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Abstract

In this paper, we study dispersive estimates for a class of weak dispersive systems.
Then we apply our results to water wave models.

1 Introduction

We consider a class of dispersive equations under the form

∂tu = ±iϕ(δ|D|)|D|u (1)

where δ > 0, u(t, x) ∈ C, t ∈ R, x ∈ Rd with d = 1 or 2. We introduce the function
g(y) = ϕ(|y|)y for any y ∈ R∗ so that d

dr (ϕ(δr)r) = g′(δr) for any r > 0. We assume in
this paper one of the following assumption

(H0) ϕ is a real-valued smooth function defined on R∗+
or

(H1) ϕ is a real-valued smooth function defined on R+ and ϕ(0) 6= 0.

With Assumption (H0), the function ϕ is not necessary defined at 0. This assumption
will be mostly used when d = 1. With Assumption (H1), Equation (1) can be seen as a
pertubation of the half-wave equation when δ is small. Note that in that case, g′(0) 6= 0.
One (but not the only) of the main motivation of this paper is to consider situations
where ϕ(y)→ 0 as y → +∞ which corresponds to equations with weak dispersive effects.
Another motivation is to consider equations under Assumption (H1) with δ � 1. In the
following we denote the unique solution of (1) with u(0, x) = u0 as

u(t, x) = e±itϕ(δ|D|)|D|u0

using a Fourier multiplier notation.
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Remark 1.1. When d = 1, one can also consider dispersive equations under the form

∂tu = ±ϕ(δ|D|)∂xu

where δ > 0, u(t, x) ∈ R, t ∈ R, x ∈ R. Indeed we have the relation

etϕ(δ|D|)∂xu0 = e−itϕ(δ|D|)|D|1{D<0}u0 + eitϕ(δ|D|)|D|1{D>0}u0.

In this paper, we restrict our study to d = 1 or d = 2 since we will apply our results
to water wave models. One could easily extend these results to d ≥ 2 as in [GPW08].
The goal of this paper is to provided decay estimates, local-in-time Strichartz estimates
and Morawetz estimates for Equation (1).

This problem is motivated by the study of shallow water-wave models. Introduc-
ing the shallowness parameter µ ∈]0, 1], we consider here two models: the linearized
irrotational water wave equations (under the Zakharov/craig-Sulem formulation){

∂tζ −
tanh(

√
µ|D|)√
µ |D|ψ = 0,

∂tψ + ζ = 0,
(2)

where δ =
√
µ and

ϕ(r) =

√
tanh(r)

r

and the dispersive part of the linearized abcd-system{
(1− µb∆)∂tζ + (1 + µa∆)∇ · V = 0,
(1− µb∆)∂t∇ · V + (1 + c∆)∇ζ = 0,

(3)

with a+ b+ c+ d = 1
3 , under the condition that b ≥ 0, d ≥ 0, a ≤ 0, c ≤ 0 (in order to

get the wellposedness), where δ =
√
µ and

ϕ(r) =

√
(1− µar2)(1− µcr2)
(1 + µbr2)(1 + µdr2)

.

We also have in mind equations equations for d = 1. For b 6= 0 we consider the linearized
Ostrovsky equation

∂tu = (−∂−1x u± b∂3xu)

and, in the setting of Remark 1.1, δ = 1 and ϕ(ξ)ξ = 1
ξ ± bξ

3.
For b ≤ 0, we consider a linearized BBM/KdV equation

∂tu+ µb∂2x∂tu = ±∂xu± µ(b+
1

6
)∂3xu.

and, in the setting of Remark 1.1, δ =
√
µ and ϕ(ξ) =

1−µ(b+ 1
6
)ξ2

1+bµξ2
.
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1.1 Notations

• If u is a tempered distribution, we define Fu or û as the Fourier transform of u by

û(ξ) =

∫
Rd
e−ix·ξu(x)dx.

• If f is a smooth function that is at most polynomial at infinity, we define the
operator f(D) such that, for any Schwartz class function u,

f(D)u = F−1(f(ξ)û(ξ)).

• In the whole paper ϕ is a smooth function defined at least on R∗+ and we define
the function g defined at least on R∗ as g(y) = ϕ(|y|)y.

• J0 is a Bessel function defined in (4).

• For xt and yt positive numbers depending on a parameter t, we write xt ∼ yt if
there exists Λ, λ > 0 independent from t such that λxt ≤ yt ≤ Λxt.

• If g is a function and l ∈ N, we denote by g(l) the l-th derivative of g.

• For an interval J , the subset ZJ of Z is defined in (5).

2 Dispersive estimates

2.1 Littlewood-Paley decomposition

Since the phase we consider is not necessary homogeneous, we consider a Littlewood-
Paley decomposition. We refer to [BCD11] for a more precise description of such con-
struction. We introduce a smooth nonnegative even function ϕ0 supported in [−1, 1] and
that is equal to 1 in [−1

2 ,
1
2 ]. Then we define for any y ∈ R, P (y) = ϕ0(

y
2 )−ϕ0(y) and for

any j ∈ Z, Pj(y) = P (2−jy). We note that Pj is a function supported in C(2j−1, 2j+1).
We have for any ξ ∈ Rd,

ϕ0(|ξ|) +
∑
j∈N

Pj(|ξ|) = 1 ,
1

2
≤ ϕ2

0(|ξ|) +
∑
j∈Z

P 2
j (|ξ|) ≤ 2,

and for any ξ ∈ Rd with ξ 6= 0,∑
j∈Z

Pj(|ξ|) = 1 ,
1

2
≤
∑
j∈Z

P 2
j (|ξ|) ≤ 2.

