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Introduction
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» model under consideration: We study the shallow-water
equations with the topography and Manning friction source terms:
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h > 0 is the water height

q is the horizontal water discharge

g > 0 is the gravity constant

Z is the smooth topography

k is the friction coefficient and 1 = 74
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» steady state solutions: They are time-independent solutions,
governed by the shallow-water model with vanishing time derivatives:
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» objectives: Propose a numerical scheme that:

—ghdxZ — kaqo|qolh™".

» is consistent with the shallow-water equations;

» preserves all the steady states (well-balance property);

» preserves the non-negativity of the height (robustness property);
» provides a high order of accuracy.
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1. A generic well-balanced scheme
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Structure of the Godunov-type scheme

Consider the shallow-water equations with a generic source term:

W + Oy F(W) = (5(?/‘/)> |

We use an approximate Riemann solver W based on the HLL solver.
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The suggested solver is used to derive a Godunov-type scheme:
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Goal: determine the intermediate states W, = *(h}, ¢*) and
Wp = t(h%, q*) to get a consistent, well-balanced and robust scheme.

Consistency

We impose the following Harten-Lax integral consistency relation:
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We assume known the following source term average:
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to finally get several relations governing the intermediate states:
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Well-balance and non-negativity

We seek the well-balance property:
W = W, and W5 = Wg as soon as W, and Wk, satisfy the relation
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We thus impose the following relation on the intermediate heights:
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and we obtain their expressions, as follows:
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Note that we do not have the non-negativity: instead, we set
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2. Application to specific source terms
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The topography steady states are governed by the following relations:

2
6X<@+1h2):5t and 3<q0

The topography source term S* =

s 2h2+g(h+Z)>:O.

At the discrete level, they become:
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The friction source term S* = —kq|q|h™"

The friction steady states are governed by the following relations:
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At the discrete level, we set St — —kE]|E7]F7, where:
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» @ is the harmonic mean of q; and gpg;

» with g = sgn(qg), the average h™ ' is governed by:
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Semi-implicitation of the scheme

The friction source term becomes stiff when the height is close to zero:
we use a semi-implicit scheme (splitting method).
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With both source terms, we exhibit the numerical flux:
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first step: Solve O;:W + OxF(W) = (0, St{(W)) to get V|/I-nJr
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Note that qf“ # q! for a steady state: we replace (hf“)77 with a
well-chosen average (h77)7Jrl to ensure the well-balance.

3. High-order 2D extension
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High-order strategy for the two-dimensional model
The goal is now to approximate the 2D shallow-water equations:
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To that end, we use the following high-order scheme:
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which takes advantage of the following polynomial reconstruction
(reconstruction of degree d = scheme of order d + 1):
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SSPRK methods are used as a high-order time integrator.
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Recovering the well-balance and the robustness

Because of the reconstruction, the well-balance and the robustness
properties are lost: to recover them, we suggest a MOOD method.

well-balance: We introduce a convex combination between the
first-order scheme and the high-order scheme:
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» 07 = 0 close to a steady solution ~ use the well-balanced scheme
» 07 =1 far from a steady solution ~~ use the high-order scheme

robustness: We use a classical MOOD method to lower the degree of
the polynomial reconstruction until the robustness is recovered.
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Transcritical flow without shock
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Dry dam-break on a sinusoidal bottom

Simulation of the 2011 Japan tsunami
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