elliptic curve.
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It works for all FO Poisson structures of type qn,1 as well: leaves of rank 0 are given
by points of the normal embedded elliptic curve C ↪→ Pn−1 of degree n, closures of
leaves of rank two are formed by lines passing through two pairs of C with a fixed
sum, closures of leaves of rank four are formed by planes passing through triples
of points of C with a fixed sum, and so on, plus additional leaves corresponding to
singularities of these chord varieties. Also, one may easily describe vector bundles
corresponding to symplectic leaves. But description of geometry of FO Poisson
structures of type qn,r for r > 1 is less clear.

The FO Poisson structures satisfy even stronger algebraic conditions. As the
underlying space of the FO Poisson structure is a moduli space, there is a groupoid
associated with this moduli problem. This algebraic groupoid is the symplectic
groupoid of the Poisson structure (see [Wei87]); this is a subject of a future project.
It implies, in particular, an isomorphism between conormal Lie algebra and the Lie
algebra of traceless endomorphisms of the vector bundle corresponding to the point
of the projective space. In the joint preprint with L. Gorodetsky [GM24] we give a
direct proof of this result. Details are below

In the work [OW13] Odesskii and Wolf gave a construction of 9-dimensional
subspaces of Poisson structures on projective spaces whose general member is a FO
Poisson structure for some elliptic curve and a linear bundle on it. In [HP07], Hua
and Polishchuk interpreted this construction geometrically in terms of families of
anticanonical divisors on Hirzebruch surfaces and extended it to give new examples
of compatible Poisson structures.

In our joint work with A. Polishchuk [MP23], we show that these constructions
are essentially the only way to produce compatible FO Poisson structure given by
an elliptic curve and a line bundle. In [MP24] we do the same for the first non-trivial
FO Poisson structure of rank bigger than 1, for q5,2. Some details are below.

2.1. Conormal Lie algebra. Let En,r be a simple vector bundle of rank r > 0
and degree n > 0 on an elliptic curve C, as this is described in [Ati57b]. As in
[FO95], consider the following moduli space of filtered vector bundles. The (n−1)-
dimensional projective space P = PExt1(En,r,O) is the moduli space of filtered
vector bundles E ⊃ L ⊃ 0 with fixed associated quotients

(15) E/L ≃ En,r, L ≃ O

Isomorphisms (15) are not specified, i. e. they are not a part of the data of a
filtered vector bundle. Moreover, we throw away the trivial filtered vector bundle
En,r ⊕O ⊃ O ⊃ 0.

We will define the Feigin–Odeskii Poisson structure π on P as a morphism of
vector bundles

π : T ∗P → TP.

Since P is a projective space, for any non-zero ϕ ∈ Ext1(En,r,O) we have the
identification

TϕP = Ext1(En,r,O)/⟨ϕ⟩,
of degree 1 in ϕ, and using the Serre duality pairing

⟨−,−⟩ : Hom(O, En,r)⊗ Ext1(En,r,O) → k

we can write

T ∗
ϕP = ⟨ϕ⟩⊥ ⊂ Hom(O, En,r).
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Fix a non-zero element ϕ ∈ Ext1(En,r,O) corresponding to an extension

(16) 0 // O // E // En,r // 0

and consider the corresponding filtered vector bundle E ⊃ L ⊃ 0. For this filtered
vector bundle, consider the vector bundle End(E) with the induced three-term filtra-
tion on it, and this filtration gives a spectral sequence computing H∗(C, End(E)) =
Ext∗(E,E). Moreover, one can use the vector bundle End(E)0 instead of End(E)
to get the reduced spectral sequence computing Ext•(E,E)0. Since End(E) =
End(E)0⊕O, the reduced spectral sequence is the traceless part of the initial spec-
tral sequence, and it is a direct summand in it.

The first page of the reduced spectral sequence looks as follows.

(17)

1 Hom(O, En,r)
⟨ϕ,−⟩ // k

0 k
·ϕ // Ext1(En,r,O)

−1 0 1

The only non-trivial differential on the second page is a map

d2 : ⟨ϕ⟩⊥ → Ext1(En,r,O)/⟨ϕ⟩,
As we mentioned, the source of this map is the cotangent space, and the target

is the tangent space to our projective space. This map defines the FO Poisson
structure. One may show this definition coincides with both given in [FO95] and
[HP23].

Because d2 is the last non-zero differential in the spectral sequence, this imme-
diately implies the following theorem, stated in [FO95].

Theorem 2.1. Connected components of isomorphism classes of E are symplectic
leaves of the Feigin–Odesskii Poisson structure π on P .

It is known (see [Wei83]) that locally any Poisson structure looks like a direct
product of a symplectic structure and a Poisson structure vanishing at the origin.
The linear part of the latter gives a linear Poisson structure on the normal space
to the symplectic leave of the initial one, that is a Lie algebra structure on the
conormal space to the symplectic leaf.

As mentioned above, a leaf of FO Poisson structure corresponds to a vector
bundle E on the elliptic curve, which is the middle term of the corresponding
extension. One may see that the conormal space to the leaf is naturally isomorphic
to the space of traceless endomorphisms of this vector bundle. In [GM24], we prove
the following theorem by analyzing the very definitions of both terms.

Theorem 2.2. Let ⟨ϕ⟩ be a point of P corresponding to a filtered vector bundle E ⊃
L ⊃ 0. Then the conormal Lie algebra of the Feigin–Odesskii Poisson structure π at
the point ⟨ϕ⟩ is isomorphic to the Lie algebra End(E)0 of traceless endomorphisms
of E.
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2.2. Compatible FO Poisson structures. Recall that two Poisson structures
Π1,Π2 on the same space X are called compatible if every linear combination
λ1Π1+λ2Π2 is still a Poisson structure. This is equivalent to the identity [Π1,Π2] =
0, where we use the Schouten bracket of bivectors. More generally, one can consider
larger linear subspaces of Poisson bivectors. In the work [OW13] Odesskii and Wolf
gave a construction of 9-dimensional subspaces of Poisson structures on Pn whose
general member is a bracket ΠC for some normal elliptic curve C ⊂ Pn. In [HP23]
this construction was interpreted geometrically in terms of families of anticanonical
divisors on Hirzebruch surfaces, and extended to give new examples of compatible
Poisson structures.

In a joint paper with A. Polishchuk [MP23] we show that these constructions are
the only way to produce compatible FO Poisson structures of type qn+1,1(C), with
one exception occurring for n = 3. The following theorem from there describes all
compatible FO Poisson brackets of type qn,1.

Let us fix n ≥ 4 (case n = 3 is simple, but requires a separate treatment, see
our text for details). With every normal elliptic curve C in Pn we can associate a
1-dimensional family SC of rational normal scrolls S(r, r) ⊂ Pn if n = 2r + 1, with
several exceptional members of type S(r − 1, r + 1) (resp., S(r − 1, r) if n = 2r),
which are parametrized by points of Pic2(C). These scrolls are symplectic leaves of
rank 2 of qn,1. In the case of n = 5, each normal elliptic curve C in P5 is contained in
four Veronese surfaces, corresponding to choices of a square root of the line bundle
O(1)|C of degree 6.

Theorem 2.3. For a collection of normal elliptic curves (Ci)i∈I in Pn the Poisson
structures (ΠCi

) are compatible if and only if

• either the corresponding families (SCi
) have an element in common,

• or n = 5 and all Ci are contained in a Veronese surface P2 ⊂ P5.

The idea of the proof is based on Theorem 2.2 about the conormal Lie algebra.
Suppose Π1 and Π2 are two compatible FO Poisson structures of type qn,1. Let
us look at the point, where Π1 vanishes. Then by Theorem 2.2 we know its linear
at this point. The compatibility condition implies strong restrictions on Π2 at
this point. In particular, it must be of rank 2 there. Analysis of the geometry of
symplectic leaves of qn,1 gives the result.

This idea may be realized for higher ranks as well. So far we only managed to
do it of the simplest case of q5,2 in [MP24]. In the process, we discovered a lot
of interesting geometry associated with this Poisson structure, such as an explicit
formula for q5,2, see Theorem 2.4 below. In the process, we discovered a lot of
interesting geometry associated with this structure

Let Cn,r be a 5-dimensional vector space. Consider the Plucker embedding

G(2, V ) → P(
∧2

V ).

It is well known that for a generic 5-dimensional subspace W ⊂
∧2
V the corre-

sponding linear section

CW := G(2, V ) ∩ PW
is an elliptic curve. Furthermore, if U ⊂ V ⊗O is the unversal subbundle on G(2, V ),
then one can check that the restriction

VW := U∨|CW
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is a simple vector bundle of rank 2 and degree 5 on CW . Thus, we have the
corresponding Feigin-Odesskii Poisson structure of type q5,2 on PH0(CW , VW )∗.

Furthermore, one can check that the restriction map

V ∗ = H0(G(2, V ),U∨) → H0(CW , VW )

is an isomorphism. Thus, we get a Poisson structure ΠW on PV (defined up to a
rescaling).

On the other hand, we have a natural GL(V )-invariant map

π5,2 :
∧5

(
∧2

V ) → H0(PV,
∧2

T )⊗ det2(V )

constructed as follows.
Note that we have a natural isomorphism V ≃ H0(PV, T (−1)), hence we get a

natural map V ⊗O(1) → T , and hence, the composed map

ϕ :W ⊗O(2) →
∧2

V ⊗O(2) →
∧2

T

on PV . Taking the 5th exterior power of this map we get a map∧5
(ϕ) : det(W )⊗O(10) →

∧5
(
∧2

T ) ≃ (
∧2

T )∨ ⊗ det3(T ),

where we used the identification det(
∧2
T ) ≃ det3(T ). Note that we have a nonde-

generate pairing given by the exterior product,∧2
T ⊗

∧2
T → det(T ),

hence, we have an isomorphism
∧2
T ≃ (

∧2
T )∨ ⊗ det(T ), and we can rewrite the

above map as

det(W ) →
∧2

T ⊗ det2(T )(−10) ≃
∧2

T ⊗ det2(V ).

Theorem 2.4. For every 5-dimensional subspace W ⊂
∧2
V , such that CW :=

G(2, V ) ∩ PW is an elliptic curve, one has an equality

π5,2(λW ) = ΠW ⊗ δ,

for some trivializations λW ∈
∧5
W and δ ∈ det2(V ).

Theorem 2.5. (1) For 5-dimensional subspaces W,W ′ ⊂
∧2
V such that CW and

CW ′ are elliptic curves, the Poisson brackets ΠW and ΠW ′ are compatible if and
only if dimW ∩W ′ ≥ 4.
(2)For any collection (Wi) of 5-dimensional subspaces in

∧2
V , the brackets (ΠWi)

are pairwise compatible if and only if either there exists a 6-dimensional subspace
U ⊂

∧2
V such that each Wi is contained in U , or there exists a 4-dimensional

subspace K ⊂
∧2
V such that each Wi contains K.

The proof is analogous to the one for qn,1, but the geometry is more complicated:
conditions of compatibility are translated to some constrains on the Grassmannian,
rather than the projective space.
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3. Factorization homology

The definition of factorization homology goes back to the late 70s when loop
spaces were extensively studied by algebraic topologists. But only relatively re-
cently they were applied to problems initiated by mathematical physicists such as
Chern–Simons theory, see e. g. [CG]. I discovered in [Mar17], that such old invari-
ants as perturbative Chern–Simons invariants may be naturally defined in terms
of factorization homologies. In [Mar16] inspired by [AM00] I apply this definition
to calculate the Kontsevich integral of unknot. Surprisingly, methods from my old
paper [Mar09] were very helpful in this research. The approach developed in these
two papers seems to be very prominent: practically any result about invariants
of knots and manifolds, which are defined in terms of chord diagrams and similar
objects, may be formulated and interpreted in terms of factorization homologies.
A big opened question here is how (and is it possible?) to make it with quantum
Chern–Simons, Donaldson and other “non-perturbative” invariants of manifolds. In
[Mar21] these methods surprisingly leads to a construction of a rational Kontsevich
formality isomorphism.

The main character of this story is n-Weyl algebra (or Weyl en-algebra that is
algebras over the operad of chains of the little n-discs operad), which is a general-
ization of usual Weyl algebras, that is algebras of differential operators on a vector
space. They are, in the same way as Weyl algebras are, in a sense, the simplest
deformations of the polynomial algebras.

We are interested not in n-Weyl algebras themselves, but in factorization ho-
mologies of them. There are many ways to define them, see [Lur; Gin]. We use
the most explicit way via Fulton–MacPherson compactification. Being the simplest
deformations of polynomial algebras, factorization homologies of n-Weyl algebras
are not very interesting. But the situation becomes more interesting if we take into
account the adjoint action of a Weyl en-algebra, being considered as a Lie algebra,
on itself. In other words, if we consider inner automorphisms (or deformations) of
these en-algebras. The Lie algebra of inner automorphism is essentially the Lie al-
gebra of Hamiltonian vector fields of a shifted symplectic structure. Its cohomology
is calculated by the graph complex. Thus, n-Weyl algebras explain the appearance
of the graph complex in the formulas for perturbative Chern–Simons invariants
from [AS92; BC98] and others. It was one of the initial motivations to introduce
and study n-Weyl algebras.

Nowadays, there are a lot of places where graph complex appears e. g. [CGP21;
Wil10] and others. An ambitious plan for the future is to interpret them in terms
of the factorization complex of Weyl n-algebras.

An important property of Weyl n-algebras is that their factorization homology on
a closed manifold is one-dimensional (Theorem 3.1 below). It would be plausible
to find some conceptual proof of this statement, perhaps by using some kind of
Morita invariance of factorization homology. As far as I know, such arguments are
unknown even in the classical situation, when n = 1. Besides, as I learned from
O. Gwilliam, in [Gwi12] it is shown, that the factorization algebra of any “free” BV
theory has one-dimensional factorization homology over a closed manifold, which
implies the result for the Weyl case.

In [Mar17] I built perturbative Chern–Simons invariants by means of the factor-
ization complex of Weyl n-algebras. In [Mar16] I continue this line and introduce
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the Wilson loop invariant. This invariant is supposed to be equal to the Bott–
Taubes invariant and the Kontsevich integral. In fact, we are only interested in one
question here: calculating the Wilson loop invariant of unknot in S3. This problem
appears to be connected with the Duflo isomorphism.

