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Introduction

I Model under consideration. We study the compressible isentropic
Euler system:

∂tρ +∇ · (ρU) = 0,

∂t(ρU) +∇ · (ρU ⊗ U) + 1
ε
∇p(ρ) = 0.

I ρ > 0 is the density of the fluid
I U ∈ R is the velocity of the fluid
I p(ρ) = ργ is the pressure
I γ ≥ 1 is the ratio of specific heats
I ε is the squared Mach number

I Incompressible limit. With well-prepared initial and boundary
conditions, the compressible Euler system tends to the following
incompressible limit when ε tends to 0:

ρ = ρ0,
∇ · U = 0,
ρ0 ∂tU + ρ0∇ · (U ⊗ U) +∇ π1 = 0,

where π1 is the order one correction of the pressure.
The time singularity of this limit is due to the propagation of the
acoustic waves at a velocity proportional to 1/√ε.

I Numerical method. In [3], Dimarco, Loubère and Vignal propose a
numerical scheme to preserve this asymptotic behavior. It is written
below in semi-discrete form:

ρn+1 − ρn

∆t +∇ · (ρU)n+1 = 0,
(ρU)n+1 − (ρU)n

∆t +∇ · (ρU ⊗ U)n + 1
ε
∇(p(ρ))n+1 = 0.

Thanks to the semi-implicitation, this scheme is:
I asymptotic preserving (AP), i.e. it discretizes the incompressible
Euler system when ε tends to 0;

I uniformly L∞-stable providing the space discretization is well-chosen.

I Objective. Propose an asymptotically accurate extension of this
numerical scheme. The following properties must be satisfied:
I higher order of accuracy for all values of ε (including the asymptotic
preserving property when ε→ 0);

I ability to control the oscillations induced by the use of high accuracy
space/time numerical scheme.

1. A model problem

We consider the following advection equation as a model problem:

∂tu + cs ∂xu + cf√
ε
∂xu = 0,

where the slow and fast velocities cs and cf /
√
ε are assumed to be

non-negative and of order one.
Similarly to the Euler system, the characteristic velocity of the information
is proportional to 1/√ε. As a consequence, we consider the following
semi-discrete scheme, mimicking the structure of the one proposed in [3]:

un+1 − un

∆t + cs (∂xu)n + cf√
ε

(∂xu)n+1 = 0.

Since cs ≥ 0 and cf ≥ 0, we use an upwind discretization in space:

∂xu ' uj − uj−1
∆x .

As a consequence, the fully discrete scheme reads:

un+1
j − un

j
∆t + cs

un
j − un

j−1
∆x + cf√

ε

un+1
j − un+1

j−1
∆x = 0.

Goal: Propose an asymptotically accurate extension of this scheme.

1.1. A more accurate time discretization
This scheme falls within the framework of the IMEX (IMplicit-EXplicit)
schemes (see [5] for instance). We turn to the two-step second-order in
time ARS(2,2,2) discretization (see [1]), as follows:

u?j = un
j − βcs

∆t
∆x
(

un
j − un

j−1
)
− β cf√

ε

∆t
∆x
(

u?j − u?j−1
)
,

un+1
j = un

j − (β − 1)cs
∆t
∆x
(

un
j − un

j−1
)
− (1− β) cf√

ε

∆t
∆x
(

u?j − u?j−1
)

− (2− β)cs
∆t
∆x
(

u?j − u?j−1
)
− β cf√

ε

∆t
∆x
(

un+1
j − un+1

j−1
)
.

