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Abstract

In this paper, we study dispersive estimates for a class of weak dispersive systems.
Then we apply our results to water wave models.

1 Introduction
We consider a class of dispersive equations under the form
dyu = £ip(6|D|)|Dlu (1)

where § > 0, u(t,z) € C, t € R, z € R? with d = 1 or 2. We introduce the function
9(y) = ¢(Jy|)y for any y € R* so that %(4,0(57‘)7’) = ¢/(6r) for any r > 0. We assume in
this paper one of the following assumption

(HO) ¢ is a real-valued smooth function defined on R
or
(H1) ¢ is a real-valued smooth function defined on R, and ¢(0) # 0.

With Assumption (HO), the function ¢ is not necessary defined at 0. This assumption
will be mostly used when d = 1. With Assumption (H1), Equation (1) can be seen as a
pertubation of the half-wave equation when 4 is small. Note that in that case, ¢’(0) # 0.
One (but not the only) of the main motivation of this paper is to consider situations
where ¢(y) — 0 as y — 400 which corresponds to equations with weak dispersive effects.
Another motivation is to consider equations under Assumption (H1) with § < 1. In the
following we denote the unique solution of (1) with u(0,x) = ug as

u(t, ) = eFiteGIDNIDL,,

using a Fourier multiplier notation.
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Remark 1.1. When d = 1, one can also consider dispersive equations under the form
0w = £¢(0|D|)0zu

where § > 0, u(t,z) € R, t € R, x € R. Indeed we have the relation

91PNy — o=ite(61D)) it (6]D))

|D‘]1{D<O}u0 +e ‘Dl]l{D>o}Uo-

In this paper, we restrict our study to d = 1 or d = 2 since we will apply our results
to water wave models. One could easily extend these results to d > 2 as in [GPWO0S].
The goal of this paper is to provided decay estimates, local-in-time Strichartz estimates
and Morawetz estimates for Equation (1).

This problem is motivated by the study of shallow water-wave models. Introduc-
ing the shallowness parameter p €]0,1], we consider here two models: the linearized
irrotational water wave equations (under the Zakharov/craig-Sulem formulation)

~ tanh(/aIDD 11
8t¢ + C = 07

o(r) = \/@

and the dispersive part of the linearized abcd-system

where § = ,/u and

(1 — pubA)o¢ + (1 + paA)V -V =0, (3)
(1 —pbA)OV -V 4+ (1 4+ cA)V( =0,

witha+b+c+d= l, under the condition that b >0, d >0, a <0, ¢ <0 (in order to
get the wellposedness), where § = /i and

(X = par?)(1 — per?)
¢“”‘¢a+um%u+um%'

We also have in mind equations equations for d = 1. For b # 0 we consider the linearized
Ostrovsky equation
Ou = (=0, 'u =+ bd3u)
and, in the setting of Remark 1.1, 6 = 1 and ¢(£)¢ = % + b€3.
For b < 0, we consider a linearized BBM/KdV equation

1
Oy + ,ub@i@tu = +0,u+ pu(b+ 6)6§u

1—pu(b+£)€2

and, in the setting of Remark 1.1, 0 =/ and ¢(§) = T e



1.1

Notations

If u is a tempered distribution, we define Fu or 4 as the Fourier transform of u by
w(€) = / e w8y (2)da.
R4

If f is a smooth function that is at most polynomial at infinity, we define the
operator f(D) such that, for any Schwartz class function wu,

F(D)yu = FH(f(€)a(€)).

In the whole paper ¢ is a smooth function defined at least on R and we define
the function g defined at least on R* as g(y) = ¢(|y|)y.

Jo is a Bessel function defined in (4).

For z; and w; positive numbers depending on a parameter t, we write z; ~ y; if
there exists A, A > 0 independent from ¢ such that A\z; <y < Axy.

If ¢ is a function and [ € N, we denote by ¢g() the [-th derivative of g.

For an interval J, the subset Z; of Z is defined in (5).