I consider the Duflo isomorphism for Lie algebras with a scalar product, which
is much simpler to prove than the general statement from [Duf77]. There are (at
least) two proofs of the Duflo isomorphism for a Lie algebra with a scalar product.
In [AM00] the authors use a quantization of the Weil algebra. In [BLT03] the
Kontsevich integral of knots and link is used. Our sketch of a proof is related to
the both. The work [Kri11] also connects these two approaches and it would be
very interesting to compare it with our arguments.

My next paper on this subject [Mar21] continues studies of Weyl n-algebras be-
gan above. We describe how these ideas can be applied to prove formality theorems,
which are isomorphisms between higher Hochschild cohomology of polynomial alge-
bras and Weyl n-algebras. The substantial part of this paper is rephrasing and gen-
eralization of the pioneer paper [Kon03], where the formality for usual Hochschild
cohomology was firstly proved, in terms of Weyl n-algebras.

The construction from [Kon03] depends on choice of a propagator. There is
another approach to formality via the factorization homology of Weyl n-algebras,
which was implicitly stated and used in [Mar16]. We show, that for the usual
Hochschild cohomology this formality is equivalent to the one introduced in [Kon03]
but with a different propagator. Due to the geometric nature of this approach, all
coefficients of this morphism are rational. It leads us to a surprising conjecture that
a family of propagators we define gives formalities with rational coefficients.

Two approaches to the formality described in the present paper resemble two ap-
proaches to the Kontsevich integral of a knot. The first one using iterated integrals
(see e. g. [CDM12, Part 3]) is similar to the approach via propagator. The second
partly conjectural approach corresponds to the one via the factorization complex
we discussed above.

Below are some details.

3.1. Factorization complex.

3.1.1. Fulton-MacPherson operad. Let Rn be an affine space. For a finite set S
let denote by (Rn)S the set of ordered S-tuples in Rn. Let C 0(Rn)(S) ⊂ (Rn)S

be the configuration space of distinct ordered points in Rn labeled by S. In [GJ]
(see also [Sal01] and [AS92]) the Fulton–MacPherson compactification C (Rn)(S)
of C 0(Rn)(S) is introduced. This is a manifold with corners and a boundary with
interior ı : C 0(Rn)(S) ↪→ C (Rn)(S). There is a projection π : C (Rn)(S) → (Rn)S

such that π ◦ ı : C 0(Rn)(S) → (Rn)S is the natural embedding.
For any S′ ⊂ S there is the projection map

(18) C (Rn)(S) → C (Rn)(S′),

compatible with the same maps C 0(Rn)(S) → C 0(Rn)(S′) and (Rn)S → (Rn)S
′
.

The natural action of the group of affine transformations on C 0(Rn)(S) is lifted
to C (Rn)(S). Denote by Dil(n) its subgroup consisting of dilatations and shifts.
Group Dil(n) acts freely on C (Rn)(S) and the quotient is isomorphic to the fiber

π−1(⃗0), where 0⃗ ∈ (Rn)S is the S-tuple sitting at the origin. To build this isomor-
phism consider dilatations with positive coefficients with the center at the origin:
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R>0 ×C 0(Rn)(S) → C 0(Rn)(S). By the construction of the compactification their
action is lifted to r : R≥0×C (Rn)(S) → C (Rn)(S), which is a fiber bundle. The map

r(0×−) factors through the quotient by Dil(n) and its image lies in π−1(⃗0). This

gives the required isomorphism. It follows that π−1(⃗0) is a retract of C (Rn)(S).

As it is just mentioned, manifolds with corners C (Rn)(S)/Dil(n) and π−1(⃗0)

are isomorphic. Denote any of these manifolds by FMS
n . The sequence of mani-

folds FMS
n is a contravariant functor from Set↪→ to topological spaces: the map

corresponding to an embedding of sets forgets points that are not in its image.
The sequence FMS

n may be equipped with a structure of a unital operad in the
category of topological spaces. This operad is a free as an operad of sets and as
such is generated by quotients of C 0(Rn)(S) ↪→ C (Rn)(S) by Dil(n). The action
of k-ary operations C 0(Rn)(k)/Dil(n) on C (Rn)(S) looks as follows. Consider the
submanifold of C (Rn)(S) for which the image of π : C (Rn)(S) → (Rn)S consists

exactly of k different points. This submanifold is isomorphic to C 0(Rn)(k)×π−1(⃗0)
because fibers of π over any point are isomorphic due to parallel translations. The
embedding of this submanifold to C (Rn)(S) in composition with the quotient by
Dil(n) gives a map

C (Rn)(k)/Dil(n)× (FMn)
×k → C (Rn)(•)/Dil(n) = FMn,

which is the desired action, where k is the set of k elements.

Definition 3.1. The sequence of topological spaces FMS
n with the unital operad

structure as above is called the Fulton–MacPherson operad.

3.1.2. Chains of Fulton-MacPherson operad. Given a topological operad, one may
produce a dg-operad by taking complexes of chains of its components.

Definition 3.2. Denote by fmn the operad of R-chains of FMn.

Real numbers appear here are to simplify things, in fact all object and morphism
we shall use may be defined over rationals, see remark before Example 3.2 below.

By chains we mean the complex of de Rham currents, that is why we need real
chains. Alternatively, one may think about the cooperad of de Rham cochains of
FMn.

Proposition 3.1. Operad fmn is weakly homotopy equivalent to en, the operad of
chains of the little discs operad.

Spaces FMS
n are acted on by the general linear group, and, in particular, by

its maximal compact subgroup SO(n), we suppose that a scalar product on the
space is chosen. The semidirect product FMn ⋊ SO(n) is called the operad of
framed disks fFMn. Any operad is equipped with a natural structure of an operad
colored over the classifying space of its invertible 1-ary elements. In this way, we
will consider fFMn as an operad colored by the classifying space BSO(n).

Definition 3.3. Denote by f fmn the operad of R-chains of fFMn.

The closely connected, but not identical object is the operad of framed disks
from [Get94]. And much like with Definition 3.2, real numbers may be replaced
with rational for our purposes.

Operations of arity s of f fmn form complexes over BSO(n)s+1. An algebra over
f fmn is given by a family of complexes over appropriate powers of BSO(n). Below
we will need only the following restrictive, but a simpler class of such algebras.
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Definition 3.4. We say that a dg-algebra A over fmn is invariant, if all structure
maps of complexes

fmn ⊗A⊗ · · · ⊗A→ A

are invariant under the action of group SO(n) on complexes of operations of fmn.
An invariant algebra over fmn is naturally an algebra over f fmn.

Note, that we mean invariance on the level of complexes, not up to homotopy.
An important class (and the only class we need, in fact) of invariant en-algebras is
universal enveloping en-algebras, see the end of the next Subsection.

3.1.3. L∞ operad. A tree is an oriented connected graph with three type of vertices:
the root has one incoming edge and no outgoing ones, leaves have one outgoing edge
and no incoming ones and internal vertexes have one outgoing edge and more than
one incoming ones. Edges incident to leaves will be called inputs, the edge incident
to the root will be called the output and all other edges will be called internal edges.
The degenerate tree has one edge and no internal vertexes. Denote by Tk(S) the
set of non-degenerate trees with k internal edges and leaves labeled by a finite set
S.

For two trees t1 ∈ Tk1
(S1) and t2 ∈ Tk2

(S2) and an element s ∈ S1 the com-
position of trees t1 ◦s t2 ∈ Tk1+k2+1 is obtained by identification of the input of t1
corresponding to s and the output of t2. Composition of trees is associative and
the degenerate tree is the unit. The set of trees with respect to the composition
forms an operad.

We call a tree with only one internal vertex the star. Any non-degenerate tree
with k internal edges may be uniquely presented as a composition of k + 1 stars.

The operation of edge splitting is the following: take a non-degenerate tree,
present it as a composition of stars and replace one star with a tree that is a
product of two stars and has the same set of inputs. The operation of an edge
splitting depends on an internal vertex and a proper subset of incoming edges with
more than one element.

For a non-degenerate tree t denote by Det(t) the one-dimensional Q-vector space
that is the determinant of the vector space generated by internal edges. For s > 1
consider the complex

(19) L(s) :
⊕

t∈T0(s)

Det(t) →
⊕

t∈T1(s)

Det(t) →
⊕

t∈T2(s)

Det(t) → · · · ,

where s is the set of s elements, the cohomological degree of a tree t ∈ Tk(s) is
2− s+ k and the differential is given by all possible splittings of an edge (see e. g.
[SGA]). The composition of trees equips the sequence L(i)⊗ sgn with the structure
of a non-unital dg-operad, here sgn is the sign representation of the symmetric
group.

This operad is called the L∞ operad. For simplicity denote by the same symbol
the operad L∞ ⊗Q R, it will be clear from the context which one is meant. Denote
by L∞[n] the dg-operad given by the complex L(s)[n(s− 1)]⊗ (sgn)n and refer to
it as n-shifted L∞ operad.

As FMn is freely generated by C 0(Rn)(S)/Dil(n) as the operad of sets, there is
a map µ from it to the free operad with one generator in each arity, which sends
generators to generators. Elements of the latter operad are enumerated by rooted
trees. The map above sends C 0

k (Rn)/Dil(n) to the star tree with k leaves. For a
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tree t ∈ T (S) denote by [µ−1(t)] ∈ C∗(Fn(S)) the chain presented by its preimage
under µ.

Proposition 3.2. Map [µ−1(·)] as above gives a morphism from shifted L∞ operad
L(s)[s(1 − n)] to the dg-operad fmn of chains of the Fulton–MacPherson operad.
The last operad here is treated as a non-unital one.

Proof. To see that the map commutes with the differential, note, that two strata
given by µ with dimensions differing by 1 are incident if and only if one of the
corresponding trees is obtained from another by edge splitting. In this way, we get
a basis in the conormal bundle to a stratum labeled by the internal edges, it follows
that orientations on the chains of the boundary of a stratum match signs in the
complex (19). □

It follows that there is a morphism of dg-operads

(20) L∞[1− n] → fmn

Definition 3.5. For a fmn-algebra A call its pull-back under (20) the associated
L∞-algebra and denote it by L(A).

Since the operad fmn is weakly homotopy equivalent to en (Proposition 3.1), it
gives a homotopy morphism of operads L∞[1− n] → en.

This morphism of operads produces a functor from the category of en-algebras to
that of L∞-algebras. This functor has a left adjoint, which is called the universal
enveloping en-algebra. The important example of the latter is the complex of
rational chains of an iterated loop space ΩnX, which is a universal enveloping en-
algebra of the homotopy groups Lie algebra π∗−1(X), for more details see e. g. [Fra,
Section 5]. Note, that ΩnX is equipped with a natural SO(n) action. This is in
good agreement with the fact that any universal enveloping en-algebra is invariant.

3.1.4. Factorization complex. Let M be a n-dimensional oriented topological man-
ifold. In the same way, as for Rn there is the Fulton–MacPherson compactification
C (M)(S) of the space C 0(M)(S) of ordered pairwise distinct points in M labeled
by S. Locally it is the same thing. Inclusion C 0(M)(S) ↪→ C (M)(S) is a homotopy

equivalence, there is a projection C (M)(S)
π→MS .

Recall that a point in the Fulton–MacPherson compactification C (Rn)(S) of the
configuration space of Rn looks like a configuration from the configuration space
C 0(Rn)(S′) with elements of FMn sitting at each point of the configuration. It
follows that spaces C (Rn)(•) form a right FMn-module, which is freely gener-
ated by C 0(Rn)(•) as a set. The same is nearly true for the Fulton–MacPherson
compactification of any oriented manifold M . But to define such an action one
needs to choose coordinates at the tangent space of any point of a configuration of
C (M)(S). To fix it one has to consider either only framed manifolds or introduce
framed configuration space.

Definition 3.6. The framed Fulton–MacPherson compactification fC (M)(S) is
the principal SO(n)S bundle over C (M)(S), which is the pullback of product of
principal bundles associated with the tangent bundles to each point under the
projection map π : C (M)(S) →MS .

The chain complex C∗(fC (M)(S)) over BSO(n)S for various S make up a right
f fmn-module (see Definition 3.3).
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Definition 3.7. For an algebra A over f fmn and an oriented manifold M the
factorization complex

∫
M
A is the tensor product of the left f fmn-module A⊗ and

the right f fmn-module C∗(fC (M)(S)).

The homology of
∫
M
A is called the factorization homology of A on M .

For an invariant fmn-algebra (Definition 3.4) the definition of the factorization
complex may be rephrased as follows.

Proposition 3.3. For an invariant unital fmn-algebra A and an oriented manifold
M the factorization complex

∫
M
A is the complex given by the colimit of the diagram

(21)

⊕
S′
C∗(C (M)(S′)) ⊗

Aut(S′)
A⊗S′

x⊕
i : S′→S

C∗(fC 0(M)(S)) ⊗
SO(n)S⋊Aut(S)

⊗
s∈S

(fmn(i
−1s) ⊗

Aut(i−1s)
A⊗(i−1s))y⊕

S

C∗(C 0(M)(S)) ⊗
Aut(S)

A⊗S

where the summation in the middle runs over maps between finite sets, the down-
wards arrow is given by the left action of fmn on A for Im i and the unit for S \ Im i
and the upwards arrow is given by the right action of fmn on C∗(fC (M)(•)).

The formula (21) is a direct interpretation of Definition 3.7.
Note that relations (21) include in particular colimits

(22)

⊕
S′
C∗(C (M)(S′)) ⊗

Aut(S′)
A⊗S′

⊕
i : S′↪→S

C∗(C (M)(S)) ⊗
Aut(S′)

A⊗S′

⊕
S

C∗(C (M)(S)) ⊗
Aut(S)

A⊗S

⊗1(S\S′)

where the upward arrow is the projection, which forgets points labeled by S \ S′.
If the manifold is framed, that is its tangent bundle is trivialized, the definition

may be simplified: one should substitute C 0(M)(S) instead of fC 0(M)(S) and
remove SO(n) from the tensor product.