Finally for p, r ≥ 1, s ∈ R, we define the homogeneous Besov norm |·|Ḃsp,r by

|u|Ḃsp,r =

∑
j∈Z

2jsr |Pj(|D|)u|rLp

 1
r
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and the inhomogeneous Besov norm |·|Bsp,r by

|u|Bsp,r =

|ϕ0(|D|)u|rLp +
∑
j∈N

2jsr |Pj(|D|)u|rLp

 1
r

.

2.2 Decay estimates

2.2.1 Tools for the dispersive estimates

In this section, we introduce some basic tools in order to get our decay estimates. We
first recall the van der Corput lemma (see for instance [Ste93]).

Lemma 2.1 (Van der Corput). Let a < b be real numbers, λ > 0 and φ a smooth
real-valued function defined on (a, b]. Assume that there exists k ∈ N with k ≥ 1 such
that |φ(k)| ≥ λ on (a, b] and, if k = 1, that φ′ is monotonic on (a, b]. Then, there exists
a constant ck, that only depends on k, such that for any t ∈ R∗ and any smooth function
f defined on [a, b],∣∣∣∣∫ b

a
eitφ(x)f(x)dx

∣∣∣∣ ≤ ck(λ|t|)− 1
k

(
|f(b)|+

∫ b

a
|f ′(x)|dx

)
.

We easily get a corollary in the case k = 1 which will be useful in the following.

Corollary 2.2. Let a < b be real numbers, r ∈ N, λ > 0 and φ a smooth real-valued
function defined on (a, b]. Assume that |φ′| ≥ λ on (a, b] and that φ′′ has at most r
zeros on (a, b). Then, there exists a constant c such that for any t ∈ R∗ and any smooth
function f defined on [a, b],∣∣∣∣∫ b

a
eitφ(x)f(x)dx

∣∣∣∣ ≤ c

λ|t|

(
r‖f‖∞ + |f(b)|+

∫ b

a
|f ′(x)|dx

)
.

Then, we introduce the Bessel function J0: for any s ∈ R,

J0(s) =

∫ 2π

0
eis sin(θ)dθ. (4)

A direct application of Van der Corput’s lemma gives

|J0(s)|+ |J ′0(s)| .
1√

1 + |s|
.

Furthermore, introducing a smooth nonnegative function χ defined on [0, 2π] with χ(x) =
0 for x ∈ [5π4 ,

7π
4 ] and χ(x) = 1 for any x ∈ [π4 ,

3π
4 ], one can decompose J0 as

J0(s) = eis
∫ 2π

0
χ(θ)eis(sin(θ)−1)dθ + e−is

∫ 2π

0
(1− χ(θ))eis(sin(θ)+1)dθ

= eish−(s) + e−ish+(s).
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Integrating by parts if necessary and using Van der Corput’s lemma, one can get for any
s ∈ R and any k ∈ N

|h(k)± (s)| . 1

(1 + |s|)k+
1
2

.

2.2.2 General decays

2.2.3 d=1

We first give a easy consequence of Van der Corput’s lemma in case a derivative of g
does not vanish on an interval.

Lemma 2.3. Let δ > 0 and J an interval. Let λ > 0, l ∈ N with l ≥ 2. Assume that ϕ
satisfies (H0) and that |g(l)| ≥ λ on J . Let χ be a smooth function on R∗ whose support
is a subset of J and such that χ′ ∈ L1(J). Then, for any t ∈ R∗, x ∈ R, we have∣∣∣∣∫

R
eixξeitϕ(δ|ξ|)|ξ|χ(δξ)dξ

∣∣∣∣ . δ
1−l
l

|t|
1
l

.

Remark 2.4. When J is unbounded, the previous integral is well defined from integration

by parts since g′′(y)
g′(y)2 has a sign for |y| large enough and lim

|y|→+∞
|g′(y)| = +∞.

Then we provide a consequence of Corollary 2.9 in [KPV91] that can be useful for
low frequencies.

Lemma 2.5. Let δ > 0 and J an interval. Let λ,Λ > 0 and β ∈ R with β /∈ {−2,−1}.
Assume that ϕ satisfies (H0) and that Λ|y|β ≥ |g′′(y)| ≥ λ|y|β. Let χ be a smooth
function on R∗ whose support is a subset of J and such that χ′ ∈ L1(J). Then, for any
t ∈ R∗, x ∈ R, we have∣∣∣∣∫

R
eixξeitϕ(δ|ξ|)|ξ|

√
|g′′(δ|ξ|)|χ(δξ)dξ

∣∣∣∣ . 1√
δ|t|

.

Remark 2.6. As noted in [KPV91], the assumption β 6= −2 is essential since the estimate
is not true for g(ξ) = ln(|ξ|). We chose to avoid the case β = −1 since we will not deal
with such a phase in this paper.