2 Dispersive estimates

2.1

Littlewood-Paley decomposition

Since the phase we consider is not necessary homogeneous, we consider a Littlewood-
Paley decomposition. We refer to [BCD11] for a more precise description of such con-
struction. We introduce a smooth nonnegative even function ¢y supported in [—1, 1] and

that is equal to 1 in [—

2,2] Then we define for any y € R, P(y) = ¢o(4) —o(y) and for

any j € Z, Pj(y) = P(277y). We note that P; is a function supported in C(2/71,291).
We have for any ¢ € R?,

o€ + 3Pl =1, 5 < ehlie) + 3 PA(lel) <

jEN jez

and for any ¢ € R? with £ # 0,

[\DM—A

> Pi(lg)) =

JEZ

Z (1) <

Finally for p,r > 1, s € R, we define the homogeneous Besov norm |-| 5, by
p,r

fulg, = | 327 P(ID]uly,
JEZ



and the inhomogeneous Besov norm ||z, by
b,r

S =

ulg, = [ leo(DDuly, + 3727 [Py(ID])ul},
jEN

2.2 Decay estimates
2.2.1 Tools for the dispersive estimates

In this section, we introduce some basic tools in order to get our decay estimates. We
first recall the van der Corput lemma (see for instance [Ste93]).

Lemma 2.1 (Van der Corput). Let a < b be real numbers, A\ > 0 and ¢ a smooth
real-valued function defined on (a,b]. Assume that there exists k € N with k > 1 such
that || > X on (a,b] and, if k =1, that ¢’ is monotonic on (a,b]. Then, there exists
a constant ci, that only depends on k, such that for any t € R* and any smooth function

f defined on [a,b],

b
/ eit‘z’(ﬂc)f(x)dx

a

< cr(AH) 7 <|f(b)| +/ab\f’(x)|dfv> -

We easily get a corollary in the case kK = 1 which will be useful in the following.

Corollary 2.2. Let a < b be real numbers, r € N, A > 0 and ¢ a smooth real-valued
function defined on (a,b]. Assume that |¢'| > X on (a,b] and that ¢" has at most r
zeros on (a,b). Then, there exists a constant ¢ such that for any t € R* and any smooth
function f defined on |a,b],

b
/ @) f(z)dx

a

<5 (rufuoo e+ | b !f’(:r)\dw> .

Then, we introduce the Bessel function Jy: for any s € R,

27
Jo(s):/ etssin(0) g, (4)
0

A direct application of Van der Corput’s lemma gives
1
V1+s]

Furthermore, introducing a smooth nonnegative function y defined on [0, 27| with x(z) =

0 for z € [2F, %’T] and x(z) =1 for any z € [Z, 27|, one can decompose Jy as

[To(s)] + [To(s)] <

2w oo ) 2 o
Jo(S) — eis/ X(e)ezs(sm(ﬁ)—l)de + e—zs/ (1 o X(@))EZS(SIH(9)+1)d9
0 0

= €"h_(s) + e “hy(s).



Integrating by parts if necessary and using Van der Corput’s lemma, one can get for any
s€Rand any k € N

1
P (s)] § ———
8 (14 |s)+2

2.2.2 General decays
2.2.3 d=1

We first give a easy consequence of Van der Corput’s lemma in case a derivative of g
does not vanish on an interval.

Lemma 2.3. Let 6 > 0 and J an interval. Let A > 0, 1 € N with | > 2. Assume that ¢
satisfies (HO) and that |g) > X on J. Let x be a smooth function on R* whose support
is a subset of J and such that X' € L'(J). Then, for anyt € R*, z € R, we have

1-1

l

/ e iteOIEDIEly (5¢)de| < &L
R |t]7

Remark 2.4. When J is unbounded, the previous integral is well defined from integration

by parts since &Y has a sign for ly| large enough and lim |¢'(y)| = +oc.
g'(y) ly|— oo

Then we provide a consequence of Corollary 2.9 in [KPV91] that can be useful for
low frequencies.

Lemma 2.5. Let 6 > 0 and J an interval. Let A\, A >0 and f € R with 5 ¢ {—2,—1}.
Assume that o satisfies (HO) and that Aly|® > |¢"(y)] > Ay|®. Let x be a smooth
function on R* whose support is a subset of J and such that x' € L*(J). Then, for any
t € R*, z € R, we have

/eiafieitw(ﬂfl)lﬁl 19" (8[€]) X (6€)dE 5#
R

olt|
Remark 2.6. As noted in [KPV91], the assumption 8 # —2 is essential since the estimate
is not true for ¢g(&) = In(]¢|). We chose to avoid the case § = —1 since we will not deal

with such a phase in this paper.