Since the upwards arrow in (21) is an isomorphism of underlying vector spaces,
for any class of the colimit above there is a unique chain downstairs, which is in
the interior of the Fulton–MacPherson compactification, that is in a configuration
space of distinct points. Thus on the complex (21) (that calculates the factor-
ization homology) there is an increasing filtration by the number of points of the
configuration space and the associated graded object is

⊕
S C∗(C 0(M)(S))⊗A⊗S .

Note, that this filtration splits as a filtration of vector spaces. Thus, any mor-
phism from or to the factorization complex may be presented as the one for all
graded pieces of the filtration consistent in a proper way.
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The definition above may be again rephrased as follows. Denote by Ran(M) the
Ran space of M , that is the set of finite subsets of M with the natural topology.
There is a natural mapM×i → Ran(M), which sends a set of points to its support.
Denote the composite map C (M)(i) → M×i → Ran(M) by ϖi. The fiber of this
map is the product of some copies of the Fulton–MacPherson operad. Take a fmn-
algebra A and consider chains

⊕
i C∗(C (M)(i))⊗ΣiA

⊗i) modulo relations (21). As
all relations respect ϖ∗, for any open subset of the complex of these chains modulo
relations is defined; being restricted C 0(M)(i) ↪→ Ran(M) this complex equals to
C∗(C 0(M)(i)) ⊗Σi

⊗A⊗i. The way these complexes are glued together defines a
cosheaf (see e. g. [Cur]) on the Ran space. The factorization homology is homology
of this cosheaf, for details see [Lur].

Example 3.1. Any commutative algebra canonically is an algebra over chains of
any topological operad, because it is the operad of chains of the terminal object in
the category of topological operad. In particular, any commutative algebra is an
fmn-algebra over and it is invariant.

Let A be the polynomial algebra k[V ] generated by a Z-graded vector space V
over the base field k of characteristic zero containing R. Its factorization complex∫
M
A is a commutative algebra because any commutative algebra is a commutative

algebra in the category of commutative algebras. The multiplication in
∫
M
A is

given by taking unions of points in M and multiplication of labels for coinciding
points.

One may see that
∫
M
A = k[H∗(M)⊗V ], where H∗(M) is the integer homology

groups of M negatively graded.
To show it, choose a homogeneous basis of V enumerated by a set B. The

action of fmn on a commutative algebra factorizes through the augmentation map
fmn(•) → k. It means, that the complex ⊕A⊗i ⊗ C∗(C (M)(i)) modulo relations
(21) equals to ⊕A⊗i ⊗ C∗(C (M)(i))/ ∼, where ∼ are relations given by the unit
and C∗(C (M)(i)) is the chain complex of the Fulton–MacPherson compactification
with all border components shrunk to points. The latter space is simply the power
M×i. Thus taking into account relations ∼ we see that

∫
M
A is the homology of

space of finite subsets of M labeled by B, that is the direct sum of homology of
M×i1 × · · ·×M×i|B| modulo the action of product of symmetric groups Σi1 × · · ·×
Σi|B| , which is given by permutations for components that corresponds to elements
of the basis of even degree and by permutation multiplied by the sign representation
for odd degrees. The multiplication on this space is obviously defined.

Proposition 3.4 ([GTZ14, Section 5]). (1) The factorization complex
∫
Mk A

of an invariant fmn-algebra on a closed compact oriented k-manifold Mk is
naturally equipped with a structure of fmn−k-algebra.

(2) For a fiber bundle En Fk

→ Bn−k with closed compact oriented base and fiber
and an invariant fmn-algebra A∫

Bn−k

(

∫
Fk

A) =

∫
En

A,

where
∫
Fk A is a fmn−k-algebra by the previous item.

This theorem may be formulated for maps more general than projections of fiber
bundles. To define push-forward in a more general situation one needs to introduce
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factorization sheaves, see [AFT; Gin] for details. The construction from Subsection
3.4.3 below is an example of such a push-forward.

3.1.5. Factorization homology and Lie algebra homology. Following the definition
of a tree from the beginning of Subsection 3.1.3, we say that a bush is an oriented
connected graph with three type of vertices: root has no outgoing ones, leaves have
one outgoing edge and no incoming ones and internal vertexes have one outgoing
edge and more than one incoming ones. That is the only difference is that the root
may have many incoming edges. The composition of bushes is not defined, but
one may compose a tree and a bush by identification of an input of the bush and
the output of the tree. Thus, bushes form a right module over the operad of trees.
Denote by Bk(S) the set of bushes with k edges not incident to leaves and leaves
labeled by a set S.

Continuing on the same lines, define the operation of edge splitting in the same
way as for trees: we choose a vertex and a subset of incoming edges with more than
one element, then we cut off trees that grow from the chosen edges, then glue an
incoming edge to the vertex we choose and then glue trees we cut to the input of
the glued edge. Note that an edge splitting for a bush may be done not only for an
internal vertex, but for a root as well. But for an internal edge, the subset of edges
must be proper and for the root it may be the whole set.

For a bush b denote by Det(b) the one-dimensional Q-vector space that is the
determinant of the vector space generated by internal edges. For s > 0 consider
the complex

(23) B(s) :
⊕

b∈B0(s)

Det(b) →
⊕

b∈B1(s)

Det(b) →
⊕

b∈B2(s)

Det(b) → · · · ,

where s is the set of s elements, the cohomological degree of a bush B ∈ Bk(s) is k−s
and the differential is given by all possible splitting of an edge. The composition of
a tree and a bush is compatible with differentials on complexes (19) and (23) and
thus equips the complex with a structure of right L∞-module.

Given a L∞-algebra g its homology (with trivial coefficients) may be calculated
by means of the homological Chevalley–Eilenberg complex. Its n-th term is the
symmetric power Sn(g[1]) and the differential is the coderivation defined by the
operations li : S

i(g[1]) → g[1] corresponding to star trees (for the definition of the
latter see Subsection 3.1.3).

This definition may be nicely formulated in terms of modules over operads as
follows.

Proposition 3.5. For a L∞-algebra g the product g⊗ ⊗L∞ B(•) is isomorphic to
the Chevalley–Eilenberg complex calculating homology of g with trivial coefficients
modulo the zero-degree component.

The proof is straightforward. For a more conceptual treatment see [Bal98].
The homology of a L∞-algebra with coefficients in the adjoint module is cal-

culated by the complex with n-th term Sn(g[1]) ⊗ g. The differential is a sum
of the Chevalley–Eilenberg differential and the coderivation dad : g ⊗ Sn(g[1]) →⊕

i S
i(g[1]) given by the adjoint action. A light modification of the foregoing al-

lows us to define it in terms of modules over operads.
A marked bush is a bush with one of the edges incoming to root marked. Denote

by B′
k(S) the set of marked bushes with k non-marked edges not incidental to leaves
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and leaves labeled by a set S. The edge splitting for marked bushes is defined in
the same way, if the root vertex is chosen then the inserted edge is marked if the
chosen subset of edges contains the marked edge and is not marked otherwise.

As before, for a bush b denote by Det(b) the one-dimensional Q-vector space that
is the determinant of the vector space generated by not marked edges. For s > 0
consider the complex

(24) B′(s) :
⊕

b∈B′
0(s)

Det(b) →
⊕

b∈B′
1(s)

Det(b) →
⊕

b∈B′
2(s)

Det(b) → · · · ,

where s is the set of s elements, the cohomological degree of a bush B ∈ Bk(s) is k−s
and the differential is given by all possible splitting of an edge. The composition of
a tree and a bush again equips the complex with a structure of right L∞-module.

On the analogy of Proposition 3.5 we have the following.

Proposition 3.6. For a L∞-algebra g the product g⊗ ⊗L∞ B′(•) is isomorphic to
the Chevalley–Eilenberg complex calculating homology of g in the adjoint module.

The proof is straightforward. For a more conceptual treatment see [Bal98].
In Subsection 3.1.3 we have defined a morphism from operad L∞ to fmn. Ap-

plying this morphism to the right fmn-module C∗(fC (M)(S)) introduced in Sub-
section 3.1.4 we get the right action of L∞ on C∗(fC (M)(S)). A morphism from
the right L∞-module given by complexes (23) and (24) generated by bushes to this
right L∞-module produces morphisms from Chevalley–Eilenberg complexes to the
factorization complex. It may be formulated as follows.

Proposition 3.7. Let A be an invariant fmn-algebra. Let CCh = (S∗(L(A)[1]), dCh)
Cad

Ch = (S∗(L(A)[1])⊗L(A), dCh+dad) be the Chevalley–Eilenberg complexes calcu-
lating the homology of L∞-algebra L(A) with trivial coefficients and in the adjoint
module correspondingly. Let M be a closed manifold and p ∈ M is a point. Then
morphisms

a1 ⊗ · · · ⊗ ai 7→ [C 0(M)(i)]⊗Σi
(a1 ⊗ · · · ⊗ ai)

a1 ⊗ · · · ⊗ ai ⊗ a0 7→ [C 0(M \ p)(i)]⊗Σi (a1 ⊗ · · · ⊗ ai)⊗ a0

define maps from complexes CCh(L(A)) and Cad
Ch(L(A)) respectively to the fac-

torization complex
∫
M
A, where [C 0(M)(S)], [C 0(M \ p)(S)] and [p] are cycles in

C∗(C (M)(S)) presented by the configuration space of distinct points, distinct points
different from p and the point p.

3.2. Weyl n-algebras.

3.2.1. Definition. The usual Weyl algebra is a deformation of the polynomial al-
gebra. We have seen that a commutative algebra is an algebra over operad fmn

for any n. The analogous deformation of a commutative algebra in the category of
fmn-algebras gives us what we call the Weyl n-algebra.

Let V be a Z-graded finite-dimensional vector space over the base field k of
characteristic zero containing R equipped with a non-degenerate skew-symmetric
pairing ω : V ⊗V → k of degree 1−n. Let k[V ] be the polynomial algebra generated
by V and k[[h]] be the ring of formal series and k[V ][[h]] is the polynomial algebra
over it. Denote by

(25) ∂ω : k[V ]⊗ k[V ] → k[V ]⊗ k[V ]
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the differential operator that is a derivation in each factor and acts on generators
as ω.

Consider FMn(2), the space of 2-ary operations of the Fulton–MacPherson op-
erad. This is homeomorphic to the (n − 1)-dimensional sphere. Denote by v the
standard SO(n)-invariant (n− 1)-differential form on it. For any two-element sub-
set {i, j} ⊂ S denote by pij : FMn(S) → FMn(2) the map that forgets all points
except ones marked by i and by j. Denote by vij the pullback of v under projection
pij . Let α be an element of endomorphisms of k[V ]⊗S ⊗

Aut(S)
C∗(FMn(S)) (where

C∗(−) is the de Rham complex) given by

α =
∑
i,j∈S

∂ijω ∧ vij ,

where ∂ijω is the operator ∂ω applied to the i-th and j-th factors.

Proposition 3.8. The composition

k[V ]⊗S exp(hα)−→ k[V ][[h]]⊗S ⊗ C∗(FMn(S))
µ→ k[V ][[h]]⊗ C∗(FMn(S)),

where µ is the product in the polynomial algebra, defines a k[[h]]-algebra over the
operad fmn with the underlying space k[V ][[h]].

This is a simple check.
The algebra defined in this way is obviously invariant under the action of SO(n),

thus it is invariant (see Definition 3.4).

Definition 3.8. For a pair (V, ω) as above the invariant fmn-algebra given by
Proposition 3.8 is called the Weyl fmn-algebra. Denote it by Wn

h(V ).

Note that Proposition 3.1 provides us with the Weyl en-algebra.
One may give an alternative definition of the Weyl algebra as the universal

enveloping of the Heisenberg Lie algebra, compare with [BD04, p. 3.8.1]. It allows
us to define the rational version of the Weyl algebra, which is an algebra over
rational chains of the Fulton–MacPheson operad.

Let oblmn denotes the functor from fmn-algebras to fmm-algebras induces by the
natural map of operads fmm → fmn for m < n.

Proposition 3.9. For m < n the fmm-algebra oblmn Wn(V ) is isomorphic to the
commutative polynomial algbebra k[V ].

Example 3.2. For n = 1 and a vector space of degree 0 one gets the Moyal product.

Denote by Wn(V ) the algebra over Laurent formal series, which is the localiza-
tion Wn

h(V )⊗̂k[h]k[h
−1, h]]. Both of algebras Wn

h(V ) and Wn(V ) are equipped
with increasing filtration, which is multiplicative with respect to the commutative
product on k[V ][[h]], and h and elements of V lie in the component of degree 1.

Consider the L∞-algebra L(Wn
h(V )) associated with the Weyl algebra . By

the very definition, all operations on it are given by integration of closed forms by
chains of the Fulton–MacPherson operad. But one may see, that chains representing
higher operations (that is operations, which are not composition of Lie brackets) in
L∞ are all homologous to zero, because L∞ is a resolution of the Lie operad. Thus

L(Wn
h(V )) is a Z-graded Lie algebra, all higher operations vanish. This Lie algebra

L(Wn
h(V )) is a deformation of the Abelian one. The first order deformation gives
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the Poisson Lie algebra: the underlying space is the Z-graded commutative algebra
k[V ][[h]], the bracket is defined by hω : V ⊗ V → k[[h]] on generators and satisfies
the Leibniz rule. For the classical one-dimensional Weyl algebra it is known, that
higher terms of the deformation are non-trivial: L(W1

h(V )) differs from the Poisson
Lie algebra ([Vey75]). But for n > 1 the situation is simpler.

Proposition 3.10. For n > 1 Lie algebra L(Wn) is isomorphic to the Poisson Lie
algebra of (V ⊗̂k[h−1, h]], ω) over k[h−1, h]], the definition of the latter is as above.

3.2.2. Factorization homology of Wn. Weyl n-algebra is a deformation of a com-
mutative algebra. From Subsection 3.1 we know factorization homology of a com-
mutative algebra. Below we use deformation arguments to calculate factorization
homology of the Weyl algebra on a closed manifold M .