The previous lemmas are particularly useful for homogeneous phases or low frequency
estimates. However, in many situations, one has to be more accurate especially when
ϕ(y) → 0 as y → +∞. For this reason we use a Littlewood-Paley decomposition and
introduce the quantity for any t ∈ R, x ∈ R, s ∈ R and k ∈ Z,

Ist,x,k =

∫
R
eixξeitϕ(δ|ξ|)|ξ|Pk(ξ)|ξ|sdξ.

Using a change of variable, we can rewrite It,x,k

Ist,x,k = 2(1+s)k
∫ 2

1
2

e−i2
kxreitϕ(δ2

kr)2krP (r)rsdr + 2(1+s)k
∫ 2

1
2

ei2
kxreitϕ(δ2

kr)2krP (r)rsdr

:= Ist,x,k,− + Ist,x,k,+.
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For an interval J we define ZJ as

ZJ = {k ∈ Z , ∀r ∈ [12 , 2] , 2kδr ∈ J}. (5)

The following lemma gives a decay when a derivative of g does not vanish on an
interval J .

Lemma 2.7. Let δ > 0 and J ⊂ R∗+ an interval. Let λ > 0, α ∈ R, s ∈ R. Assume that
ϕ satisfies (H0) and that |g(l)(y)| ≥ λyα on J . Then, for any t ∈ R∗, x ∈ R and k ∈ ZJ

|Ist,x,k| .
2(s−

α
l
)kδ

1−l−α
l

|t|
1
l

.

Proof. Defining φ±(r) = tϕ(δ2kr)2kr±2kxr, we have |φ(l)± (r)| = 2lkδl−1|tg(l)(δ2kr)|. Van
der Corput’s lemma gives

|Ist,x,k,±| .
2(1+s)k

(2lkδl−1|t|g(l)(δ2kr1))
1
l

with r1 ∈ [12 , 2]. The result follows.

As a direct consequence of the previous lemma we get, when δ = 1 and y0 > 0,

sup
x∈R

∑
k∈ZJ

|Ist,x,k| .
1

|t|
1
l

provided that s− α
l > 0 and J = (0, y0) or s− α

l < 0 and J = (y0,+∞). The next lemma
can be seen as an alternative to Lemma 2.3. We consider that l = 2 and s− α

2 ≤ 0.

Lemma 2.8. Let δ > 0 and J ⊂ R∗+ an interval. Let Λ, λ > 0, a, α, s ∈ R. Assume that
ϕ satisfies (H0) and that Λyα+1 ≥ |g′(y)− a| ≥ λyα+1 and |g′′(y)| ≥ λyα on J . Then:

(1) If −1 < s < α
2 and α 6= −1, for any t ∈ R∗, we have

sup
x∈R

∑
k∈ZJ

∣∣Ist,x,k∣∣ . δ−
(1+α)(s+1)

2+α

|t|
s+1
2+α

.

(2) If s = α
2 and α /∈ {−2,−1}, for any t ∈ R∗, we have

sup
x∈R

∑
k∈ZJ

∣∣∣I α2t,x,k∣∣∣ . δ−
1+α
2√
|t|

.

Remark 2.9. When J =]0, 1], δ = 1 and s = 0, we get item (c) of Theorem 1 in [GPW08].
Point (2) is similar to Corollary 2.9 in [KPV91] (see also Lemma 2.5). Note that contrary
to Lemma 2.3, if l ≥ 3 we provide a way to get a decay of order 1

|t|
1
l

without computing

g(l).
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Proof. We can assume that a = 0 since

e±i2
kxreitϕ(δ2

kr)2kr = e±i2
k(x∓at)reit(ϕ(δ2

kr)2kr−2kar).

Note that the assumptions on s and α gives that (s+ 1) and (2 + α) agree in sign. We
always have, for any k ∈ ZJ , |Ist,x,k,±| . 2(1+s)k.

Case λ
4 δ
α+12(α+1)k|t| ≤ |x| ≤ 4Λδα+12(α+1)k|t|: if 2k(δα+1|t|)

1
α+2 ≤ 1, we have

|Ist,x,k| . 2(1+s)k .
δ−

(1+α)(s+1)
2+α

|t|
s+1
2+α

,

whereas if 2k(δα+1|t|)
1

α+2 ≥ 1, we get from Lemma 2.7

|Ist,x,k| .
2(s−

α
2
)kδ−

1+α
2√

|t|
=

2(s−
α
2
)kδ−

1+α
2

|t|
s+1
2+α

1

|t|
α−2s
2(2+α)

.
δ−

(1+α)(s+1)
2+α

|t|
s+1
2+α

.

Note also that the size of At,x := {k ∈ ZJ , λ4 δ
α+12(α+1)k|t| ≤ |x| ≤ 4Λδα+12(α+1)k|t|} is

bounded by a number independent of t, x, δ (since α 6= −1).

Case λ
4 δ
α+12(α+1)k|t| ≥ |x| or |x| ≥ 4Λδα+12(α+1)k|t|: we get thanks to Corollary 2.2

with the phasis φ±(r) = tϕ(δ2kr)2kr ± 2kxr, since |φ′±(r)| ≥ λ
4 δ
α+12(α+2)k|t|,

|Ist,x,k,±| .
2(s−α−1)kδ−(α+1)

|t|
.