The previous lemmas are particularly useful for homogeneous phases or low frequency
estimates. However, in many situations, one has to be more accurate especially when
»(y) — 0 as y — +o0. For this reason we use a Littlewood-Paley decomposition and
introduce the quantity for any t € R, z € R, s € R and k € Z,

ts,x,k::/Reimseiwwm'gPk(§)|f|sd§-

Using a change of variable, we can rewrite I; ,

2 2

[ =20 / o128 it (022 Py gy 9(H9)k / (25T it (B2 P sy
b b l 1
2 2

— TS S
T It7w7k7_ + [t’m7k7+.



For an interval J we define Z; as
Z;={keZ vrell 2, 2%reJ} (5)

The following lemma gives a decay when a derivative of g does not vanish on an
interval J.

Lemma 2.7. Let 6 > 0 and J C R an interval. Let A >0, a € R, s € R. Assume that
@ satisfies (HO) and that |g®V (y)| > A\y® on J. Then, for anyt € R*, z € R and k € Z;

1—l—«

o(s— )k 5
Ik

EHPRAIS

t,$7k' ~

Proof. Defining ¢ (1) = tp(62Fr)2Fr+2F2r, we have ]qb(il)(rﬂ 2k 511 g (§2%7)|. Van
der Corput’s lemma gives

o(L+s)k

HRS
PEREL (ki1 g0) (5247 )) 1

with 7 € [3,2]. The result follows. O

As a direct consequence of the previous lemma we get, when § = 1 and yg > 0,

sup D |1l <

z€R keZ, | |

provided that s — % > 0 and J = (0,y0) or s— ¢ < 0 and J = (yo, +00). The next lemma
can be seen as an alternative to Lemma 2.3. We consider that [ =2 and s — £ < 0.

Lemma 2.8. Let § > 0 and J C RY an interval. Let A, A >0, a,a,s € R. Assume that
¢ satisfies (HO) and that Ay*™' > |¢'(y) — a| > Ay®* and |g" (y)| > Ay on J. Then:

(1) If -1 <s < § and o # —1, for any t € R*, we have

(1+a)(s+1)

+a

sup > |k S T

z€R keZ,

(2) If s =% and a ¢ {—2,—1}, for any t € R*, we have

_14a
2

Vi

txk

zeR keZ,

Remark 2.9. When J =0, 1], 6 = 1 and s = 0, we get item (c) of Theorem 1 in [GPWO08].
Point (2) is similar to Corollary 2.9 in [KPV91] (see also Lemma 2.5). Note that contrary
to Lemma 2.3, if [ > 3 we provide a way to get a decay of order —+ without computing

ot
g0,



Proof. We can assume that a = 0 since

e:ﬁ:i?’“xreitw((Sri)ri _ e:l:i?’C (:c:Fat)reit(gp(52kr)2kr—2kar)

Note that the assumptions on s and « gives that (s + 1) and (2 + «) agree in sign. We
always have, for any k € Zy, |If, ;. 1| < 2(1+s)
Case 2901200tk | < |z| < 4A5o 120Dk | if 2k (5o 1|¢)a¥2 < 1, we have
(1+a)(s+1)
PRC

I, S20F9F <
bl 9 ‘t‘2+a

whereas if 2’“(50‘“]75])&%2 > 1, we get from Lemma 2.7
o e S L e D U S

‘If,x,k’ S - _a=2s_
|t‘ |t|2+a |t|2(2+o¢)

It 5¥e

Note also that the size of Ay, = {k € Zj, 3607120+ Dk < |z| < 4A5oFH120@F DR} s

bounded by a number independent of t,z,d (since aw # —1)
Case 2601200kt > |z| or |z > 4A6*T12(e+DE|¢|: we get thanks to Corollary 2.2

with the phasis ¢+ (r) = t@(62%r)28r + 2%z, since |¢/ (r)| > 60120+ 2k
9(s—a—1)k 5—(a+1)

r <
| t,x,k,i‘ ~ ’t’