Theorem 3.1. Let V be a Z-graded finite-dimensional vector space with a skew-
symmetric pairing of degree 1 − n and V = ⊕iVi is its decomposition by degrees.
Let M be a n-dimensional closed oriented manifold and bi its Betti numbers. Then
factorization homology H∗(

∫
M

Wn(V )) is a one-dimensional k[h−1, h]]-module of
total degree ∑

{i,j}
i+j odd

(−i+ j)bi dimVj

The idea of proof is to consider n-Weyl algebra as a deformation of the polynomial
algebra.

Example 3.3. Let n = 1 and V is concentrated in degree 0. Then by Example
3.2, Wn(V ) is the usual Weyl algebra. For M = S1 the factorization homology is
the Hochschild homology and Theorem 3.1 matches with the well-known fact about
Weyl algebra:

dimHHi(W1(V )) =

{
1, i = dimV,

0, otherwise,

see e. g. [FT89].

The proof of Theorem 3.1 allows to produce an explicit cycle presenting the only
non-trivial class in factorization homology of the Weyl algebra on a closed manifold
similarly to the example. Below we consider the simplest case, leaving the general
one to the reader.

Proposition 3.11. Let M be an odd-dimensional rational homology sphere and the
Z-graded vector space V has only odd-degree components. Then the only non-trivial
cycle in the homology of

∫
M

Wn(V ) is presented by a cycle in C0(M) given by a
point marked by an element StopV of the top degree in the symmetric power of V ,
since V lies in the odd degree the latter makes sense.

As it was mentioned after Proposition 3.3, framing on a manifold simplifies the
definition of the factorization complex. For Weyl n-algebra, a weaker structure,
which I call the Euler structure, is sufficient. I do not know whether this is just a
technical point or it has some deep relations with [Tur89], where the term is taken
from.
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For a manifold M and a map of finite sets S′ → S denote by C (M)(S′ → S) the
fiber product

(26)

C (M)(S′)y
C 0(M)(S) −−−−→ MS′

where the horizontal map is composition of the embedding C 0(M)(S) ↪→ MS and

the map MS → MS′
induced by the map S′ → S, and the vertical map is the

projection. Space C (M)(S′ → S) is equipped with the projection

π : C (M)(S′ → S) → C 0(M)(S).

For the only map from 2 to 1 the space C (M)(2 → 1) is the total space of the
sphere bundle associated with the tangent bundle.

Definition 3.9. An Euler structure on a n-manifold M is a closed differential
form v on C (M)(2 → 1) such that its restriction on any fiber of the projection
C (M)(2 → 1) →M is the standard volume form on the sphere.

The only obstruction to the existence of the Euler structure is the rational Euler
class. In particular, on odd-dimensional manifolds an Euler structure always exists.

Fix an Euler structure on M given by a form v on C (M)(2 → 1). For any
morphism of arrows from 2 → 1 to S′ → S the natural map

C (M)(S′ → S) → C (M)(2 → 1)

is defined. Denote by vij the pull back of v under this map.
Let V be a Z-graded finite-dimensional vector space equipped with a non-degenerate

skew-symmetric pairing ω : V ⊗ V → k of degree 1 − n. Let k[V ] be the polyno-
mial algebra generated by V . As before let A be an element of endomorphisms of
k[V ]⊗S ⊗

Aut(S′)
C∗(C (M)(S′ → S)) given by

A =
∑
{i,j}

∂ijω ∧ vij ,

where the sum is taken by all morphisms of arrows from 2 → 1 to S′ → S and ∂ijω
is the operator ∂ω applied to the i-th and j-th factors, where ∂ω is defined by (25).
The exponent of hA in composition with the cup product gives endomorphism of
k[V ][[h]]⊗S′ ⊗

Aut(S′)
C∗(C (M)(S′ → S)). Consider the composite map

(27)

k[V ][[h]]⊗S′ ⊗
Aut(S)

C∗(C (M)(S′ → S))

exp(hA)

y
k[V ][[h]]⊗S′ ⊗

Aut(S′)
C∗(C (M)(S′ → S))

µ⊗π∗

y
k[V ][[h]]⊗S ⊗

Aut(S)
C∗(C 0(M)(S)),

where µ is action of morphism in the category Comm⊗.
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Proposition 3.12. Let V be a Z-graded finite-dimensional vector space equipped
with a non-degenerate skew-symmetric pairing ω : V ⊗ V → k of degree 1 − n,
A = Wn

h(V ) be the corresponding Weyl algebra and M be a closed manifold with
an Euler structure. Then the factorization complex

∫
M

Wn
h(V ) is the colimit of

the diagram

(28)

⊕
i : S′→S

(C∗(C (M)(S′ → S))) ⊗
Aut(S′)

A⊗S′

x⊕
S′
C∗(C (M)(S′)) ⊗

Aut(S′)
A⊗S′

y⊕
S

C∗(C 0(M)(S)) ⊗
Aut(S)

A⊗S

where the downwards arrow is the composite map (27) and the upwards arrow is
induced by the natural embedding.

3.3. Perturbative invariants.

3.3.1. Propagator. Let M be a rational homological sphere of dimension n. Let us
denote by M̃ the complement in M to the interior of a little ball around a point
p ∈M .

Below we will need the Fulton–MacPherson compactification of manifolds with
boundary. Let X be such a manifold and X ↪→ X ′ be its closed embedding in a
manifold of the same dimension, for example, X ′ is obtained from X by gluing a
collar. Then denote by C (X̃)(S) the fiber product

C (X ′)(S)y
X̃S −−−−→ X ′S

where the upwards arrow is the embedding and the vertical one is the projection.
Consider the differential (n− 1)-form on C 0(Rn)(2) which is the pullback of the

standard form on the sphere under the map (x, y) 7→ (x−y)/|x−y| and continue it
on C (Rn)(2) straightforwardly (in Subsection 3.2.1 it was denoted by v). Consider
the subset of C (Rn)(2) where both points lie on the unit sphere and restrict the
form as above to it. Call the result the standard form.

The following proposition stays, that on the 2-point Fulton–MacPherson config-
uration space of the “fake disk” M̃ there is a differential (n−1)-form similar to the
standard form on the configuration space of the real disk.

Proposition 3.13. For a rational homological sphereM choose a point O in the in-
terior of its complement M̃ to a little disk. Then on manifold with corners C (M̃)(2)
as above there exists a differential (n− 1)-form such that

(1) it is smooth and closed;

(2) its restriction to any fiber of π : C (M̃)(2) → M̃2 over any point on the
diagonal, which is a sphere, is equal to the standard form on the sphere;

(3) its restriction to the subset where both points of the configuration lie on the
boundary equals to the standard form;
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(4) its restriction to O × ∂M̃ and ∂M̃ ×O equals to the standard form on the
sphere.

Definition 3.10. We call the (n− 1)-form as above on C (M̃)(2) a propagator and
denote it by ν.

Note, that our definition of propagator differs slightly from the one given in
[AS92], [BC98].

3.3.2. Collapse. Let M and M ′ be any closed n-manifolds. Choose a point in each
manifold and cut off small open balls around them. We get two manifolds M̃ and
M̃ ′ with boundaries Sn−1. Denote their interiors by M0 and M ′

0. The connected
sumM#M ′ is a result of gluing together of these two manifolds by their boundaries.
Call the continuous map Col : M#M ′ → M ′ that shrinks M to a point p ∈ M ′ by
the collapse map.

In general, the collapse map does not produce any map between factorization
homologies of M#M ′ and M . There are two cases when it obviously does.

The first case is when the algebra is commutative. The factorization homology
is given by homology of the powers of the space and the morphism is given by the
direct image on homology of the powers.

The second case is when M = Sn. Then M#M ′ =M ′. To build the morphism
one need loosely speaking to take everything sitting in M , multiply it and put the
result to the point p. One may see that this is an isomorphism.

There is another case when such morphism exists: whenM is an odd-dimensional
homology sphere and the algebra at hand is the Weyl algebra. Its construction
occupies the rest of this Subsection.

The morphism factorizes through an intermediate object we are going to define.
Let M be a rational homology odd-dimensional sphere and M ′ be any closed

n-manifold of the same dimension. Choose Euler structures on M and M ′, this is
possible because they are odd-dimensional. These Euler structures naturally define
an Euler structure on the connected sum M#M ′ due to the following trick, which
works for any pair of odd-dimensional manifolds. Choose as above small embedded
open balls D ↪→ M and D ↪→ M ′ and suppose, that the sphere bundle associated
with the tangent bundle is trivialized over D and the Euler structure is constant
there. To build the connected sum M#M ′ one need to glue the complements of
D in M and M ′ by some orientation-reversing linear automorphism of the sphere
S = ∂D. Let us choose the antipodal map. One may see, that under the natural
isomorphism over S of sphere bundles associated with tangent bundles over M and
M ′, the Euler structures on M and M ′ fit together.

For a surjective morphism of manifolds f : X ′ → X and a map of sets S′ → S
define space C (X ′/X)(S′ → S) as the fiber product

(29)

C (X ′)(S′)y
C 0(X)(S) −−−−→ XS′

where the vertical arrow is the composition of projection C (X ′)(S′) → X ′S′
with

fS
′
and the lower arrow is composition of the embedding C 0(M)(S) ↪→ XS and

the map XS → XS′
induced by the map S′ → S. Space C (X ′/X)(S′ → S) is
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equipped with the projection

π : C (X ′/X)(S′ → S) → C 0(X)(S).

For the collapse mapM#M ′ →M ′ consider space C (M#M ′/M ′)(2 → 1). This
space contains C (M ′)(2 → 1) and M2

0 as subspaces. On the first one the Euler
structure gives a differential (n−1)-form and on the second one choose a propagator
(Definition 3.10). Property 3 of propagator (Proposition 3.13) allows to glue it in
a global (n− 1)-cocycle in the cochain complex of C (M#M ′/M ′)(2 → 1). Denote
it by V. Note that the space is not manifold, but V is a well-defined cochain of the
corresponding relative complex.

Let V be a Z-graded finite-dimensional vector space equipped with a non-degenerate
skew-symmetric pairing ω : V ⊗V → k of degree 1−n. Let k[V ] be the polynomial
algebra generated by V . Mimicking construction from Preposition 3.12, let A be
an element of endomorphisms of k[V ]⊗S ⊗

Aut(S′)
C∗(C (M#M ′/M ′)(S′ → S)) given

by

A =
∑
{i,j}

∂ijω ∧ Vij ,

where the sum is taken by all morphisms of arrows from 2 → 1 to S′ → S and
∂ijω is the operator ∂ω applied to the i-th and j-th factors, where ∂ω is defined by
(25). The exponent of hA in composition with cup product gives endomorphism of

k[V ][[h]]⊗S′ ⊗
Aut(S′)

C∗(C (M#M ′/M ′)(S′ → S)). Consider the composite map

(30)

k[V ][[h]]⊗S′ ⊗
Aut(S)

C∗(C (M#M ′/M ′)(S′ → S))

exp(hA)

y
k[V ][[h]]⊗S′ ⊗

Aut(S′)
C∗(C (M#M ′/M ′)(S′ → S))

µ⊗π∗

y
k[V ][[h]]⊗S ⊗

Aut(S)
C∗(C 0(M ′)(S)),

where µ is the morphism in the category Comm⊗.
By analogy with (28) consider the diagram

(31)

⊕
S′
C∗(C (M#M ′)(S′)) ⊗

Aut(S′)
A⊗S′

x⊕
i : S′→S

(C∗(C (M#M ′/M ′)(S′ → S))) ⊗
Aut(S′)

A⊗S′

y⊕
S

C∗(C 0(M ′)(S)) ⊗
Aut(S)

A⊗S

where the downwards arrow is the composite map (30) and the upwards arrow is
induced by the natural embedding.

The desired intermediate object is the colimit of diagram (31). Property 2 of
propagator (Proposition 3.13) supplies us with a natural map from the diagram
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presenting
∫
M#M ′ Wn

h(V ) by Proposition 3.12 to (31), thus with a map from∫
M#M ′ Wn

h(V ) to the colimit of (31).

The following Proposition completes the construction.

Theorem 3.2. The colimit of (31) is isomorphic to
∫
M ′ Wn

h(V ).

Call the morphism col :
∫
M#M ′ Wn

h(V ) →
∫
M ′ Wn

h(V ) just constructed the

collapse morphism.
One may prove this Proposition by means of cosheaves in the spirit of the dis-

cussion at the end of Subsection 3.1.4. Indeed, the colimit of Diagram (31) gives
a cosheaf on the Ran space of M ′. Theorem 3.2 states that it is isomorphic to the
one given by the Weyl algebra.

Note finally, that Theorem 3.2 may be reformulated as follows: for a homolog-
ical sphere M the factorization complex

∫
M̃

Wn
h(V ) is isomorphic to Wn

h(V ) as

an
∫
[0,1]×Sn−1 Wn

h(V )-module (about the module structure on the factorization

complex of a manifold with boundary see e. g. [Gin] and references therein).

3.3.3. Invariants. Factorization homology of Weyl n-algebras may be used to con-
struct invariants of manifolds. Let M be a closed n-manifold and V be a Z-graded
finite-dimensional vector space with a non-degenerate pairing of degree 1 − n. By
Theorem 3.1 the factorization homology of Wn

h(V ) on M is one-dimensional. The
idea of the invariant we are going to build is to produce in some manner a cycle
in
∫
M

Wn
h(V ) and calculate the class represented by it. As the homology group is

one-dimensional, this class is a multiple of a standard one. The series we get this
way is the invariant of the manifold.

Let us restrict ourselves with the following conditions: M is a rational homology
sphere of odd dimension n and V be a Z-graded finite-dimensional vector space,
which has only odd-dimensional components. Under these conditions due to Propo-
sition 3.11 the only class in the factorization homology is presented by an especially
simple cycle, just an element of the top degree power of V sitting at a point, call
this cycle the standard one.

To produce a different cycle we shall resort to the morphism given by Proposi-
tion 3.7. It sends the Chevalley–Eilenberg complex of the Lie algebra L(Wn(V ))
associated with the Weyl algebra Wn(V ) to the factorization complex of Wn(V ).