Therefore gathering all previous estimates, we get −1 < s ≤ α
2 and α 6= −1

∑
k∈ZJ

∣∣Ist,x,k∣∣ . ∑
k∈At,k

|Ist,x,k|+
∑

k∈ZJ , k/∈At,k

|Ist,x,k|

.
δ−

(1+α)(s+1)
2+α

|t|
s+1
2+α

+
∑

2k(δα+1|t|)
1

α+2≤1

2(1+s)k +
∑

2k(δα+1|t|)
1

α+2≥1

2(s−α−1)kδ−(α+1)

|t|
,

whereas if s = α
2 < −1

∑
k∈ZJ

∣∣∣I α2t,x,k∣∣∣ . δ−
(1+α)

2√
|t|

+
∑

2k(δα+1|t|)
1

α+2≤1

2−
α+2
2
kδ−(α+1)

|t|
+

∑
2k(δα+1|t|)

1
α+2≥1

2
α+2
2
k

and the results follow.

Finally, we consider the situation where some derivatives of g do not vanish at the
same time.
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Lemma 2.10. Let δ > 0. Let λ > 0, α, β ∈ R, y0, y1 > 0 with y0 < y1 and l ∈ N
with l ≥ 2. Assume that ϕ satisfies (H0), that |g′′(y)| ≥ λyβ for any y ∈ (0, y0], that
l∑

p=2

|g(p)| ≥ λ on [y0, y1] and that |g′′(y)| ≥ λyα for any y ≥ y1. Then for any t ∈ R∗,

x ∈ R and k ∈ Z,

|Ist,x,k| .



2(s−
β
2 )kδ−

1+β
2√

|t|
, if 2kδ ≤ y0

2 ,

2(s+1− 1
l
)k

|t|
1
l

+ 2
k
2√
|t|

, if y0
2 < 2kδ < 2y1,

2(s−
α
2 )kδ−

α+1
2√

|t|
, if 2kδ ≥ 2y1.

Furthermore, one also have for any 2kδ < 2y1,

|I0t,x,k| .
2(1−

β+2
l

)kδ−
β+1
l

|t|
1
l

,

and if α < −2, ∑
2kδ≥2y1

∣∣∣∣I α−l+2
l

t,x,k

∣∣∣∣ . δ−
α+1
l

|t|
1
l

.

Proof. Adapting the proof of Lemma 2.7, one can control the integrals

I0 = 2(1+s)k
∫ 2

1
2

e±i2
kxreitϕ(δ2

kr)2kr1{2kδr≥y1}P (r)rsdr,

I1 = 2(1+s)k
∫ 2

1
2

e±i2
kxreitϕ(δ2

kr)2kr(1{2kδr≤y0} + 1{y0<2kδr<y1}1{|g′′|≥ λ
l−1
})P (r)rsdr.

It remains to control the integrals, for p ∈ {2, · · · , l},

Ip = 2(1+s)k
∫ 2

1
2

e±i2
kxreitϕ(δ2

kr)2kr1{y0<2kδr<y1}1{|g(p)|≥ λ1
l−1
}P (r)rsdr.

Denoting φ1(r) = tϕ(δ2kr)2kr ± 2kxr, we have |φ(p)1 (r)| = 2pkδp−1|tg(p)(δ2kr)|. Using
Van der Corput’s Lemma we get

|Ip| . 2sk
1

δ

(
δ

|t|

) 1
p

. 2sk
δ

1
2
−1√
|t|

+ 2sk
δ

1
l
−1

|t|
1
l

,

and using that 2kδ ∼ 1 in that case we get the first estimate. For the second estimate,
we consider different cases. We assume first that 2kδ ≤ y0

2 . If 2(β+2)kδβ+1|t| ≤ 1,

|I0t,x,k| . 2k = 2(1−
β+2
l

)k2
β+2
l
k ≤ 2(1−

β+2
l

)k δ
− 1+β

l

|t|
1
l

,
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whereas if 2(β+2)kδβ+1|t| ≥ 1,

2−
β
2
k δ
− 1+β

2√
|t|

= 2−
β
2
k δ
− 1+β

2

|t|
1
l

1

|t|(
1
2
− 1
l
)
≤ 2−

β
2
k δ
− 1+β

2

|t|
1
l

2(β+2)( 1
2
− 1
l
)kδ(β+1)( 1

2
− 1
l
)

and the first part of the second estimate follows. With the same computations, we can
consider the case y0

2 < 2kδ < 2y1 through the alternative 2k|t| ≤ 1 and 2k|t| ≥ 1 using
that 2kδ ∼ 1. It remains to prove the last inequality. The case l = 2 directly follows
from Lemma 2.8. If now l ≥ 3 and α < −2, taking s = α−l+2

l , we have s + 1 < 0,

s− α
2 = (α+2)(2−l)

2l > 0 and

∑
2kδ≥2y1

∣∣Ist,x,k∣∣ . ∑
2kδ

α+1
α+2 |t|

1
α+2≤1

2(s−
α
2 )kδ−

α+1
2√

|t|
+

∑
2kδ

α+1
α+2 |t|

1
α+2≥1

2(s+1)k.

The last inequality follows.