Therefore gathering all previous estimates, we get —1 < s < § and a # —1

‘Its,ac,k

STkl £ 3 1B+ >

kEZy keAt,k keZy, k¢At,k
_(+o)(s+1)

24« ( )k- —v—
+ > o(l+s)k 4 > " ,

1

<
~ s+1
[t]2+e 1,
2k(gatl|t])a+2 <1 2k (gotLt]) et2 >1
whereas if s = § < —1
6 2~ "3 k(o) a2y
‘ t,x k’ |t| + Z ‘t‘ + Z 2
1 1
2k(gatl|t))at2 >1

k€Zy 2k (gat1|g) a2 <1

O]

and the results follow.

Finally, we consider the situation where some derivatives of g do not vanish at the

same time.



Lemma 2.10. Let § > 0. Let A > 0, o, 8 € R, yo,y1 > 0 with yo < y1 and l € N

with 1 > 2. Assume that ¢ satisfies (H0), that |g"(y)| > M\y? for any y € (0,yo], that
l

Z 9P| > X on [yo,y1] and that |¢"(y)| = A\y® for any y > y1. Then for any t € R¥,

p=2
reR and k € Z,

(s= By 148 ]
% L if oks < %7
(s+1-Lyk

2 1 22 .

‘sz,k| Sj T + |t\ y Zf %) < 21‘35 < 2y1,
2(5*%”“5*0%*1 . ok
a0 L if 256 > 2y

Furthermore, one also have for any 286 < 2y,
1_B4+2yp o B+1
t,ac,k ~ l ]
[t
and if o < =2,
a—I1+2 5_%1
l
Z It,:v,k 5 1
2k §>2y, |t]7

Proof. Adapting the proof of Lemma 2.7, one can control the integrals

2
Iy = 2(1+s)k\/1 €i12k:pr€1tgo(52kr)2kr]l{2k6T2yl}P(r)rsdT’

2

-1

2
.[1 = 2(1+S)k/1 eilexreltap(Jriﬂkr(]I{Qkérgyo} + ]l{y0<2k57n<yl}]l{|g//|2i})P(’l”)TsdT‘.

N

It remains to control the integrals, for p € {2,--- 1},

2

1+s)k +i2kzr ito(62kr)2k

I, = 20+9) ﬁ eFi2tar Jitp(825r) T]l{y0<2kér<y1}]l{‘g<p)‘Z%}P(r)rsdr.
32

Denoting ¢1(r) = t@(628r)2%r + 2k2r, we have \(ﬁgp)(r)\ = 2Pk §r=1itg(P) (52F7)|. Using
Van der Corput’s Lemma we get

1 1
1/6\» o271 s171
|Ip‘ S stg <|t|> P 5 2sk 2 + 23k !

and using that 2§ ~ 1 in that case we get the first estimate. For the second estimate,
we consider different cases. We assume first that 2F6 < Q. If 2(B+2)k A+ ¢ < 1,

110, | < 2F = 2=k 52k < o -2y,



whereas if 200+2k58+1)¢| > 1,

5" | 5"
o=3k? 2 _ggk? T T 95k 2 o8RG DgBHIG-1)
g e [t

and the first part of the second estimate follows. With the same computations, we can
consider the case & < 25§ < 2y; through the alternative 2*|¢t| < 1 and 2*|t| > 1 using
that 286 ~ 1. It remains to prove the last inequality. The case | = 2 directly follows

from Lemma 2.8. If now [ > 3 and a < —2, taking s = O‘%HZ, we have s +1 < 0,
5—35 (OH_QQ)M > (0 and
(s—G)kg—ott
Z ’[kal < 42 2707 2 + Z 2(S+1)k.
b b t
28622 25552 [y ate <1 g okgats |tz >1

The last inequality follows. O
2.2.4 d=2

We begin with a series of results that provide a better decay compare to the wave
equation. There are however not uniform with respect to 6 — 0. First, we consider the
quantity for t € R, z € R? and y a smooth function,

oo = [ | St 5lg g ©)
R2

We can rewrite the integral I; ; ,, using polar coordinates and the functions h+,

2m
It,x,x _ /Jr / eir|:c\ sin(9)eitcp(ér)rx((sr)rdedr
R

:/ ei(tW(ér)THwT)h_(|x|r)x(5r)rdr+/ EeOIT=l2I b (12)r)x (67)rdr
R+ R+

= It7x7X77 + It7xzx’+'

Our first result is a low and intermediate frequency estimate assuming that ¢’ # 0
and some other derivatives of g do not vanish on a bounded interval.