By Proposition 3.10, for n > 1 L(Wn(V )) is Z-graded Poisson Lie algebra. Sup-
pose that dimV ≥ 3 and denote by L(Wn(V )≥3) the Lie subalgebra of polynomials
of degree not less than 3. One may see that a generator of StopV is in the center
of L(Wn(V )≥3). Thus the map

k → L(Wn(V )≥3),

which sends the generator to a non-zero element from StopV is a morphism from
the trivial L(Wn(V )≥3)-module to the adjoint one. Consider the induced map

CCh(L(Wn(V )≥3)) → Cad
Ch(L(Wn(V )≥3))

and combine it with map

Cad
Ch(L(Wn(V )≥3)) →

∫
M

Wn(V )

given by Proposition 3.7. The composite map

(32) CCh(L(Wn(V )≥3)) →
∫
M

Wn(V )
∼−→ k[[h−1, h]]
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is the desired invariant. In other words, the invariant is a cohomology class of total
degree zero of Z-graded Lie algebra L(Wn(V )≥3) with coefficients in k[[h−1, h]]. To
get just an element of k[[h−1, h]] one may substitute a homology class of this Lie
algebra in it. Note, that the coefficients of this series are rational due to the remark
preceding Example 3.2.

As it was already mentioned in the Introduction, a cocycle of the complex linear
dual to the factorization complex

∫
M

Wn(V ) which does not vanish on the standard
cycle would make this invariant more explicit. As such a cocycle is unavailable, we
shall make use of the collapse morphism from the previous Subsection.

Proposition 3.14. If M and M ′ are both rational homology odd-dimensional
spheres and V has only odd-degree components then the collapse morphism

col :

∫
M#M ′

Wn(V ) →
∫
M ′

Wn(V )

induces isomorphism on homologies.

AssumingM ′ = Sn in the Proposition above we get an isomorphism
∫
M

Wn(V ) →∫
Sn Wn(V ). In composition with (32) we get a morphism

CCh(L(Wn(V )≥3)) →
∫
Sn

Wn(V ),

which is better than (32), because the target does not depend on M .
Unwinding the definition of the collapse morphism one may see that this cocycle

of L(Wn(V )≥3) taking values in
∫
Sn Wn(V ) is a sort of cocycle given by the graph

complex, see [Kon93; Kon94; QZ11]. It is known ([AS92; AS94]), that perturbative
Chern–Simons invariants also give classes in the graph complex in the same way, by
integration of the powers of the propagator. It makes us believe that our invariants
coincide with the perturbative Chern–Simons ones. Perhaps, some good choice of
the propagator will lead to a more explicit formula.

Finally, let n = 3, V be a Z-graded finite-dimensional vector space of dimension
more than 2 concentrated in degree 1 with skew-symmetric pairing of degree −2,
that is V [1] is equipped with a symmetric pairing. In this case for dimensional
reasons the cocycle is given by trivalent graphs. If V [1] is the underlying space of
a Lie algebra with non-degenerate pairing, then the element in S3V [1], which is
the composition of the Lie bracket and the pairing, is a Maurer–Cartan element in

L(Wn(V )≥3). Its power gives a homology class. Values of the cocycle on it must
be the perturbative invariants associated with given Lie algebra. More about this
case the reader may find in the following subsection.

3.3.4. Oscillatory integrals. The physical definition of perturbative Chern–Simons
invariant is based on the asymptotic series of the oscillatory integral

∫
eiS taken over

the space of all G-connection A on M , where S = κ
4π

∫
M

tr(A ∧ dA+ 2
3A ∧A ∧A)

is the Chern–Simons functional, M is a 3-manifold and G is a semi-simple Lie
group. The aim of this appendix is to demonstrate speculatively how to interpret
the calculation of such an integral in terms of the factorization complex.

Thus, we have the infinite-dimensional space of connections, a function S on it
and we want to calculate the asymptotic series in 1/κ of the oscillatory integral.
If M is a homology sphere, then function S has a non-degenerate critical point at
the origin. Thus, the free term of the series in hand is the Gaussian integral by
an infinite-dimensional space and is unapproachable by algebraic methods. But



HABILITATION À DIRIGER DES RECHERCHES 31

after dividing by this term the series may be calculated by means of the method of
Feynman diagrams.

To explain how this method works consider an abstract situation, the reader can
find more at [Joh]. Let V be a Euclidean vector space and f be a smooth function
on it such that its Taylor series at the origin start with terms of degree, at least,

three. Choose a volume form on V and consider the integral
∫
e(−|x|2+tf). Consider

the twisted de Rham complex of polynomial forms Ω∗
t given by differential forms

on V with differential ddR − 2(x, dx) + t df , where ddR is the de Rham differential.
One may see that complex Ω∗

t ⊗ R[[t]] has only top degree cohomology, which is
one-dimensional over R[[t]]. This one-dimensional vector bundle over the t-line has
the Gauß–Manin connection and a section given by the chosen volume form on V .
Their quotient is a series in t up to a constant factor and one may show that this
is the asymptotic expansion of the oscillatory integral up to a constant.

We are now going to construct a fm3-algebra (or equivalently, by Proposition
3.1, an e3-algebra) the factorization complex of which on a homology 3-sphere M
resembles the twisted de Rham complex as above. Let g be a Lie algebra with a non-
degenerate invariant bilinear form. The desired fm3-algebra is a deformation of the
Chevalley–Eilenberg commutative dg-algebra C•

Ch(g) in the class of fm3-algebras.
The deformation may be described as follows: forget about the differential on the
Chevalley–Eilenberg complex and deform the underlying polynomial algebra as in
the definition of the Weyl algebra, that is apply Definition 3.8 to the space g∨

and the pairing given by the invariant bilinear form. It is easy to check that this
deformation respects the differential. Note, that this e3-algebra is the algebra of
Ext’s from the unit to itself in e2-category of representations of a quantum group.
Denote it by Ch•h(g).

Alternatively, this fm3-algebra may be defined as follows. Start with Z-graded
finite-dimensional vector space g∨[1] with the pairing of degree −2 given by the
invariant scalar product and build the Weyl algebra W3

h(g
∨[1]). Then define dif-

ferential on it as 1
h{·, q}, where {, } is image of the Lie bracket under (20) and

q ∈ S3(g∨[1]) is the composition of the Lie bracket on g and the scalar product.
One may show, that similarly to Hochschild homology (see e. g. [Lod98, Proposi-
ton 1.3.3]), factorization homology on a closed manifold is invariant under inner
deformations. It follows by Theorem 3.1 that the homology of

∫
M
Ch•h ⊗ k[h−1, h]]

is free k[h−1, h]]-module of rank 1. And moreover, this homology is equipped with
a connection along the formal deleted h-line.

To fulfill the analogy (note, that t corresponds to 1/h) we have to present a
section of this one-dimensional vector bundle and compare it with a horizontal one.
Formula (32) produces elements in the factorization complex of Ch•h(g). One may
see, that 1 goes to a cycle (in fact, this is the cycle given by Proposition 3.11) and
this is an analog of the section given by the volume form on V in the example
above. On the other hand, one may see that a cycle horizontal with respect to the

connection is the image under (3.11) of the cycle
∑

i
h−i

i! q ∧ · · · ∧ q︸ ︷︷ ︸
i

. The quotient

of these two sections is an analog of the asymptotic series and is given by the
invariants as in Subsection 3.3.3.

3.4. Weyl n-algebras and the Kontsevich integral.
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3.4.1. Quantization of the Chevalley–Eilenberg complex. Let us start with some
calculations similar to the ones we made with the Atiyah class in section 1.

Let g be a finite-dimensional Lie algebra. The Chevalley–Eilenberg algebra
Ch•(g) is a super-commutative dg-algebra S∗(g∨[1]) generated by the dual space g∨

placed in degree 1. The differential is a derivation of this free super-commutative al-
gebra defined on the generators by the tensor g∨ → g∨∧g∨ dual to the bracket. The
Jacobi identity guarantees that this is indeed, a differential. In terms of [Ale+97]
the Chevalley–Eilenberg algebra may be thought of as the function ring of a Q-
manifold.

With any g-module E one may associate the module Ch•(g, E) over Ch•(g) as
follows. As a S∗(g∨[1])-module it is freely generated by E and the differential is
defined by its value on E ⊗ 1 given by the tensor E → E ⊗ g∨ of the g-action. As
a complex, Ch•(g, E) calculates the cohomology of g with coefficients in E.

The Ch•(g)-module Ch•(g, g∨ad) corresponding to the adjoint g-module may be
thought of as a cotangent complex of Ch•(g). The de Rham differential ddR : Ch•(g) →
Ch•(g, g∨ad), which is a derivation of Ch•(g)-modules, is tautologically defined on the
generators. Define the Ch•(g)-module of differential forms of Ch•(g) as Ch•(g,k[[g∨]]ad).
It is a super-commutative algebra and the de Rham differential acts on it in the
usual way, it is a derivation.

For a unital dg-algebra A define the reduced (or normalized) Hochschild complex
C∗(A) (see e. g. [Lod98, Ch 1.1]) as the total complex of the bi-complex with the
(−i)-th term

(33)
∏
i≥0

(A⊗A/k⊗ · · · ⊗A/k︸ ︷︷ ︸
i

),

the first differential coming from A and the second differential given by

a0 ⊗ a1 ⊗ a2 ⊗ · · · ⊗ ai 7→
a0a1 ⊗ a2 ⊗ · · · ⊗ ai − a0 ⊗ a1a2 ⊗ · · · ⊗ ai + . . .

+ (−1)i+deg ai(deg a0+... deg ai−1)aia0 ⊗ a1 ⊗ · · · ⊗ ai−1.(34)

Here one have to choose representatives of quotients A/k, then apply formula and
take quotients again, the result does not depend on choices. Note, that the usual
definition uses direct sums instead of products, but we need the one we gave. In
other words, we shall consider unbounded chains, that is the graded completion
([CDM12, Definition A.25]) of

∑
i≥0(A ⊗ A/k⊗ · · · ⊗A/k︸ ︷︷ ︸

i

) with respect to the

grading given by the grading on A. For an ungraded algebra the reduced Hochschild
complex calculates TorA⊗Ao

∗ (A,A).
The following proposition is a variant of the Hochschild–Kostant–Rosenberg iso-

morphism.

Proposition 3.15. The formula

(35) a0 ⊗ a1 ⊗ · · · ⊗ ai 7→ a0 ddRa1 · · · ddRai

defines a morphism from the reduced Hochschild complex C∗(Ch
•(g)) of the Chevalley–

Eilenberg algebra to its differential forms Ch•(g,k[[g∨]]ad). This morphism is a
quasi-isomorphism.
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Equip C∗(Ch
•(g)) with a descending filtration F : the subcomplex FkC∗(Ch

•(g))
is spanned by chains a0 ⊗ a1 ⊗ · · · ⊗ ai such that deg a0 ≥ k.

Proposition 3.16. The spectral sequence associated with the filtration F on C∗(Ch
•(g))

degenerates at the second sheet. The complex Ep,0
1 is isomorphic to Ch•(g,k[[g∨]]ad)

and Ep,>0
1 = 0.

Note, that FiCi(Ch
•(g)) is spanned by chains a0⊗a1⊗· · ·⊗ai such that deg a>0 =

1. Taking into account Proposition 3.16 we get the following.

Corollary 3.1. Every cycle in C∗(Ch
•(g)) may be presented by a sum of chains

a0 ⊗ a1 ⊗ · · · ⊗ ai with deg a>0 = 1.

Finding an explicit formula for these cycles seems to be an interesting question.
Along with the Hochschild complex as above one may consider the Hochschild

complex C∗(A,M) of a dg-algebra A with coefficients in a A-bimodule M (see e. g.
[Lod98, Ch 1.1]). It is given by the same formulas (33) and (34), but a0 now is an
element of M . For a ungraded algebra the reduced Hochschild complex calculates
TorA⊗Ao

∗ (A,M).
The Ch•(g)-module of 1-forms Ch•(g, g∨) is a bimodule as well, because the

algebra is supercommutative. Introduce the Hochschild complex of Ch•(g) with
coefficients in this bimodule C∗(Ch

•(g),Ch•(g, g∨)).
the following statement is an analog of Example 1.2.

Proposition 3.17. The formulas

a0 ⊗ a1 ⊗ · · · ⊗ ai 7→ a0 ddRa1 ⊗ a2 ⊗ · · · ⊗ ai

a0 ⊗ a1 ⊗ · · · ⊗ ai 7→ ±a0 ddRai ⊗ a1 ⊗ · · · ⊗ ai−1,
(36)

where the sign is defined by the Koszul rule, define morphisms from the Hochschild
complex C∗(g) to the Hochschild complex with coefficients C∗(Ch

•(g),Ch•(g, g∨))
of degree 1.

The following proposition describes these morphisms in terms of the quasi-iso-
morphism (3.15).

Recall some basic facts from Lie group theory. For a finite-dimensional Lie
algebra g denote by Ug its enveloping algebra. This is a Hopf algebra which is dual
to the Hopf algebra of formal functions F (G) on the formal group associated with
g. The Poincaré–Birkhoff–Witt map from the symmetric power of g to its universal
enveloping iPBW : S∗g → Ug provides an isomorphism between them as adjoint
g-modules. It is dual to the exponential coordinate map exp∗ : F (G) → k[[g∨]].
Maps

(37) FL : F (G) → F (G)⊗ g∨ and FR : F (G) → F (G)⊗ g∨

dual to the multiplications

Ug ⊗ g → Ug and g⊗ Ug → Ug

respectively. After identifying G and g by the exponential map, the maps (37) are
given by elements of V ect(g)⊗g∨. Corresponding maps from g to V ect(g) are given
by left and right invariant vector fields on G. Applying the constant trivialization
of the tangent bundle to g one may identify such a tensor with a section of the
trivial vector bundle with fiber End(g) over g. In other words, this section is the
transformation matrix between the constant basis of the tangent bundle and the
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one given by left (right) invariant vector fields. By e. g. [Reu93, Ch. 3.4] they are
given by formulas

(38) id± 1

2
Ad +

∑
n≥1

B2n

(2n)!
Ad2n

(”+” for the first and ”−” for the second tensor), where Ad is the structure tensor
of the g considered as linear function on g taking values in End(g) and Bn are
Bernoulli numbers:

(39)
∑
n≥0

Bn

n!
zn =

z

ez − 1
.

