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Motivation: 2D/1D coupling for estuary simulation

Loire estuary

Thames estuary
Gironde estuary
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Objectives and existing approaches

We wish to take into account:

1. the shape of the river bed,
2. the meanders of the river.

This presentation focuses on the shape of the river bed:

• the derivation of 1D models is well-understood 1 2 in the ideal case
of a

⊔
-shaped channel;

• for more complex shapes, uniform stationary flows are recovered 3

4 using a complex friction term and an additional term in the dis-
charge flux;

• fully 2D models could be used but they are computationally costly.

1see Bresch and Noble, 2007, in the context of laminar flows
2see Richard, Rambaud and Vila, 2017, in the context of turbulent flows
3see Decoene, Bonaventura, Miglio and Saleri, 2009
4see Marin and Monnier, 2009
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Specifications of the 1D model

The goal of this work is to develop a new model, based on the
shallow water equations, that is:

• generic enough to not require empiric friction coefficients;
• consistent with the 2D shallow water in the asymptotic regime
corresponding to an estuary or a river;

• hyperbolic and linearly stable;
• easily implementable (collaboration with the SHOM for flood
simulations, ocean model forcing, …).

Numerical experiments, on steady and unsteady flows, will help
validate this approach.
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The non-conservative 2D shallow water system

x

y

z

water height: h(x, y, t) Z(x, y): known river shape


ht +∇ · (hu) = 0

ut + u ·∇u+ g∇h = g
(
−∇Z − u‖u‖

C2h hp

)
• u = (u, v) is the water
velocity

• g is the gravity constant
• Ch(x, y) is the (known)
Chézy friction coefficient

• p = 4/3 is the friction
exponent
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Introduction of reference scales: the coordinates

X

Y

dimensional
quantity

reference
scale

non-dimensional
quantity

longitudinal
coordinates

x ∈ (0m, 60000m) X = 2000m x = x
X

∈ (0, 30)

transverse
coordinates

y ∈ (−25m, 25m) Y = 50m y =
y
Y
∈ (−0.5, 0.5)
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Introduction of reference scales: the topography

Regarding the geometry, we assume that Z(x, y) = b(x) + φ(x, y), where:

• b(x) represents the main longitudinal topography, driving the
flow from upstream to downstream;

• φ(x, y) represents small longitudinal and transverse variations.

�x

0 y

z

φ(x, y)
h(x, y)

front view of the river

x

z

�y

b(x)

side view of the river
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Non-dimensional form of the 2D shallow water system

We introduce the following non-dimensional numbers to emphasize
the different scales of the flow:

• F2, the reference Froude number (ratio material/acoustic velocity),
• δ, the shallow water parameter (ratio height/reference length),
• Ru, the quasi-1D parameter (ratio transverse/longitudinal velocity),
• I0 and J0, the reference topography and friction slopes.

Finally, the non-dimensional form of the 2D shallow water system is:



ht + (hu)x + (hv)y = 0,

ut + uux + vuy +
1
F2
(
h+ φ

)
x
=

1
δF2

(
−J0

u
√
u2 + R2uv2

C2hp
− I0bx

)
,

vt + uvx + vvy +
1

R2uF2
(
h+ φ

)
y
= −

J0
δF2

v
√
u2 + R2uv2

C2hp
.
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Asymptotic expansions setup

In the regime under consideration, we have

• ε :=
δF2

J0
� 1 (in practice, F2 � 1, δ � 1, J0 � 1 and J0 ∼ δ),

• Ru � 1 (quasi-unidimensional setting), and Ru = O(ε).

Highlighting the dominant terms in the system, we get:

ht + (hu)x + (hv)y = 0,

ut + uux + vuy +
1
ε

δ

J0
(h+ φ)x =

1
ε

(
−
u
√
u2 + ε2v2
C2hp −

I0
J0
bx

)
,

vt + uvx + vvy +
1
ε3

δ

J0
(h+ φ)y = −

1
ε

v
√
u2 + ε2v2
C2hp .

Goal: Perform asymptotic expansions in this regime, to better
understand the weak dependency of the solution in y.
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Free surface expansion

We consider the third equation:

vt + uvx + vvy +
1
ε3

δ

J0
(h+ φ)y = −

1
ε

v
√
u2 + ε2v2
C2hp ,

which we rewrite as follows to highlight the dominant term:

δ

J0
(h+ φ)y = ε2

v
√
u2 + ε2v2
C2hp + ε3(vt + uvx + vvy).