Lemma 2.11. Let 6 > 0 and J C R% a bounded interval. Let A\ > 0 and | € N with
l

[ > 2. Assume that ¢ satisfies (HO), that |¢'| > X and Z 1P| > X on J. Let x be a
p=2
smooth function whose support is a subset of J. Then, for any t € R*, x € R?, we have

231
0 2

‘It7$1x‘ ~ ‘t‘%""% .



Remark 2.12. Such configuration typically occurs when there is a coupling between a
high dispersive operator and a wave operator. Note that if we do not assume that g’ # 0,
one can only get

5

|It,$7X’ SI 1 -

2]
Proof. By a change of variables, one can assume that § = 1. We have to control, for
p € {2,---,1}, the integrals

L= /R+ ei(tw(r)rq:mr)hi(|33|T)X(T)r]1{‘g<p)|2 A (r)dr.

=1}

Since x is compactly supported, note that |I,, +| < 1. Then we introduce the phase
¢+ (r) = tp(r)r F |z|r. We consider two cases.

Case 1: |z| > %|t|

Noticing that ]qbg]__a) (r)| = |tg® ()| > l_il|t|, by Van der Corput’s lemma, the proper-
ties on the functions hy and since |1, +| < 1, we get

1 1 1 1
| Ip+| Smin [ 1, ——= | Smin | 1, < .
’ 1) VIl g7t ) TR

Case 2: |z| < 3[t]

Noticing that |¢/ (r)] > %\t\, using Corollary 2.2 (note ¢ has a finite number of
)

. -1
zeros since gﬁi
we get

is monotonic), the properties on the functions h4 and since |I, +| S 1,

| p, =

1 1 1
Sjmin(l’)fs 1 15 1,1-"
)™ @+ et et
O

Then we provide a low frequency estimate assuming that ¢’(0) # 0, ¢”(0) = 0 and
g"(0) # 0. As we will see later, the water wave phase or most of the Boussinesq phases
satisfy these assumptions.

Lemma 2.13. Let 6 > 0. Let A, \,yo > 0. Assume that ¢ satisfies (H1), that g"(0) =0
and that A > |¢'| > X and |¢"'| > X on [0,y0]. Let x be a smooth function such that
x(y) =0 for any y > yo. Then, for any t € R*, x € R?,

1
1, < —.
‘ t7x7X| ~ 6|t|

Remark 2.14. This decay is better than the one provided by Lemma 2.11.

10



Proof. By a change of variables, one can assume that § = 1. We consider two cases.
Case 1: |z < 3[t| or |z] > 2A[t|

Defining ¢ (r) = to(r)r F |z|r, we have in that case |¢/.(r)] > 3[t| so that, using
Corollary 2.2 and the properties on the functions hi, we get

1
I < —.
’ t@,X,i’ ~ |t|

Case 2: 3[t| < |z| < 2A[¢]

Introducing x a smooth compactly supported function that is equal to 1 on the
support of x, we notice that I; ; , + is the evaluation of a Fourier transform (with respect
to the variable r) at F|x|

I = (2m)F (OO (afr)x(r)r x 7O 5(r)) (o)

so that

/ eiryeit(ap(r)r-i-ar)hi(‘x’r Td?“
R

[t,2,x,+] < sup [FHRC +g'( N[ 11 gy

yeR

< sup
yeR

/eiryeit(¢(r)r—9’(0)r)hi(I:UIT)X(?")TdT :
R

Then we notice that |¢'(y) — ¢'(0)| > % and |¢"(y)| > Ay for any y € [0,yo]. Using
Lemma 2.8 (or Corollary 2.9 in [KP 1], see Lemma 2.5) and the properties on the
functions hy, we get for any y € R,