Recall that Proposition 3.15 identifies C∗(Ch
•(g)) with the complex Ch•(g,k[[g∨]]ad).

In the same way, one can build a quasi-isomorphism between C∗(Ch
•(g),Ch•(g, g∨))

and Ch•(g, g∨ ⊗ k[[g∨]]ad).

Proposition 3.18. Under the quasi-isomorphism as above, maps (36)

Ch•(g,k[[g∨]]ad) → Ch•(g, g∨ ⊗ k[[g∨]]ad)

are induced by (37), where k[[g∨]] is identified with F (G) by the exponential map;
that is, (36) are given by formulas (38).

Let now g be an finite-dimensional Lie algebra with a non-degenerate invari-
ant scalar product ⟨· , ·⟩ as in the Subsection 3.3.4. The scalar product may be
thought of as a constant symplectic structure of degree −2 on the dg-manifold (or
Q-manifold), which is the spectrum of Ch•(g). That is, we define a Poisson bracket
on Ch•(g) on the generators by {x, y} = ⟨x, y⟩ and extend it to the whole algebra
by the Leibnitz rule. In terms of [Ale+97] we get a QP -manifold.

A symplectic structure gives a first order deformation of the product of functions
on a manifold and thus deforms the Hochschild complex. Our aim is to calculate
it in our case.

More precisely, consider the ring k[ε], where deg ε = 2 and ε2 = 0 and the
Chevalley–Eilenberg complex Ch•(g)⊗k[ε] over k[ε] with the differential as before,
with the product given by x · y = x∧ y+ 1

2ε⟨x, y⟩. Take the Hochschild complex of
k[ε]-algebra Ch•(g) ⊗ k[ε], that is, all tensor products are taken over k[ε]. It is a
module over k[ε]. Multiplication by ε defines a 2-step filtration on it. Consider the
spectral sequence associated with this filtration. The 0-th sheet is C∗(Ch

•(g))⊗k[ε].
The following proposition describes d0 of this spectral sequence, which is the first
order deformation of the differential in the Hochschild complex.

Proposition 3.19. Contract tensors (37) from V ect(g)⊗ g∨ with the pairing ⟨· , ·⟩
and consider the resulting element of V ect(g) ⊗ g as a differential operator on
Ch•(g,k[[g∨]]ad) of the second order, where term · ⊗ g differentiates Ch•(g) and
term V ect(g) ⊗ · differentiates k[[g∨]]. Under quasi-isomorphism (35) differential
d0 of the above-mentioned spectral sequence is given by half-sum of these operators
on the complex Ch•(g,k[[g∨]]ad). By (38), the matrix of this differential operator
is given by

(40) id +
∑
n≥1

B2n

(2n)!
Ad2n,

Bn are Bernoulli numbers, Ad is the structure tensor of the g, being considered as
linear function on g taking values in End(g).
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Proposition 3.19 defines, therefore, on the algebra Ch•(g,k[[g∨]]ad) a differen-
tial operator of order 2 and of cohomological degree −1. On this algebra another
differential operator of the same order and degree is defined, in terms of the above
proposition it is given by the unit matrix. Call it the Brylinski differential after
[Bry88] and denote it by dBr They are not chain homotopic, but by the following
proposition they become such after conjugation by an automorphism of complex
Ch•(g,k[[g∨]]ad). This automorphism equals to multiplication by the Duflo char-
acter.

Given a Lie group G, equip it with the left invariant volume form (which is the
right invariant as well, due to the invariant scalar product). Equip its Lie algebra
g with the constant volume form and denote by j ∈ k[[g∨]] the Jacobian of the
exponential map. The Duflo character is the power series on g which is the square
root of the Jacobian and is given by

(41) j
1
2 = exp

∞∑
n=1

B2n

4n(2n)!
Tr(Ad2n),

where Bn are the Bernoulli numbers from (39) and Ad is the linear function on g
taking values in End(g) as above.

Proposition 3.20. Under the quasi-isomorphism (35), the differential d0 on

Ch•(g,k[[g∨]]ad) is chain homotopic to j−
1
2 ◦ dBr ◦ j

1
2 , where j

1
2 is the operator of

the multiplication of k[[g∨]] by the Duflo character and j−
1
2 is the inverse operator.

Remark 1. The above proposition can be stated and proved in a coordinate-free
manner for any QP -manifold in terms of [Ale+97]. In the setting of Section 1 it
describes the differential on the differential forms on a complex symplectic manifold,
that is, on the Hochschild homology of the structure sheaf, coming from the first
order deformation of the structure sheaf along the symplectic structure. It seems
that when applied to the cotangent bundle of a complex manifold, it gives an
alternative way of calculating the Todd class of this manifold.

Remark 2. Proposition 3.20 was inspired by the proof of the Duflo isomorphism for
a Lie algebra with an invariant scalar product from [AM00]. As we will see below,
the calculation above is connected with another proof of the Duflo isomorphism,
the one from [BLT03].

3.4.2. Factorization homology. Above, we introduced en-algebras and their factor-
ization homology. To define the latter for a non-parallelized manifold, one needs
to modify the notion of en-algebra, incorporating action of SO(n). The way we
used is to deal with equivariant en-algebras. Another way to take this action into
account is to consider SO(n) as an operad with 1-ary only operations and take the
semi-direct product of this operad and the little discs operad. The result is called
framed little discs operad, see [SW03]. We denote the dg-operad of chains of this
operad by fen.

In general, the category of such algebras is not the same as the one of fen-
algebras. However, for n = 2, the commutativity of the group simplifies things,
and these categories are essentially the same. Consider the latter case in some
detail. The cohomology of fe2 is known as the Batalin–Vilkovisky (BV) operad,
see e. g. [SW03]. It is generated by the product · and the bracket { , } obeying



36 NIKITA MARKARIAN

the same relations as those in e2 and an additional 1-ary operation ∆ of degree −1
obeying the relations

∆2 = 0, {a, b} = (−1)|a|∆(ab)− (−1)|a|∆(a)b− a∆(b).

One important property of the factorization complex is its behavior with respect
to gluing, see e. g. [Gin] and references therein. Let M1 and M2 be two manifolds
with isomorphic boundaries B. Then for a en-algebra A there is a map of complexes∫

M1

A⊗
∫
M2

A→
∫
M1∪BM2

A.

It follows that for k < n, a k-manifold Mk and a en-algebra A, the complex∫
Mk×In−k A is a ek-algebra, and it is equivariant, if A is. In particular, for an

n-manifold M with boundary B the complex
∫
B×I

A is a (homotopy) algebra, and

the map above equips
∫
M
A with a module structure over it. In terms of this action,

the gluing rule may be written as

(42)

∫
M1∪BM2

A =

∫
M1

A ⊗∫
B×I

A

∫
M2

A.

Another important property of the factorization complex is a kind of homotopy
invariance: ∫

Mk×In−k

A =

∫
Mk

oblnk A.

Below we will make no difference between the two sides of this equality and will
denote them simply by

∫
Mk A. In particular, the factorization complex on a disk is

quasi-isomorphic, as a complex, to the algebra itself.

Example 3.4. Let A be an equivariant e2-algebra. Then its factorization complex
on the disc

∫
D2 A, which is A itself, is a module over

∫
S1×I1 A =

∫
S1 obl

2
1A, which is

the Hochschild homology complex of obl21A. The equivariance of A is essential here:
without it, the Hochschild complex of e2-algebra A does not act on A, and, if an
equivariance structure is chosen, the action depends on this choice. In order to see
it, note that S1× I1 is a framed manifold, that is why we do not need equivariance
to take its factorization complex for any, not only equivariant algebra. However,
this framing, which comes from the constant framing on the square after gluing
together two opposite edges, can not be extended to the whole disc obtained from
the annulus S1 × I1 by gluing one of its boundary circles with the disc. Hence, in
order to construct the desired action by gluing the annulus with the disc one need
to identify factorization complexes with different framings, and here one needs the
equivariance.

The type of equivariant en-algebras we need are the Weyl n-algebras introduced
in Subsection 3.2. In order to build such an algebra one needs a super-vector
space V with a super-skew-symmetric non-degenerate bilinear form on it. The en-
algebra associated with such data is denoted by Wn(V ). In analogy with the usual
Weyl algebra, it is the deformation of the polynomial algebra generated by V in the
direction given by pairing. In fact, this is an algebra over the field of Laurent formal
series in the quantization parameter h; this, however, must be ignored, assuming,
loosely speaking, that h = 1.
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There are some important properties we need. Firstly, considered as an ek-
algebra, where k < n, it is commutative. In other words, oblnk Wn(V ) = obl∞k k[V ]
for any k < n, where k[V ] is the polynomial algebra.

The following property is crucial for our construction of the perturbative invari-
ants: for any n-manifold M the complex

∫
M

Wn(V ) has one dimensional cohomol-
ogy (Theorem 3.1). I conjecture that, for any k < n, the factorization complex∫
Nk×In−k Wn(V ) is again a Weyl algebra for any k-dimensional manifold Nk.

Example 3.5. Let V be a vector space. Equip V ⊕V ∨[−1] with the standard form
of degree −1. Then W2(V ⊕ V ∨[−1]) is the space of polyvector fields on V ∨ and
standard operations on it — the Gerstenhaber bracket and the cup product — are
the operations of the cohomology of e2.

As any Weyl algebra, W2(V ⊕ V ∨[−1]) is equivariant. Thus it is acted on by
the operad fe2 and by its cohomology, which is the BV operad. The operation ∆
is equal to the de Rham differential, where the polyvector fields are identified with
the differential forms by means of the constant volume form. Another choice of the
volume form leads to another fe2-structure with the same underlying e2-structure.

3.4.3. The action. For associative (or e1-) algebras the notion of modules plays the
central role. The higher generalization of this notion is a en-algebra acting on a
en−1-algebra, for the definition and the discussion see e. g. [Gin] and references
therein. Constructively, it may be defined by means of the Swiss cheese operad,
which is especially convenient for algebras over the operad of chains of the Fulton–
MacPherson operad. In the same way as the operations of the little discs operad are
given by the configuration spaces of Rn, the operations of the Swiss cheese operad
are given by the spaces of distinct points in R≥0 × Rn−1. There are points of two
types: those on the boundary and those in the interior. This gives a colored operad
with two colors. If an en-algebra B acts on an en−1-algebra A, then elements of
B sit on the interior points and elements of A — on boundary points. For further
details we refer the reader to [Vor99].

Note that the action of the Swiss cheese operad may be formulated in terms of
factorization sheaves; for the definition of the latter see e. g. [Gin] and references
therein. Namely, such an action is equivalent to a factorization sheaf on the half-
space such that its restriction to the boundary and to the interior are constant
factorization sheaves, corresponding to the en−1-algebra A and the en-algebra B.

It is known that for any en-algebra there exists a universal en+1 algebra End(A)
acting on it ([Lur]). In other words, an action of an en+1 algebra B on A is the
same as a morphism of en+1-algebras B → End(A). For an associative (or e1-)
algebra the End-object is its Hochschild cohomology complex.

Let V be a vector space. Equip V ⊕ V ∨[1− n] with the standard form of degree
(1−n). ThenWn(V ⊕V ∨[1−n]) is End(k[V ]), where k[V ] is the polynomial algebra.
In order to see it, one may construct an action ofWn(V ⊕V ∨[1−n]) on k[V ] directly
by using the Swiss cheese operad and the Fulton–MacPherson compactification.
Then one need to check that the resulting map Wn(V ⊕ V ∨[1 − n]) → End(k[V ])
is a quasi-isomorphism.

This action commutes with taking the factorization complex. That is, if an equi-
variant en+1-algebra B acts on an equivariant en-algebra A, then for a k-manifoldN



38 NIKITA MARKARIAN

the en−k+1-algebra
∫
Nk×In−k+1 B acts on en−k-algebra

∫
Nk×In−k A. It follows im-

mediately from definitions of the Swiss cheese operad and of the factorization com-
plex. It seems plausible that under appropriate conditions

∫
Nk×In−k+1 End(A) =

End(
∫
Nk×In−k A).

Example 3.6. Consider the polynomial algebra A = k[V ] as an associative algebra.
Its Hochschild cohomology complex C∗(A,A) (which, as it was mentioned above,
is W2(V ⊕V ∨[−1])) acts on it. It follows, that

∫
S1 C

∗(A,A), which is a e1-algebra,

acts on
∫
S1 A. The latter complex is the Hochschild homology complex of A, which

is known to be quasi-isomorphic to the direct sum of shifted differential forms (see
e. g. [Lod98]). It is shown in [NT99] that the first complex is quasi-isomorphic to
the differential operators on differential forms, and this is in good agreement with
the speculation preceding the present example.

Recall, that in Example 3.4 for any an equivariant e2-algebra A we construct
action of e1-algebra

∫
S1 A on the underlying complex of A. In the same way for any

equivariant en-algebra A the e1-algebra
∫
Sn−1 A acts on the underlying complex of

A: the action is given by gluing a n-ball and Sn−1 × I. It may be generalized even
further. The factorization complex

∫
Sk A, which is a en−k-algebra, analogously

acts on en−k−1-algebra oblnn−k−1A. As this action plays a crucial role in the next
Section, let us phrase it below as the construction.

Construction 3.1. Let A be an equivariant en-algebra. Then, for any k < n,
the en−k-algebra

∫
Sk A naturally acts on oblnn−k−1A. The corresponding action of

the Swiss cheese operad is defined as follows. Embed R≥0 × Rn−k−1 linearly into
Rn. Put at any point of this half-space the factorization complex of A on the k-
sphere lying into the k+1 space perpendicular to the half-space, with its center on
0×Rn−k−1 and passing through this point. In particular, for points on 0×Rn−k−1

we get the sphere of zero diameter, that is a point and the factorization complex is
A itself.