2.2.4 d=2

We begin with a series of results that provide a better decay compare to the wave
equation. There are however not uniform with respect to δ → 0. First, we consider the
quantity for t ∈ R, x ∈ R2 and χ a smooth function,

It,x,χ =

∫
R2

eix·ξeitϕ(δ|ξ|)|ξ|χ(δ|ξ|)dξ (6)

We can rewrite the integral It,x,χ, using polar coordinates and the functions h±,

It,x,χ =

∫
R+

∫ 2π

0
eir|x| sin(θ)eitϕ(δr)rχ(δr)rdθdr

=

∫
R+

ei(tϕ(δr)r+|x|r)h−(|x|r)χ(δr)rdr +

∫
R+

ei(tϕ(δr)r−|x|r)h+(|x|r)χ(δr)rdr

:= It,x,χ,− + It,x,χ,+.

Our first result is a low and intermediate frequency estimate assuming that g′ 6= 0
and some other derivatives of g do not vanish on a bounded interval.

Lemma 2.11. Let δ > 0 and J ⊂ R∗+ a bounded interval. Let λ > 0 and l ∈ N with

l ≥ 2. Assume that ϕ satisfies (H0), that |g′| ≥ λ and
l∑

p=2

|g(p)| ≥ λ on J . Let χ be a

smooth function whose support is a subset of J . Then, for any t ∈ R∗, x ∈ R2, we have

|It,x,χ| .
δ

2−3l
2l

|t|
1
2
+ 1
l

.

9



Remark 2.12. Such configuration typically occurs when there is a coupling between a
high dispersive operator and a wave operator. Note that if we do not assume that g′ 6= 0,
one can only get

|It,x,χ| .
δ

1−2l
l

|t|
1
l

.

Proof. By a change of variables, one can assume that δ = 1. We have to control, for
p ∈ {2, · · · , l}, the integrals

Ip,± =

∫
R+

ei(tϕ(r)r∓|x|r)h±(|x|r)χ(r)r1
{|g(p)|≥ λ

l−1}
(r)dr.

Since χ is compactly supported, note that |Ip,±| . 1. Then we introduce the phase
φ±(r) = tϕ(r)r ∓ |x|r. We consider two cases.

Case 1: |x| ≥ λ
2 |t|

Noticing that |φ(p)± (r)| = |tg(p)(r)| ≥ λ
l−1 |t|, by Van der Corput’s lemma, the proper-

ties on the functions h± and since |Ip,±| . 1, we get

|Ip,±| . min

(
1,

1

|t|
1
p

1√
|x|

)
. min

(
1,

1

|t|
1
2
+ 1
p

)
.

1

|t|
1
2
+ 1
l

.

Case 2: |x| ≤ λ
2 |t|

Noticing that |φ′±(r)| ≥ λ
2 |t|, using Corollary 2.2 (note φ′′± has a finite number of

zeros since φ
(l−1)
± is monotonic), the properties on the functions h± and since |Ip,±| . 1,

we get

|Ip,±| . min

(
1,

1

|t|

)
.

1

(1 + |t|)
1
2
+ 1
l

.
1

|t|
1
2
+ 1
l

.

Then we provide a low frequency estimate assuming that g′(0) 6= 0, g′′(0) = 0 and
g′′′(0) 6= 0. As we will see later, the water wave phase or most of the Boussinesq phases
satisfy these assumptions.

Lemma 2.13. Let δ > 0. Let Λ, λ, y0 > 0. Assume that ϕ satisfies (H1), that g′′(0) = 0
and that Λ ≥ |g′| ≥ λ and |g′′′| ≥ λ on [0, y0]. Let χ be a smooth function such that
χ(y) = 0 for any y ≥ y0. Then, for any t ∈ R∗, x ∈ R2,

|It,x,χ| .
1

δ|t|
.

Remark 2.14. This decay is better than the one provided by Lemma 2.11.
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Proof. By a change of variables, one can assume that δ = 1. We consider two cases.

Case 1: |x| ≤ λ
2 |t| or |x| ≥ 2Λ|t|

Defining φ±(r) = tϕ(r)r ∓ |x|r, we have in that case |φ′±(r)| ≥ λ
2 |t| so that, using

Corollary 2.2 and the properties on the functions h±, we get

|It,x,χ,±| .
1

|t|
.

Case 2: λ
2 |t| ≤ |x| ≤ 2Λ|t|

Introducing χ̃ a smooth compactly supported function that is equal to 1 on the
support of χ, we notice that It,x,χ,± is the evaluation of a Fourier transform (with respect
to the variable r) at ∓|x|

It,x,χ,± = (2π)F−1
(
eit(ϕ(r)r−g

′(0)r)h±(|x|r)χ(r)r × eig′(0)trχ̃(r)
)

(∓|x|)

so that

|It,x,χ,±| . sup
y∈R

∣∣∣∣∫
R
eiryeit(ϕ(r)r+ar)h±(|x|r)χ(r)rdr

∣∣∣∣ ∥∥F−1(χ̃)(·+ tg′(0))
∥∥
L1(R)

. sup
y∈R

∣∣∣∣∫
R
eiryeit(ϕ(r)r−g

′(0)r)h±(|x|r)χ(r)rdr

∣∣∣∣ .
Then we notice that |g′(y)− g′(0)| ≥ λ

2y
2 and |g′′(y)| ≥ λy for any y ∈ [0, y0]. Using

Lemma 2.8 (or Corollary 2.9 in [KPV91], see Lemma 2.5) and the properties on the
functions h±, we get for any y ∈ R,∣∣∣∣∣

∫
R
eiryeit(ϕ(r)r−g

′(0)r)
√
|g′′(r)| × h±(|x|r)χ(r)

r√
|g′′(r)|

dr

∣∣∣∣∣ . 1√
|t|

1√
|x|

and the result follows in that case.