/ 1ry€1t 0)r) / // |><h:|: |CC| )#d
R

‘//

T

and the result follows in that case. O

Secondly, we provide estimates for more general phases. For this reason we use a
Littlewood-Paley decomposition and introduce the quantity for any t € R, z € R?, s € R
and k € Z,

Iy = / ¢ P OIEDIEI Py ((¢)|¢[ de.
RQ

11



Using a change of variables and polar coordinates we can rewrite I; ; j
2 2
I{? L = 2(2+S)k / / ei?’“r|x| sin(9)eitcp(62kr)2krp(r)T1+sd9dr
7w7 1
1 Jo
2

2
_ 2(2+s)k / ei(tgo(62kr)2kr+2k\x|r)h_ (Qk‘l"T')P(T)T'H_SdT
1

N

2
+ 2(2+s)k /1 el(tgp(62kr)2kr—2k\x|7‘) h_,.(?k’l"T’)P(T)TH_SdT’
2

TS S
T It7$7k7_ + Itvl‘ﬂka"l_'

We recall that
Zy={keZ,vrel}2,2%reJ}.

Lemma 2.15. Let § > 0 and J C RY an interval. Let A >0, o, 0,5 € R. Assume that
¢ satisfies (HO) and that |g'(y)| > \y® and |g"(y)| > A\y® on J. Then for any t € R*,
z€R? and k € Zy,

(< TR oy
takl S }
* t] |t]

Remark 2.16. Note that when §# = 0, a = 1 and J is bounded (water-wave-type behavior
at low frequencies) Lemma 2.13 provides a better result in the sense that we actually
have

1
D Iak| S 3t
keZy

Furthermore, as we will see in Lemma 2.17, when 6§ = 1, a = 0 (Schrédinger-type
behavior), we will prove under more technical assumptions that

o ek

keZy

< 1
™ 4l

Proof. We introduce the phase ¢ (r) = tp(62Fr)2Fr  2F|z|r. We consider two different
cases.

Case 1: |z| > 4 mi "2k s
ase !w\_zrerﬁ;g’z}\g( r)|

Noticing that |¢L(r)| = 22%6|tg”(62%r)|, we use Van der Corput’s lemma and the
properties on the functions h4, we get

9(s+2)k 1 - 9(s+2)k

I’ <
LENERS V/22F|6tg" (52F71)| /1 + 2F|x| ~ \/23k5tg’ (62F 1 )tg' (280rs)|

with 1,79 € [5,2]. The result follows in that case.

12



Case 2: |z < 4 min |g/(2%6r
ase !x\_zrerﬁ;g’z}\g( )

Noticing that |¢/.(r)| = 2*|tg’(2¥6r1)| for some r1 € [%,2] and using Corollary 2.2
and the properties on the functions hy, we get

9(s+2)k

TN <0
| t,z,k:,:l:| ~ 2k|tg’(52k7“1)|

The result follows in that case.

The next lemma has to be seen as a generalization of Lemma 2.3 in the 2d case.

Lemma 2.17. Let § > 0 and J C R’ an interval. Let A,X >0, a, s € R. Assume that
¢ satisfies (H0) and that Ay**' > |¢'(y)| > \y*** and |g"(y)| > Ay® on J. Then:

(1) If =2 < s < a and o # —1, for any t € R*, we have

_(a+1)(5+2)
s < 24«
sup > Lok S
Z‘GR2 kGZJ t|2+o¢

(2) If s = a and a ¢ {—2,—1}, assuming furthermore that |¢"(y)| < Ay® and
lg"” (y)| < Ayt on J, for any t € R*, we have

§—(a+1)

Il S
e ,ﬁ;?,*wh g

Remark 2.18. This result can be read as follows. We assume by simplicity that § = 1.
Let A,A >0, € N with [ > 2. We recall that we define the quantity I; , , in (6).

