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Introduction

-

» Model under consideration. We study the compressible isentropic
Euler system:

(8tp+ V- (pU) =0,
(Me) <

(pU) +V - (pU @ U) + éVp(p) 0.

\

» p > 0 is the density of the fluid

» U € R is the velocity of the fluid
» p(p) = p” is the pressure

» ~ > 1 is the ratio of specific heats
» ¢ is the squared Mach number

This model introduces fast acoustic waves, governed by:

1
Ottp — - Ap(p)

= V?: (pU® U).
Incompressible limit. With well-prepared initial and boundary
conditions, the compressible Euler system tends to the following
incompressible limit when ¢ tends to O:

)
P = PO
V-U=0,
\poatU—l—poV (U U)+Vmr =0,
where 77 is the order one correction of the pressure.

The time singularity of this limit is due to the propagation of the
acoustic waves at a velocity proportional to 1/4/¢.

(Mo) <

» Numerical method. Following [3], in [4], Dimarco, Loubére and
Vignal propose a numerical scheme to preserve this asymptotic behavior.

It is written below in semi-discrete form:

n+l  n

(pU)" = (pU)"
At
Thanks to the semi-implicitation, this scheme is:

+ V- (pUe U)"+ EV(p(p))”+1 = 0.

» asymptotic preserving (AP), i.e. it discretizes the incompressible
Euler system when ¢ tends to 0;
» uniformly L°°-stable providing the space discretization is well-chosen.

» AP property. This scheme falls within the general framework of the

AP schemes.
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» Objective. Propose an asymptotically accurate extension of this
numerical scheme. The following properties must be satisfied:

» higher accuracy for all values of € (including the asymptotic preserving
property when € — 0);

» ability to control the oscillations induced by the use of high accuracy
space/time numerical schemes.

~

1. A model problem

-

.

We consider the following advection equation as a model problem:

“f Oxu = 0,

/e

where the slow and fast velocities ¢s and c/+/c are assumed to be
non-negative and of order one.

Similarly to the Euler system, the characteristic velocity of the information
is proportional to 1/4/c. As a consequence, we consider the following
semi-discrete scheme, mimicking the structure of the one proposed in [4]:

n+1 n ¢r
—|_ Cs (axu)n _|_ —— (axu)n+1 — O

At V€

Since ¢s > 0 and ¢ > 0, we use an upwind discretization in space:

atu —l_ CS axu —I_

Up — tj—1
Ax

As a consequence, the fully discrete scheme reads:

Oyl ™

uh o yn ul —ul | o uttt
J S 4o =L, o =L _
At Ax Ve o Ax

Goal: Propose an asymptotically accurate extension of this scheme.
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1.1. A more accurate time discretization

The above scheme uses an IMEX (IMplicit-EXplicit) time discretization
(see [6] for instance). To improve its time accuracy, we choose the
two-step second-order in time ARS(2,2,2) discretization (see [1]):

( At cr At
* n n n f * *
uj uj B BCS_AX(UJ T 1) B ﬁ%_AX(uj T 1)7
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~

o

A
uj'-7+1 =u —0(0 — 1)cs—t(uj'-7 — 1'7_1) —6(1—0)
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1.2. A time limiting procedure

This discretization preserves the AP property of the scheme. However, it
is oscillatory, as displayed below with the advection of a step function.
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The implicit part of this IMEX scheme is nothing but an implicit Runge-
Kutta discretization. Unfortunately, the following negative result holds.

Theorem ([5]): There are no implicit Runge-Kutta schemes of order
higher than one which preserves the TVD property.

To obtain a scheme more accurate than the first-order one and still
TVD, we introduce a limiting procedure. It consists in a convex
combination, of parameter 6, between the second-order discretization
and the first-order discretization, as follows:

CfAl'(*

SOt
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Theorem: With 6 = 3/(1 — (), the above scheme is TVD.

Then, to further improve the scheme, we propose a MOQD-like technique
(see [2]). It consists in using the above TVD-AP scheme only if oscillations
are detected, to use the second-order scheme whenever possible. The
following procedure is thus applied at each time step:

1. compute a candidate solution u"! with the original ARS(2,2,2)
discretization, i.e. with 6 = 1;

2. detect if this candidate solution satisfies the following global
maximum principle: ||[u™||oo < [|4”]00;

3. if this maximum principle is not satisfied, then take 6 = 5/(1 — (3)
and compute a new solution u" 1 with the above TVD-AP scheme.
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The approximation provided by the TVD-AP scheme (blue curve) is

in-bounds and more accurate than the first-order discretization.
The MOOD procedure (red curve) further improves this result.

2. Application to the Euler system

/

The strategy developed for the model problem is now applied to the Euler
system. For the second-order space-time accuracy, we use:

» the ARS(2,2,2) time discretization;
» a linear MUSCL reconstruction.

To control the oscillations, we introduce:

» the Euler analogue of the TVD-AP scheme;
» the MC limiter on the MUSCL reconstruction slopes.

Remark: The Euler variables no longer satisfy a maximum principle.
Indeed, for most initial data, ||p(t,)||lcc < ||p(0,-)||cc and

1(pU)(t, oo < [(pU)(0,-)||oo are false.

As a consequence, we cannot apply the same detection criterion as in the
transport case. Instead, we turn to the Riemann invariants, defined by
2 [p'(p)

uzl:fy—l €

Even for non-smooth solutions, in a Riemann problem, at least one
Riemann invariant satisfies a maximum principle (see J. A. Smoller

and J. L. Johnson, 1969).

~

-

%
Error curves in 1D
We display density error curves in L°° norm for a smooth 1D solution.
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As expected, the TVD-AP scheme is more accurate than the first-order
one, and the MOOD procedure further improves its accuracy.

Riemann problem

We consider a Riemann problem with the following initial data:
{PLZIJFE; {QLZhLULZL
PR =1, qr = hrur =1,

with € = 1 (top) and € = 10~% (bottom). We get a left rarefaction wave
and a right shock wave, with characteristic velocities ~ 1/4/¢.
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For both values of ¢, the TVD-AP scheme and the MOOD procedure yield
a better approximation than both other schemes: they are less diffusive

than the first-order one and less oscillatory than the second-order one.
\_ )
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Degond-Tang numerical experiment from [3], ¢ =1
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Comparison with an incompressible solution

As a last experiment, in 2D, we compare an incompressible reference
solution to the solutions of our compressible schemes; we take ¢ = 107>
and 200 x 200 cells. We compare the vorticity w = dxv — Oy u.

2nd-order AP incompressible solution

1st-order AP

—4

incompressible Euler,
vorticity formulation:
otw + U -Vw =0,
where w = Jyv — Oyu

AP-MOOD scheme

TVD-AP scheme

4 N
Ongoing work and perspectives
» validate and verify the schemes on the full Euler system
» develop a relevant criterion to determine a local 6
» change time discretization to maximize the optimal 6
» domain decomposition with respect to ¢
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