Secondly, we provide estimates for more general phases. For this reason we use a
Littlewood-Paley decomposition and introduce the quantity for any t ∈ R, x ∈ R2, s ∈ R
and k ∈ Z,

Ist,x,k =

∫
R2

eix·ξeitϕ(δ|ξ|)|ξ|Pk(|ξ|)|ξ|sdξ.

11



Using a change of variables and polar coordinates we can rewrite It,x,k

Ist,x,k = 2(2+s)k
∫ 2

1
2

∫ 2π

0
ei2

kr|x| sin(θ)eitϕ(δ2
kr)2krP (r)r1+sdθdr

= 2(2+s)k
∫ 2

1
2

ei(tϕ(δ2
kr)2kr+2k|x|r)h−(2k|x|r)P (r)r1+sdr

+ 2(2+s)k
∫ 2

1
2

ei(tϕ(δ2
kr)2kr−2k|x|r)h+(2k|x|r)P (r)r1+sdr

:= Ist,x,k,− + Ist,x,k,+.

We recall that
ZJ := {k ∈ Z , ∀r ∈ [12 , 2] , 2kδr ∈ J}.

Lemma 2.15. Let δ > 0 and J ⊂ R∗+ an interval. Let λ > 0, α, θ, s ∈ R. Assume that
ϕ satisfies (H0) and that |g′(y)| ≥ λyθ and |g′′(y)| ≥ λyα on J . Then for any t ∈ R∗,
x ∈ R2 and k ∈ ZJ ,

|Ist,x,k| .
2(s+

1−α−θ
2

)kδ−
α+θ+1

2

|t|
+

2(s+1−θ)kδ−θ

|t|
.

Remark 2.16. Note that when θ = 0, α = 1 and J is bounded (water-wave-type behavior
at low frequencies) Lemma 2.13 provides a better result in the sense that we actually
have ∣∣∣∣∣∣

∑
k∈ZJ

I0t,x,k

∣∣∣∣∣∣ . 1

δ|t|
.

Furthermore, as we will see in Lemma 2.17, when θ = 1, α = 0 (Schrödinger-type
behavior), we will prove under more technical assumptions that∑

k∈ZJ

∣∣I0t,x,k∣∣ . 1

δ|t|
.

Proof. We introduce the phase φ±(r) = tϕ(δ2kr)2kr∓ 2k|x|r. We consider two different
cases.

Case 1: |x| ≥ |t|2 min
r∈[1/2,2]

|g′(2kδr)|

Noticing that |φ′′±(r)| = 22kδ|tg′′(δ2kr)|, we use Van der Corput’s lemma and the
properties on the functions h±, we get

|Ist,x,k,±| .
2(s+2)k√

22k|δtg′′(δ2kr1)|
1√

1 + 2k|x|
.

2(s+2)k√
23kδ|tg′(δ2kr1)tg′(2kδr2)|

with r1, r2 ∈ [12 , 2]. The result follows in that case.
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Case 2: |x| ≤ |t|2 min
r∈[1/2,2]

|g′(2kδr)|

Noticing that |φ′±(r)| & 2k|tg′(2kδr1)| for some r1 ∈ [12 , 2] and using Corollary 2.2
and the properties on the functions h±, we get

|Ist,x,k,±| .
2(s+2)k

2k|tg′(δ2kr1)|
.

The result follows in that case.

The next lemma has to be seen as a generalization of Lemma 2.3 in the 2d case.

Lemma 2.17. Let δ > 0 and J ⊂ R∗+ an interval. Let Λ, λ > 0, α, s ∈ R. Assume that
ϕ satisfies (H0) and that Λyα+1 ≥ |g′(y)| ≥ λyα+1 and |g′′(y)| ≥ λyα on J . Then:

(1) If −2 < s < α and α 6= −1, for any t ∈ R∗, we have

sup
x∈R2

∑
k∈ZJ

∣∣Ist,x,k∣∣ . δ−
(α+1)(s+2)

2+α

|t|
s+2
2+α

.

(2) If s = α and α /∈ {−2,−1}, assuming furthermore that |g′′(y)| ≤ Λyα and
|g′′′(y)| ≤ Λyα−1 on J , for any t ∈ R∗, we have

sup
x∈R2

∑
k∈ZJ

∣∣Iαt,x,k∣∣ . δ−(α+1)

|t|
.

Remark 2.18. This result can be read as follows. We assume by simplicity that δ = 1.
Let Λ, λ > 0, l ∈ N with l ≥ 2. We recall that we define the quantity It,x,χ in (6).