(1) Assume that |g(")] > X on a bounded interval J C R* containing 0 with g(*)(0) = 0
for any k € {1,--- ,1 — 1}, then for any smooth function x whose support is a subset of

J, we have
1

~ 2

2]

(2) Assume that A > [¢()| > X on an unbounded interval J C Rt with inf(.J) > 0,
then there exists y; € J such that for any smooth function y whose support is a subset
of [y1,+00) and with X’ compactly supported, we have

[ Lt2,x

1
N72

g

[ t2x

1

It

For instance, when | = 2 (Schrédinger-type behavior) we get a decay of order

13



Proof. Note that the assumptions on s and « gives that (s 4+ 2) and (2 + «) agree in
sign. We always have, for any k € Z, ‘Ikai| < 22+s)k We consider several cases.

Case 1: 2F|z| > 1

Sub-case 1: 3697120+ Dk 4| < |z < 4A5oF12(@+ Dk g
The size of the set Ay, = {k € Z,35°T120+ Dk < |z| < 4A§oFL20@+ DR} s
bounded by a number independent of ¢, x,d. If 2k(5°‘+1|t|)2+% < 1, we have

. (a+1)(s+2)
24«

gl S20F < —

‘t‘2+a

whereas if Qk(5“+1|t|)2+% > 1, we get from Lemma 2.15

2(sfa)k6f(a+1) 2(sfa)k57(a+1) 1 5*%
|It okl < = — <
R~ t 2+s a—s 542
’ ’ ‘t‘z-m ’t’2+a |t|2+a

Sub-case 2: 3697120+ DR > || or |z| > 4Ado+i2(et k),
Defining ¢ (1) = to(62%7)28r  2¥|z|r, we notice that |¢/, (r)| > 35120+ Dk|¢ If
s < a, use directly Corollary 2.2 and the properties on hy, we get.
(s—a)k s—(a+1)
LT
I

uzix,k,:t

If now s = «, integrating by parts, we get

2
o _ o(2ta)k; i(tp (628 2krgkizlry 4 (1 k
o =227 [ o (e ianper )

2
so that using Corollary 2.2, the properties on h+ and the controls on ¢, ¢”, g, we get

2—(a+2)k5—2(a+1)
Ui ksl S v

Case 2: 2F|z| < 1

In that case, we set A;, = (. Adapting the strategy used in the previous sub-case
to the phase ¢+ (r) = tp(2¥67)2%r, we similarly get, with no restriction on k, for s < a,

. Q(S—a)ké‘—(a—i-l) N 2—(a+2)k5—2(a+1)
el § e and Il §

Gathering all the previous cases and sub-cases, we conclude as in Lemma 2.8 when
s < a. If now s = a with « # 2 we get

14



Z ng,k S Z ’ng,k| + Z |ng,k|

keZ, k€Zy, k€A K k€Zy, kE Ay
§—(a+1) N
5 |t| + Z |It,l‘,k|

1
k€Zy, k¢ Ay, 2F(3oFHt]) 2o <1

+ Z ‘ng,k‘

1
k€Zy, k¢ Ay i, 2R (5oT1|t]) ZHa >1

s—(at1) 9—(a+2)k §—2(a+1)
< 2(2+a)k
D DI L D DR
2k (§a+1]¢)TFa <1 2k (§a+1]¢)TFa >1
and the result follows. O

We then give two other lemmas with weaker decays compare to the previous lemma.
In both situations, we assume that ¢ satisfies (H1) so that we see the problem as a
perturbation of the half-wave equation. The following lemma gives a decay when ¢’ and
¢ do not vanish at the same time.

Lemma 2.19. Let § > 0. Let o« € R, \,yo > 0. Assume that ¢ satisfies (H1), that
lg'l = X on [0,y0], that " has a finite number of zeros on [0,yo] and that |g” (y)| > Ay®
for any y > vo. Then, for anyt € R*, x € R? and k € Z,

3k
23 ok
L if 286 < 2y,
t
sl 54 Y1

L
A Rl L if 288 > 2y0.

Remark 2.20. Note that by taking « < —1 (which is always possible), this estimate
is uniform with respect to 6 € (0,1]. Note also that when § = 0, we exactly get the
estimate of the wave equation.