In other words, consider a map Rn → R≥0 ×Rn−k−1 which sends a point to the
pair which consists of the distance from the point to the subspace {0}×Rn−k−1 and
the orthogonal projection on Rn−k−1. Then the direct image of the factorization
sheaf on Rn corresponding to A is the desired factorization sheaf on R≥0×Rn−k−1.

3.4.4. Wilson loop. Given a Lie algebra g with an invariant scalar product, in Chap-
ter Subsection 3.3.4 a e3-dg-algebra Ch•h(g) is defined as follows. Take the Weyl
3-algebra given by the space g∨[1] with the scalar product and equip it with a dif-
ferential 1

h{·, q}, where { , } is the image of the Lie bracket under the map L∞ → e3
(see e. g. Proposition 3.2 ) and q is the degree 3 element, which is the composition
of the Lie bracket on g and the scalar product. Call this e3-algebra the quantum
Chevalley–Eilenberg algebra.

Consider the Hochschild complex C∗(Ch
•
h(g)). Here and in what follows we will

consider unbounded Hochschild chains, that is, the Hochschild complex which is
the direct product of its terms.

This Hochschild complex is the factorization complex
∫
S1 Ch

•
h(g). As Ch•h(g) is

e3-algebra, the Hochschild complex is an e2-algebra. Consider it as an e1-algebra,
that is take obl21

∫
S1 Ch

•
h(g). By the very definition it is equal to

∫
S1 obl

3
2 Ch

•
h(g). We

mentioned above an important property of Weyl algebras: oblnk Wn(V ) = obl∞k k[V ]
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for any k < n. It follows, that obl32 Ch
•
h(g) = obl∞2 Ch•(g) . Thus obl32 Ch

•
h(g) is

just the super-commutative Chevalley–Eilenberg algebra. Its Hochschild complex is
again a super-commutative algebra quasi-isomorphic to Ch•(g,k[[g∨]]ad) by Propo-
sition 3.15.To recap,

∫
S1 Ch

•
h(g) as e1-algebra, that is obl

2
1

∫
S1 Ch

•
h(g) is isomorphic

to Ch•(g,k[[g∨]]ad).
Now, let us apply the construction from the previous section to A = Ch•h(g),

n = 3 and k = 1. It gives an action of the e2-algebra
∫
S1 Ch

•
h(g) on obl31 Ch

•
h(g),

which is obl∞1 Ch•(g). That is we get a map from the e2-algebra Ch•(g,k[[g∨]]ad)
to the Hochschild cohomology complex of Ch•(g) by the universal property, which
is easily seen to be a quasi-isomorphism. The Hochschild cohomology complex of
Ch•(g) is known to be equal to Ch•(g, Uad

g ), where Ug is the universal enveloping
algebra of g.

To be more precise, in this way we get a map from Ch•(g,k[[g∨]]ad) to Ch•(g, Uad
g )⊗

k[[h]]. The e1-structure on this complex comes from the one on the universal en-
veloping algebra. On the other hand, as it is shown in the previous paragraph,∫
S1 Ch

•
h(g) as e1-algebra isomorphic to Ch•(g,k[[g∨]]ad). Thus, an explicit form

of this map, which is supplied by the proposition below, implies the Duflo isomor-
phism.

Proposition 3.21. The map of complexes

(43) Ch•(g,k[[g∨]]ad) =

∫
S1

Ch•h(g) → Ch•(g, Uad
g )⊗ k[[h]]

as above is chain homotopic to the map induced by the composition

(44) k[[g∨]]
exp (h(·,·))−→ S∗g⊗ k[[h]]

j
1
2

−→ S∗g⊗ k[[h]]
PBW−→ Ug ⊗ k[[h]],

where the first arrow is given by the scalar product multiplied by h, the second is
the contraction with the Duflo character (41) and the third one is the PBW map.

Sketch of proof. As it was mentioned above, Ch•h(g) as an e2-algebra is isomorphic
to the commutative algebra Ch•(g). It follows that the map induced by the unit
embedding Ch•(g) → Ch•(g,k[[g∨]]ad) is a morphism of e2-algebras and in compo-
sition with (43) it gives the standard map Ch•(g) → Ch•(g, Uad

g ) . Thus we know

the image of the subalgebra Ch•(g) under (43). One may see that the whole map
(43) may be uniquely determined from it as the unique extension compatible with
the Lie bracket coming from the e2-structure. To see this one may use the faithful
action of

∫
S1×S1 Ch

•
h(g) on

∫
S1 Ch

•
h(g) as in the sketch of the proof of Proposition

3.22.
So our immediate purpose is to calculate the bracket on Ch•(g,k[[g∨]]), which

is
∫
S1 Ch

•
h(g). As we will see below, it is enough to calculate the bracket with an

element which is image of a ∈ Ch•(g) under the embedding map as above. Given
an element b ∈

∫
S1 Ch

•
h(g), the bracket {a, b} may be interpreted geometrically

as follows. Consider the solid torus D2 × S1 and two circles in it: C = (0, S1),
call it the big one, and c = ({x ∈ D2 | |x| = 1/2}, ∗), call it the small one.
The cycle in the factorization complex of the solid torus, which is

∫
S1 Ch

•
h(g),

representing {a, b} equals Cb ⊗ ([c] ⊗ a), where by Cb we denote the image of b in∫
D2×S1 Ch

•
h(g) under the embedding C ↪→ D2 ×S1. One may see that cycle [c]⊗ a

is equal to cddRa, where ddR is the de Rham differential. If a = x1 ∧ · · · ∧ xi, then
ddRx =

∑
±ddRxi x1 ∧ . . . x̂i · · · ∧ xn.
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Let us now start pulling the small circle to unlink it from the big one. That
is, consider a family of cycles ct where ct is a family of circles in the solid torus
such that c0 is the small circle, c1 is a circle unlinked with the big circle and only
one circle in the family intersects the big one. Until the circles do not intersect,
nothing happens and the cycle Cb ⊗ cta remains in the same class. But, as soon as
they intersect each other, this class is changed by the class which is a derivation of
b. The calculation shows that for b = ddRx0 x1 ∧ · · · ∧ xn it is given by the sum
of maps (36) contracted with x0 and multiplied by x1 ∧ · · · ∧ xn. The reasoning
is analogous to Proposition 3.19: unlinking influences only around the intersection
point. When the small circle is unlinked from the big one, Cb⊗c1a vanishes, because
c1a = [c1]⊗ a is a boundary.

Note, that the e2-algebra Ch•(g,k[[g∨]]ad) is, in fact, a fe2-algebra. Thus, in-
stead of the Lie bracket, one may calculate the operator ∆ corresponding to the
rotation. Given an element x =

∑
aibi ∈ Ch•(g,k[[g∨]]ad), where ai are in the odd

part and bi in the even part, one may show, that

∆x =
∑

{ai, bi}.

Apply the calculations from the previous paragraph to it. Comparing it with Propo-
sition 3.19 we see, that the operator ∆ on Ch•(g,k[[g∨]]ad) coincides with the op-
erator d0 from there. Proposition 3.20 implies that the Duflo character gives an
isomorphism between this operator and dBr. In order to complete the proof, one
has to verify that dBr is the operator ∆ for the fe2-algebra Ch•(g, Uad

g ). □

While proving the proposition we found that the operator ∆ on the fe2-algebra∫
S1 Ch

•
h(g) is equal to the first order deformation of the Hochschild differential

of Ch•(g) that we discussed in the first section. I have no explanation for this
coincidence.

3.4.5. Invariants of knots. In Subsection 3.3.3 we constructed invariants of mani-
folds using Weyl n-algebras. Below we develop this idea for manifolds with embed-
ded links. Let us restrict ourselves to a 3-sphere with a knot in it.

As we know, the cohomology of the factorization complex of the Weyl n-algebra
Wn(V ) on a closed n-manifold is one-dimensional. If V lies in degree 1 and the
manifold is a 3-sphere (or a homology sphere), then the generator of this cohomology
is given by the class [p] ⊗ StopV , where p is a point in the manifold. As it was
explained in Subsection 3.3.4, the factorization complex

∫
S3 Ch

•
h(g) is isomorphic

to the complex of the underlying Weyl 3-algebra. Since the Chevalley–Eilenberg
differential is inner, one needs to consider here unbounded chains that is, take
direct product rather than the direct sum. It is easy to see that the generator in
the cohomology of

∫
S3 Ch

•
h(g) is given by [p]⊗ Stopg∨. Call it the standard cycle.

The idea of invariants we construct is to produce another cycle and compare it with
the standard one.

Given a knot K : S1 ↪→ S3 and a class f ∈
∫
S1 Ch

•(g) = Ch•(g,k[[g∨]]ad),
denote by Kf the direct image of this class under K. The class we are interested in
is ([p]⊗ Stopg∨)⊗Kf . For dimensional reasons, only f of degree 0 are interesting,
in fact, f ∈ k[[g∨]]inv. Thus we get the following definition.
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Definition 3.11. For a knot K in R3 the Wilson loop invariant is the function on
k[[g∨]]inv given by

f 7→ ([∞]⊗ Stop(g∨[1]))⊗Kf ∈
∫
S3

Ch•h(g),

where we identify
∫
S3 Ch

•
h(g) with k[[h]] using the standard cycle as the generator.

In Subsection 3.3.3 it is showed that invariants constructed there are described
by formulas similar to formulas for the Axelrod–Singer invariants. Following the
same line, we see that the Wilson loop invariants are connected with Bott–Taubes
invariants; for a survey of the latter see e. g. [Vol07]. There is another invariant
of knots — the Kontsevich integral, see [CDM12, Part 3]. In principle, it should
coincide with the Bott–Taubes invariants, see [Kon94]. As far as I know, this point
is not clear, for discussion see [Les02]. One may hope that the definition above will
help to elucidate this.

Our construction of the Wilson loop invariant depends on the choice of a Lie
algebra with a scalar product. One may give a more complicated, but univer-
sal definition of these invariants with values in the graph complex, which is the
Chevalley–Eilenberg complex of Hamiltonian vector fields, in the same way as it is
outlined in Subsection 3.3.4.

An interesting property of the Kontsevich integral is its value on the unknot: it
is equal to the Duflo character and this allows to prove the Duflo isomorphism, see
[BLT03] and [CDM12, Ch. 11]. The following proposition states that the Wilson
loop invariant shares this property.

Proposition 3.22. The Wilson loop invariant of the unknot is equal to the com-
position

k[[g∨]]inv ↪→ k[[g∨]] → Ug ⊗ k[[h]] → k[[h]],

where the second arrow is given by (44) and the third one is the standard augmen-
tation.

This Proposition confirms that our definition of the Kontsevich integral coincides
with the standard one.

There is another application of Construction 3.1 above. As it was mentioned
above in a particular case, integration of a n-Weyl algebra W on the pair (k-
disk, k − 1-sphere) gives an action of

∫
Sk−1 W on W itself as on en−k−1-algebra.

By the universal property of the higher Hochschild cohomology (see [Tho16]), it
gives a map of en−k-algebras from

∫
Sk−1 W to the higher Hochschild cohomology

of en−k−1-algebra W. One may show that this is quasi-isomorphism.
In [Mar21] we show that this map may be used to build a formality morphism,

that is a quasi-isomorphism between the Lie algebra of higher Hochschild cohomol-
ogy of polynomial algebra and the Lie algebra of appropriate polyvector fields.

The classical paper [Kon03] describes a way to build the formality (only for usual
Hochschild cohomology, but the construction may be generalized to higher ones),
which depends on a choice of a propagator. Moreover, there a specific propagator is
chosen and the corresponding formality morphism is written down. Our formality
is also given by a propagator, but this propagator differs from the one chosen in
[Kon03]. A surprising consequence of the geometric nature of this new propagator
is the rationality of coefficients of this formality morphism.
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4. Operads and MZV

My scientific interests are largely centered around the concept of operads. Specif-
ically, I focus on operads of little disks and their modifications. Factorization ho-
mologies are intricately linked to it.

My joint paper with A. Khoroshkin and S. Shadrin [KMS13] is devoted to the
study of the hypercommutative operad, formed by homologies of the Deligne–
Mumford compactification of the moduli space of stable marked curves of genus
0. We give an explicit formula for a quasi-isomorphism between the operads Hy-
comm (the homology of the moduli space of stable genus 0 curves) and BV/∆ (the
homotopy quotient of Batalin-Vilkovisky operad by the BV-operator). In other
words, we derive an equivalence of Hycomm-algebras and BV-algebras enhanced
with a homotopy that trivializes the BV-operator.

Because the operad of little 2-disks can be realized in the category of Tate mo-
tives, it possesses additional structure. Understanding this structure has been oc-
cupying my attention in recent years. The only result of these efforts so far is my
paper [Mar23] about multiple zeta values. It essentially investigates the Hodge
structure on the operad of little 2-disks.

Multiple zeta values is an important series of numbers. It plays fundamental
role in number theory, algebraic geometry, mathematical physics. These numbers
are defined as follows.

Call a finite sequence of natural numbers (k1, . . . , kn) convergent if k1 ≥ 2. For
a convergent sequence k = (k1, . . . , kn) the multiple zeta value is defined by the
integral (see e. g. [IKZ06])

(45) ζ (k) =

∫
∆w(k)

ω1(t1) ∧ · · · ∧ ωw(k)(tw(k)),

where ∆w(k) = {1 > t1 > · · · > tw(k) > 0}, w(k) = k1 + · · · + kn is weight of the
sequence and

ωi(t) =

{
dt/(1− t) if i ∈ {k1, k1 + k2, . . . , k1 + · · ·+ kn}
dt/t otherwise

Thus, multiple zeta values are values of iterated integrals.
A more conventional way to define multiple zeta values is by series representation

ascending to Euler. For a convergent k = (k1, . . . , kn) as above,

(46) ζ (k) =
∑

l1>l2>···>ln>0
li∈N

1

lk1
1 l

k2
2 · · · lkn

n

To ensure that formulas (45) and (46) are consistent one may calculate integral
(45) iteratively by all variables ti. There is another way to do it. Define cubical
coordinates on the standard simplex ∆k = {1 > t1 > · · · > tk > 0} by

x1 = t1 x2 = t2/t1 . . . xk = tk/tk−1.