(1) Assume that |g(l)| ≥ λ on a bounded interval J ⊂ R+ containing 0 with g(k)(0) = 0
for any k ∈ {1, · · · , l − 1}, then for any smooth function χ whose support is a subset of
J , we have

|It,x,χ| .
1

|t|
2
l

.

(2) Assume that Λ ≥ |g(l)| ≥ λ on an unbounded interval J ⊂ R+ with inf(J) > 0,
then there exists y1 ∈ J such that for any smooth function χ whose support is a subset
of [y1,+∞) and with χ′ compactly supported, we have

|It,x,χ| .
1

|t|
2
l

.

For instance, when l = 2 (Schrödinger-type behavior) we get a decay of order 1
|t| .
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Proof. Note that the assumptions on s and α gives that (s + 2) and (2 + α) agree in
sign. We always have, for any k ∈ ZJ , |Ist,x,k,±| . 2(2+s)k. We consider several cases.

Case 1: 2k|x| ≥ 1

Sub-case 1: λ
4 δ
α+12(α+1)k|t| ≤ |x| ≤ 4Λδα+12(α+1)k|t|

The size of the set At,x := {k ∈ Z, λ4 δ
α+12(α+1)k|t| ≤ |x| ≤ 4Λδα+12(α+1)k|t|} is

bounded by a number independent of t, x, δ. If 2k(δα+1|t|)
1

2+α ≤ 1, we have

|Ist,x,k| . 2(2+s)k ≤ δ−
(α+1)(s+2)

2+α

|t|
s+2
2+α

,

whereas if 2k(δα+1|t|)
1

2+α ≥ 1, we get from Lemma 2.15

|It,x,k| .
2(s−α)kδ−(α+1)

|t|
=

2(s−α)kδ−(α+1)

|t|
2+s
2+α

1

|t|
α−s
2+α

.
δ−

(α+1)(s+2)
2+α

|t|
s+2
2+α

.

Sub-case 2: λ
4 δ
α+12(α+1)k|t| ≥ |x| or |x| ≥ 4Λδα+12(α+1)k|t|.

Defining φ±(r) = tϕ(δ2kr)2kr ∓ 2k|x|r, we notice that |φ′±(r)| ≥ λ
4 δ
α+12(α+2)k|t|. If

s < α, use directly Corollary 2.2 and the properties on h±, we get.

|Ist,x,k,±| .
2(s−α)kδ−(α+1)

|t|
,

If now s = α, integrating by parts, we get

Iαt,x,k,± = 2(2+α)ki

∫ 2

1
2

ei(tϕ(δ2
kr)2kr∓2k|x|r) d

dr

(
1

φ′±(r)
h±(2k|x|r)P (r)r

)
dr

so that using Corollary 2.2, the properties on h± and the controls on g′, g′′, g′′′, we get

|Iαt,x,k,±| .
2−(α+2)kδ−2(α+1)

t2
.

Case 2: 2k|x| ≤ 1

In that case, we set At,x = ∅. Adapting the strategy used in the previous sub-case
to the phase φ±(r) = tϕ(2kδr)2kr, we similarly get, with no restriction on k, for s < α,

|Ist,x,k,±| .
2(s−α)kδ−(α+1)

|t|
and |Iαt,x,k,±| .

2−(α+2)kδ−2(α+1)

t2
.

Gathering all the previous cases and sub-cases, we conclude as in Lemma 2.8 when
s < α. If now s = α with α 6= 2 we get

14



∣∣∣∣∣∣
∑
k∈ZJ

Iαt,x,k

∣∣∣∣∣∣ .
∑

k∈ZJ , k∈At,k

|Iαt,x,k|+
∑

k∈ZJ , k/∈At,k

|Iαt,x,k|

.
δ−(α+1)

|t|
+

∑
k∈ZJ , k/∈At,k, 2k(δα+1|t|)

1
2+α≤1

|Iαt,x,k|

+
∑

k∈ZJ , k/∈At,k, 2k(δα+1|t|)
1

2+α≥1

|Iαt,x,k|

.
δ−(α+1)

|t|
+

∑
2k(δα+1|t|)

1
2+α≤1

2(2+α)k +
∑

2k(δα+1|t|)
1

2+α≥1

2−(α+2)kδ−2(α+1)

t2

and the result follows.

We then give two other lemmas with weaker decays compare to the previous lemma.
In both situations, we assume that ϕ satisfies (H1) so that we see the problem as a
perturbation of the half-wave equation. The following lemma gives a decay when g′ and
g′′ do not vanish at the same time.

Lemma 2.19. Let δ > 0. Let α ∈ R, λ, y0 > 0. Assume that ϕ satisfies (H1), that
|g′| ≥ λ on [0, y0], that g′′ has a finite number of zeros on [0, y0] and that |g′′(y)| ≥ λyα

for any y ≥ y0. Then, for any t ∈ R∗, x ∈ R2 and k ∈ Z,

|It,x,k| .


2
3
2 k√
|t|

, if 2kδ < 2y0,

2(1−
α
2 )kδ−

α+1
2√

|t|
, if 2kδ ≥ 2y0.

Remark 2.20. Note that by taking α ≤ −1 (which is always possible), this estimate
is uniform with respect to δ ∈ (0, 1]. Note also that when δ = 0, we exactly get the
estimate of the wave equation.