Proof. We rewrite I, 1, as
It,x,k = IO +1
2 2
_ 22k/0 ﬁ 61(2]“|z|rsm(0)+t<p(52kr)2kr)]I{Qkérzyo}(T)P(,r)rd,rde
2

1
2

2
+ 227 ei(sgn(tg’(O))Qk|x\r+t<p(62kr)2k7')ﬂ{2k6T<y0}P(T)TJO(2k|m’r)efi sgn(tg’(O))Qﬂx\rdr.

We introduce here the phase ¢o(r) = 2F|z|rsin(0) + to(02Fr)2%r with

64(r)| = 25]tg" (5287)| 2 2C+k5 4.

15



Using Van der Corput’s Lemma we get

[To| < 2D
i
Note that when % < 27§ < 2y,
05 2
i

Then, we introduce the phase ¢ (r) = sgn(tg’(0))2%|z|r + to(62Fr)2Fr and
|6 (r)| = 2¥|z| + 2F|tg/ (52F7)).

Using Corollary 2.2 and some properties of the Bessel function Jy we get

22k; -
LH| S —F——F—1/1+2 .
’ 1| ~ 2k|$|+2k|t| + ‘$|

1 923
S
2kt] |t

If 2% || > 1,

B

| < 2%

)

whereas if 2¢|z| < 1 and 2"|t| > 1,

L] < 2% L < 2:!
. -
T2
or if 2F|z| < 1 and if 2F|t| <1,

22k

Ll S 2% 5 ==
vaud

O]

Then, we consider the situation where some derivatives of ¢ do not vanish at the
same time.

Lemma 2.21. Let 6 > 0. Let A > 0, a € R, yo,y1 > 0 with yo < y1 and | € N with
l
[ > 2. Assume that ¢ satisfies (H1), that |¢g'| > X\ on [0,yo], Z\g(s)\ > X on [yo,v1],

s=1
that ¢" has a finite number of zeros on [0,yo] and that |¢"(y)| > Ay® for any y > y.
Then for anyt € R*, x € R? and k € Z,

3k
2= if 286 < %,
‘t|1 3
2-LHk k
<] 2= 22 W oks <2
‘It,m,k’,\, |t|% + \/m ) f D) Y1,
e e n

It

L if 288 > 24,
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Furthermore, one also have

52—k

,if 286 < 241,

1

t| T
’It:vk’ S Ja+2 _ o+l
5Ly 2(2 7 )k(s 1 3 k
||l ;Zf2522y1
t| 1

Proof. Adapting the proof of the previous Lemma, one can control the integrals

27 2
Iy = 22k/0 /1 61(2k|:t:|rsm(9)+tgz>((52’l“r)2kr)]1{2kérzyl}]j(r)rd?,.de7
2

2 2
s(ok in(0 § k k
I = 22k/0 /1 1(2F|x|r sin(0)+tp(62%r)2 r)(n{gk(;rgyo} + ]1{y0<2kér<y1}11{‘9,|Z%})P(r)rdrd6.
3
It remains to control the integrals, for s € {2,-- 1},

2 2
I, = 22k/0 [ 61(2 ||r sin(0)+tp (627 r)2 T)]l{y0<2k6r<y1}]l{‘g(s)|2)‘T1}P(r)rdrd0'
2

For ¢1(r) = 2%|z|rsin(0) + tp(526r)25r, we have |6\ (r)| = 25£65=1[tg(®) (52%r)|. Using
Van der Corput’s Lemma we get

2k 1 k ksi—1
’IS’§2< k5 ) S 2 +25l1 )
6\ 2ksit| 5)t] It

and since 25§ ~ 1 in that case,

2%]@ 2(27%)k
e

VIEE e

Therefore we get the first estimate. For the second estimate, we consider different cases.
We assume first that 2F§ < 2y;. If 2¥|t| < 1, we have

L] S

2(2—%)/’c
L] S 2% = 207Dkt < 2
t]7
whereas if 2F[t| > 1, we get
22f 93k 1 _2ak 4y 2@7DR
_ = —_— 2 1 =
[H 7 G0 T 47

Finally the case 25§ > 2y; follows from the same controls but with the alternative
2(2+a)kz5(1+a)|t| <1 and 2(2+a)k5(1+a)|t| > 1. 0
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