Coordinates ti are called simplicial coordinates. In cubical coordinates definition
(45) looks as

(47) ζ (k) =

∫
□

x1 · · ·xk1

1− x1 · · ·xk1

x1 · · ·xk1+k2

1− x1 · · ·xk1+k2

· · ·
x1 · · ·xw(k)

1− x1 · · ·xw(k)
dV,
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where dV = dx1/x1 ∧ dx2/x2 . . . is the standard volume form on the torus and
symbol □ here and below means the unit cube {0 < xi < 1}. Expanding the
integrand of (47) into a series and integrating term-wise we obtain (46).

Multiple zeta values form an algebra over rational numbers. A product of two of
them may be presented as a linear combination of multiple zeta values with integer
coefficients by means of each representation: as integrals and as number series. It
gives two systems of relations which multiple zeta values obey. We are interested
only in geometric relations between MZVs az periods of integrals. One may say,
that we are dealing with motivic MZVs.

The first set of relations is called shuffle relations. They immediately follow from
Fubini’s theorem applied to the integral representation (46). They are defined as
follows.

With a finite sequence of natural numbers k = (k1, . . . , kn) associate the word
zk = xk1−1yxk2−1 . . . xkn−1y of two letters x and y. It establishes a bijection be-
tween sequences and words ending in y.

A finite multiset is an unordered finite list with possible repetitions. For a mul-
tiset M , denote by x ·M the result of the action of operation x· on M elementwise.

Define shuffle product sh( · , · ) of two words in letters x and y as a multiset of
words given by the recursive rule

(48) sh(v · z1, u · z2) = v · sh(z1, u · z2) ∪ u · sh(v · z1, z2),

where u, v ∈ {x, y} and sh(1, z) = sh(z, 1) = {z}.
One may see that the shuffle product of two words ending in y consists of words

ending in y. It defines the shuffle product of sequences of natural numbers, which
we denote likewise by sh( · , · ).

Shuffle relations:
Let k and l be convergent sequences. Then

(49) ζ (k) ζ (l) =
∑

s∈sh(k,l)

ζ (s)

Example 4.1.

ζ (2) ζ (2) =

(∫
1>t1>t2>0

dt1
t1

dt2
1− t2

)(∫
1>t1>t2>0

dt1
t1

dt2
1− t2

)
=∫

1>t1>t2>t3>t4>0

(
4
dt1
t1

dt2
t2

dt3
1− t3

dt4
1− t4

+ 2
dt1
t1

dt2
1− t2

dt3
t3

dt4
1− t4

)
=

4 ζ (3, 1) + 2 ζ (2, 2)

To prove the second equality we divide a product of two simplices in simplices and
apply the Fubini theorem.

The second family of relations is called stuffle relations and is given by rearrange-
ment of summands in the product of number series.

For a finite sequence of natural numbers k = (k1, . . . , kn−1), denote the sequence
(k1, . . . , kn−1, kn) by k · kn. Introduce the empty sequence () such that () · k = (k).

Define stuffle product st( · , · ) of two sequences as a multiset of sequences given
by the recursive rule

(50) st(k · x, l · y) = st(k · x, l) · y ∪ st(k, l · y) · x ∪ st(k, l) · (x+ y)
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and by st((),k) = st(k, ()) = {k}. Note that st(k, l) = st(l,k).
Stuffle relations:
Let k and l be convergent sequences. Then

(51) ζ (k) ζ (l) =
∑

s∈st(k,l)

ζ (s)

Stuffle relations follow easily from the series representation of multiple zeta values
by rearranging terms of the product. The idea is clear from the following example.

Example 4.2.

(52)
ζ (2) ζ (2) =

∑
l

1

l2
·
∑
m

1

m2
=

(∑
l>m

+
∑
l<m

+
∑
l=m

)
1

l2m2
=

2 ζ (2, 2) + ζ (4)

Stuffle relations are not so evident in the integral presentation, see [Gol86; Bro09;
Sou10].

Example 4.3. Let us prove (52) in the integral presentation.
In cubical coordiantes we have

ζ (2) =

∫
□

dx1dx2
1− x1x2

ζ (4) =

∫
□

dx1dx2dx3dx4
1− x1x2x3x4

ζ(2, 2) =

∫
□

x1x2 dx1dx2dx3dx4
(1− x1x2)(1− x1x2x3x4)

ζ (2) ζ (2) =

∫
□

dx1dx2
(1− x1x2)

dx3dx4
(1− x3x4)

For any variables α and β we have the equality:

(53)
1

(1− α)(1− β)
=

α

(1− α)(1− αβ)
+

β

(1− β)(1− βα)
+

1

1− αβ

Substituting α = x1x2 and β = x3x4 we get the stuffle relation:

(54)

ζ(2)ζ(2) =∫
□

(
x1x2

(1− x1x2)(1− x1x2x3x4)
+

x3x4
(1− x3x4)(1− x3x4x1x2)

+
1

1− x1x2x3x4

)
dx1dx2dx3dx4 =

ζ(2, 2) + ζ(2, 2) + ζ(4)

Analyzing this example, we see that there are three techniques used in the proof.
The first is a variant of Fubini’s theorem, which allows to rewrite the product of
integrals as a single integral. This, as it was observed in [Bro09], follows from
the generalized shuffle relations we will discuss below. Then, we used the formula
(53), which is essentially a form of Arnold’s relations between differential forms
on M0,n+3. Finally, if we look at the first two summands under the integral in
(54) we can see that they differ by the order of the coordinates. Permutation of the
cubical coordinates obviously does not affect the result of the integration. However,
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in simplicial coordinates, this permutation gives a birational transformation. My
main observation is that the invariance of integrals with respect to permutations
of cubical coordinates of a certain type (“flips”) implies certain relations on the
integrals, which I call generalized stuffle relations, see below.

Stuffle relations may be extended by regularizations of some equalities with di-
vergent series, see [IKZ06; Rac02]. This extended system of relations is called
regularized double shuffle relations.

Multiple zeta values of weight n being values of integrals are periods of the pair
(Mδ

0,n+3,Mδ
0,n+3 \M0,n+3) of a special kind ([GM04]), where Mδ

0,n+3 is a partial
compactification of M0,n+3 introduced in [Bro09]. In [Bro09; BCS10] all periods
of such pairs were studied. In [BCS10] they were called cell-zeta values.

As well as multiple zeta values, cell-zeta values obey a lot of relations over
rational numbers. By the one of the main results of [Bro09], all cell-zeta values are
rational combinations of multiple zeta values. In light of this, it is natural to try
to find a set of relations on cell-zeta values, which allows to express any cell-zeta
value in terms of multiple zeta values and implies all known relation on multiple
zeta values. In [Mar23] I suggest a candidate for this, which consists of two families
of relations. In [BCS10] another system of relations on cell-zeta values is written
down, which is a subset of my relations.

The first family containing quadratic-linear relations was introduced in [Bro09].
It is analogous to shuffle relations and follows from Fubini’s theorem. In [BCS10]
these relations called product map relations. We suggest the term ”generalized
shuffle relations” to emphasize the similarity between our pair of families with the
pair of shuffle and stuffle relations.

Let 3 be a cyclically ordered set with three elements. Define a 3-pointed cyclically
ordered set T as a pair of a cyclically ordered set T and a monotonic embedding
ı : 3 ↪→ T .

Let T1,2 be a pair of 3-pointed cyclically ordered sets and ı1,2 : 3 ↪→ T1,2 are
corresponding embeddings. Let T1

∐
3 T2 be the colimit of the diagram in the

category of sets given by these embeddings. Denote by sh(T1, T2) the set of cyclically
ordered sets given by all cyclic orders on T1

∐
3 T2 for which projections on T1 and

T2 are monotonic.
For any C ∈ sh(T1, T2) consider the map

(55) βC : Mδ
0,C → Mδ

0,T1
×Mδ

0,T2
,

which is the forgetful map on each factor. In [Bro09, p. 2.7] this map is called the
product map.

The following proposition is taken from [Bro09; BCS10], where it is called prod-
uct map relations.

Generalized shuffle relations:
Using notations as above let ϕ and ψ be regular top-degree differential forms on

Mδ
0,T1

and Mδ
0,T2

correspondingly. Then

(56)

(∫
∆(T1)

ϕ

)
·

(∫
∆(T2)

ψ

)
=

∑
C∈sh(T1,T2)

∫
∆(C)

β∗
C(ϕ⊠ ψ)

The second family is new. I call it generalized stuffle relations. This is a family
of linear relations following from the relative version of Fubini’s theorem.



Let 4 be a cyclically ordered set with four elements. Define a 4-pointed cyclically
ordered set T as a pair of a cyclically ordered set T and a monotonic embedding
ı : 4 ↪→ T .

The Klein four-group V acts on 4. Half of this group respects the cyclic order
and the other half reverses it. For ν ∈ V and a 4-pointed cyclically ordered set
T = (T, ı) denote by T ν the 4-pointed cyclically ordered set with the embedding
equal to ı composed with ν and with the cyclic ordered set equal to T or to T op

depending on whether ν respects cyclic order on 4 or not, where · op means the
same set with the opposite order. Denote the latter cyclically ordered set by T ν .

Let T1,2 be a pair of 4-pointed cyclically ordered sets and ı1,2 : 4 ↪→ T1,2 are
corresponding embeddings. Let T1

∐
4 T2 be the colimit of the diagram in the

category of sets given by these embeddings. Denote by st(T1, T2) the set of cyclically
ordered sets given by all cyclic orders on T1

∐
4 T2 for which projections on T1 and

T2 are monotonic.
For any ν ∈ V , C ∈ st(T1, T2) and Cν ∈ st(T1, T ν

2 ) consider maps

(57)

γC : Mδ
0,C

Mδ
0,T1

×Mδ
0,T2

γCν : Mδ
0,Cν

which are forgetful map on each factor.
Generalized stuffle relations:
Using notations as above let ν be a non-trivial element of the Klein four-group

and ϕ and ψ be regular differential forms on Mδ
0,T1

and Mδ
0,T2

correspondingly
such that

deg ϕ+ degψ = |T1|+ |T2| − 7

Then

(58)
∑

C∈st(T1,T2)

∫
∆(C)

γ∗C(ϕ⊠ ψ) = ϵ ·
∑

Cν∈st(T1,T ν
2 )

∫
∆(Cν)

γ∗Cν
(ϕ⊠ ψ),

where ϵ = (−1)
(|T2|−3)(|T2|−2)

2 if ν reverses the cyclic order on 4 and ϵ = 1 if not.

These relations generalize above-mentioned manipulations with integrals in cu-
bical coordinates. It allows to prove the following theorem, which is the main result
of the paper.

Theorem 4.1. Generalized shuffle relations (56) and generalized stuffle relations
(58) jointly imply shuffle relations (49) and stuffle relations (51).
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Lie”. Ann. Sci. École Norm. Sup. (4) 10.2 (1977), pp. 265–288.
[FO95] B. Feigin and A. Odesskii. Vector bundles on elliptic curve and Sklyanin

algebras. 1995.
[Fra] John Francis. Factorization homology of topological manifolds. arXiv:1206.5522

[math.AT].
[FT89] B. L. Feigin and B. L. Tsygan. “Riemann-Roch theorem and Lie alge-

bra cohomology. I”. Proceedings of the Winter School on Geometry and
Physics (Srni, 1988). 21. 1989, pp. 15–52.

[Get94] E. Getzler. “Batalin-Vilkovisky algebras and two-dimensional topologi-
cal field theories”. Comm. Math. Phys. 159.2 (1994), pp. 265–285.

[Gin] Grégory Ginot. Notes on factorization algebras, factorization homology
and applications. arXiv:1307.5213 [math.AT].

[GJ] Ezra Getzler and J. D. S. Jones. Operads, homotopy algebra and iterated
integrals for double loop spaces. arXiv:hep-th/9403055v1.

[GM04] A. B. Goncharov and Yu. I. Manin. “Multiple ζ-motives and moduli
spaces M0,n”. Compositio Mathematica 140.1 (2004), pp. 1–14.

48



[Gol86] William M. Goldman. “Invariant functions on Lie groups and Hamilton-
ian flows of surface group representations”. Invent. Math. 85.2 (1986),
pp. 263–302.

[GTZ14] Grégory Ginot, Thomas Tradler, and Mahmoud Zeinalian. “Higher Hochschild
homology, topological chiral homology and factorization algebras”. Comm.
Math. Phys. 326.3 (2014), pp. 635–686.

[Gwi12] Owen Gwilliam. Factorization Algebras and Free Field Theories. Thesis
(Ph.D.)–Northwestern University. ProQuest LLC, Ann Arbor, MI, 2012,
p. 282.

[Har66] Robin Hartshorne. Residues and duality. Lecture notes of a seminar
on the work of A. Grothendieck, given at Harvard 1963/64. With an
appendix by P. Deligne. Lecture Notes in Mathematics, No. 20. Berlin:
Springer-Verlag, 1966, pp. vii+423.

[Hir66] F. Hirzebruch. Topological methods in algebraic geometry. Third en-
larged edition. New appendix and translation from the second German
edition by R. L. E. Schwarzenberger, with an additional section by A.
Borel. Die Grundlehren der Mathematischen Wissenschaften, Band 131.
Springer-Verlag New York, Inc., New York, 1966, pp. x+232.

[HKR62] G. Hochschild, Bertram Kostant, and Alex Rosenberg. “Differential
forms on regular affine algebras”. Trans. Amer. Math. Soc. 102 (1962),
pp. 383–408.

[HP07] Zheng Hua and Alexander Polishchuk. Elliptic bihamiltonian structures
from relative shifted Poisson structures. arXiv:2007.12351 [math.AG].
2007.

[HP23] Zheng Hua and Alexander Polishchuk. “Elliptic bihamiltonian struc-
tures from relative shifted Poisson structures”. Journal of Topology 16.4
(2023), pp. 1389–1422.

[IKZ06] Kentaro Ihara, Masanobu Kaneko, and Don Zagier. “Derivation and
double shuffle relations for multiple zeta values”. Compositio Mathe-
matica 142.2 (2006), pp. 307–338.

[Ill71] Luc Illusie. Complexe cotangent et déformations. I. Berlin: Springer-
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