This discretization preserves the AP property of the scheme. However, it
is oscillatory, as displayed below with the advection of a step function.
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1.2. A limiting procedure
The implicit part of this IMEX scheme is nothing but an implicit Runge-
Kutta discretization. Unfortunately, the following result holds.
Theorem ([4]): There are no strong stability preserving implicit Runge-

Kutta schemes of order higher than one.
To tackle this problem and still obtain a scheme more than first-order
accurate, we introduce a limiting procedure. It consists in lowering
the order of the scheme if oscillations are detected; it belongs to the
framework of MOOD techniques (see [2]).
We introduce a convex combination, of parameter θ, between the
second-order discretization and the first-order discretization, as follows:

un+1
j = un

j − θ(β − 1)cs
∆t
∆x
(

un
j − un

j−1
)
− θ(1− β) cf√

ε

∆t
∆x
(

u?j − u?j−1
)

− θ(2− β)cs
∆t
∆x
(

u?j − u?j−1
)
− θβ cf√

ε

∆t
∆x
(

un+1
j − un+1

j−1
)

− (1− θ)cs
∆t
∆x
(

un
j − un

j−1
)
− (1− θ) cf√

ε

∆t
∆x
(

un+1
j − un+1

j−1
)
.

The following procedure is then applied at each time step:
1. compute a candidate solution un+1 with the original ARS(2,2,2)

discretization, i.e. with θ = 1;
2. detect if this candidate solution satisfies the following global

maximum principle: ‖un+1‖∞ ≤ ‖un‖∞;
3. if this maximum principle is not satisfied, then take 0 < θ < 1 and

compute a new solution un+1 with the above θ-AP scheme.
Remark: There is a value 0 < θ < 1 such that this θ-AP scheme is

TVD (Total Variation Diminishing).
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The approximation provided by the θ-AP scheme, which corresponds
to the blue curve when considering the advection of a step function, is
in-bounds and more accurate than the first-order discretization.

1.3. Space accuracy improvement
To address the issue of the second-order space accuracy, we turn to a
classicalMUSCL method. In each cell, we take a linear approximation
un

j (x) instead of the constant un
j .

In the figure below, we compare the different time discretizations at our
disposal, coupled with the MUSCL method to increase space accuracy.
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The approximation provided by the θ-AP scheme (i.e. the blue curve, here
with ε = 10−4) provides the best solution among the three discretizations.

What about the numerical order of accuracy?

Definition: A numerical method is of space (resp. time) order p if its
error is proportional to ∆xp (resp. ∆tp) when considering
the approximation of a smooth solution.

We thus display the error with respect to the number of points for a
smooth solution and ε ∈ {1, 10−1, 10−2, 10−4} (from left to right and
top to bottom); the slopes correspond to the order of accuracy.
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Remark: The oscillations of the unlimited scheme cause an explosion
of the numerical solution when ∆x → 0.

2. Application to the Euler system

The strategy developed for the model problem is now applied to the Euler
system. For the second-order accuracy, we use:

I the ARS(2,2,2) time discretization;
I a linear reconstruction.

To control the oscillations, we introduce:
I the Euler analogue of the θ-AP scheme;
I a limiter on the reconstruction slopes.

Remark: The Euler variables no longer satisfy a maximum principle.
We do not apply the same detection criterion as in the transport case.
Instead, we turn to the Riemann invariants. Indeed, the Riemann
invariants of smooth solutions are transported at the characteristic
velocities, and thus they satisfy a maximum principle.

First numerical experiment: Riemann problem
We consider a Riemann problem with the following initial data:{

ρL = 1 + ε,

ρR = 1,

{
qL = hLuL = 1,
qR = hRuR = 1,

with ε = 1 (top panels) and ε = 10−4 (bottom panels). This leads to
a left rarefaction wave and a right shock wave, both with characteristic
velocities proportional to 1/√ε. Note that the amplitude of the rarefaction
wave fan is also proportional to 1/√ε.
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For both values of ε, the θ-AP scheme yields a better approximation than
both other schemes: it is less diffusive than the first-order one and less
oscillatory than the second-order one.

A more complex numerical experiment
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Ongoing works
I develop a relevant criterion to determine a local θ;
I implement the extension of the θ-AP scheme to two space dimensions;
I validate and verify its behavior on the full Euler system.
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