Proof. We rewrite It,x,k as

It,x,k = I0 + I1

= 22k
∫ 2π

0

∫ 2

1
2

ei(2
k|x|r sin(θ)+tϕ(δ2kr)2kr)1{2kδr≥y0}(r)P (r)rdrdθ

+ 22k
∫ 2

1
2

ei(sgn(tg
′(0))2k|x|r+tϕ(δ2kr)2kr)1{2kδr<y0}P (r)rJ0(2

k|x|r)e−i sgn(tg′(0))2k|x|rdr.

We introduce here the phase φ0(r) = 2k|x|r sin(θ) + tϕ(δ2kr)2kr with

|φ′′0(r)| = 22kδ|tg′′(δ2kr)| & 2(2+α)kδ1+α|t|.
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Using Van der Corput’s Lemma we get

|I0| .
2(1−

α
2
)kδ−

α+1
2√

|t|
.

Note that when y0
2 ≤ 2kδ ≤ 2y0,

|I0| .
2

3
2
k√
|t|
.

Then, we introduce the phase φ1(r) = sgn(tg′(0))2k|x|r + tϕ(δ2kr)2kr and

|φ′1(r)| = 2k|x|+ 2k|tg′(δ2kr)|.

Using Corollary 2.2 and some properties of the Bessel function J0 we get

|I1| .
22k

2k|x|+ 2k|t|

√
1 + 2k|x|.

If 2k|x| ≥ 1,

|I1| . 22k
1√
2k|t|

.
2

3
2
k√
|t|
,

whereas if 2k|x| ≤ 1 and 2k|t| ≥ 1,

|I1| . 22k
1

2k|t|
.

2
3
2
k√
|t|

or if 2k|x| ≤ 1 and if 2k|t| ≤ 1,

|I1| . 22k .
2

3
2
k√
|t|
.

Then, we consider the situation where some derivatives of g do not vanish at the
same time.

Lemma 2.21. Let δ > 0. Let λ > 0, α ∈ R, y0, y1 > 0 with y0 < y1 and l ∈ N with

l ≥ 2. Assume that ϕ satisfies (H1), that |g′| ≥ λ on [0, y0],

l∑
s=1

|g(s)| ≥ λ on [y0, y1],

that g′′ has a finite number of zeros on [0, y0] and that |g′′(y)| ≥ λyα for any y ≥ y1.
Then for any t ∈ R∗, x ∈ R2 and k ∈ Z,

|It,x,k| .



2
3
2 k√
|t|

, if 2kδ ≤ y0
2 ,

2(2−
1
l
)k

|t|
1
l

+ 2
3
2 k√
|t|

, if y0
2 < 2kδ < 2y1,

2(1−
α
2 )kδ−

α+1
2√

|t|
, if 2kδ ≥ 2y1.
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Furthermore, one also have

|It,x,k| .


2(2−

1
l
)k

|t|
1
l

, if 2kδ < 2y1,

2(2−
α+2
l

)kδ−
α+1
l

|t|
1
l

, if 2kδ ≥ 2y1.

Proof. Adapting the proof of the previous Lemma, one can control the integrals

I0 = 22k
∫ 2π

0

∫ 2

1
2

ei(2
k|x|r sin(θ)+tϕ(δ2kr)2kr)1{2kδr≥y1}P (r)rdrdθ,

I1 = 22k
∫ 2π

0

∫ 2

1
2

ei(2
k|x|r sin(θ)+tϕ(δ2kr)2kr)(1{2kδr≤y0} + 1{y0<2kδr<y1}1{|g′|≥λ

l
})P (r)rdrdθ.

It remains to control the integrals, for s ∈ {2, · · · , l},

Is = 22k
∫ 2π

0

∫ 2

1
2

ei(2
k|x|r sin(θ)+tϕ(δ2kr)2kr)1{y0<2kδr<y1}1{|g(s)|≥λ1

l
}P (r)rdrdθ.

For φ1(r) = 2k|x|r sin(θ) + tϕ(δ2kr)2kr, we have |φ(s)1 (r)| = 2skδs−1|tg(s)(δ2kr)|. Using
Van der Corput’s Lemma we get

|Is| .
22k

δ

(
δ

2ks|t|

) 1
s

.
2k√
δ|t|

+
2kδ

1
l
−1

|t|
1
l

,

and since 2kδ ∼ 1 in that case,

|Is| .
2

3
2
k√
|t|

+
2(2−

1
l
)k

|t|
1
l

.

Therefore we get the first estimate. For the second estimate, we consider different cases.
We assume first that 2kδ < 2y1. If 2k|t| ≤ 1, we have

|It,x,k| . 22k = 2(2−
1
l
)k2

k
l ≤ 2(2−

1
l
)k

|t|
1
l

,

whereas if 2k|t| ≥ 1, we get

2
3
2
k√
|t|

=
2

3
2
k

|t|
1
l

1

|t|(
1
2
− 1
l
)
≤ 2

3
2
k

|t|
1
l

2(
1
2
− 1
l
)k =

2(2−
1
l
)k

|t|
1
l

.

Finally the case 2kδ ≥ 2y1 follows from the same controls but with the alternative
2(2+α)kδ(1+α)|t| ≤ 1 and 2(2+α)kδ(1+α)|t| ≥ 1.
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