Neglecting the O
(
ε2
)
terms, we get

δ

J0
(h+ φ)y = O

(
ε2
)
,

and there exists H = H(x, t) such that H(x)h(x, y) φ(x, y)
O
(
ε2

)
H(x, t) = h(x, y, t) + φ(x, y) + O

(
ε2
)
.

 the free surface is almost flat in the y-direction, up to O
(
ε2
)
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Longitudinal velocity expansion

We now consider the second equation. Highlighting the dominant
terms, it reads:

ut + uux + vuy +
1
ε

δ

J0
(h+ φ)x =

1
ε

(
−
u
√
u2 + ε2v2
C2hp −

I0
J0
bx

)
.

Rearranging the terms, we get:

δ

J0
(h+ φ)x +

I0
J0
bx +

u
√
u2 + ε2v2
C2hp = ε(ut + uux + vuy),

δ

J0
(h+ φ)x +

I0
J0
bx +

u|u|
C2hp = O(ε).

To perform the asymptotic expansion of u with respect to ε, we write

u(x, y, t) = u(0)2D (x, y, t) + εu(1)2D (x, y, t) + O
(
ε2
)
.
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Longitudinal velocity expansion

Plugging u(0)2D , the second equation becomes, up to O(ε):

δ

J0
(h+ φ)x +

I0
J0
bx +

u(0)2D
∣∣u(0)2D

∣∣
C2hp = O(ε).

Since h+ φ = H+ O
(
ε2
)
, we obtain

δ

J0
Hx +

I0
J0
bx +

u(0)2D
∣∣u(0)2D

∣∣
C2(H− φ)p

= O(ε).

Straightforward computations yield:

u(0)2D (x, y, t) = Λ(x, t)√
|Λ(x, t)|

(
C(x, y)

)(
H(x, t) − φ(x, y)

)p/2
,

where we have defined the corrected slope Λ(x, t) = −
I0
J0
bx −

δ

J0
Hx .
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Longitudinal velocity expansion

At the first order, the second equation becomes

u(0)2D
∣∣u(0)2D

∣∣− (u(0)2D + εu(1)2D
)∣∣u(0)2D + εu(1)2D

∣∣
C2(H− φ)p

= ε(ut + uux + vuy) + O
(
ε2
)
,

which yields the following expression for u(1)2D :

u(1)2D = −
u(0)2D
2Λ

((
u(0)2D

)
t
+ u(0)2D

(
u(0)2D

)
x
+ v(0)2D

(
u(0)2D

)
y

)
.

Summary: At this level, we have obtained the asymptotic
expansions of the free surface and the longitudinal velocity.

The goal is now to build a 1D model consistent with these
asymptotic expansions.
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The river cross-section

To obtain a 1D model, we start by averaging the 2D equations:
below, we display the cross-section of the river, with respect to x.

y

z z

�x

z = 0

y− y+

z
L(x, z)

H(x)

y

φ(x, y)

h(x, y)

S(x) =
∫ y+
y−
h(x, y)dy

=

∫H(x)
0

L(x, z)dz + O
(
ε2
)

O
(
ε2
)
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Notations and asymptotic expansions

Let us introduce the following 1D notations:

S(x, t) =
∫ y+
y−
h(x, y, t)dy and Q(x, t) =

∫ y+
y−
h(x, y, t)u(x, y, t)dy.

We compute the asymptotic expansions of Q = Q(0)
2D + εQ(1)

2D + O
(
ε2
)
:

• Q(0)
2D =

∫ y+
y−
hu(0)2D dy =

∫ y+
y−

√
|Λ| sgn(Λ) C h1+p/2 dy;

• Q(1)
2D =

∫ y+
y−
hu(1)2D dy =

−1
4Λ

[(∫ y+
y−
h
(
u(0)2D

)2
dy
)
t
+

(∫ y+
y−
h
(
u(0)2D

)3
dy
)
x

]
.

We now integrate the 2D equations over the width of the river,
to naturally introduce equations on S and Q.

14/44



Averaging the 2D system

1. The original mass conservation equation reads:

ht + (hu)x + (hv)y = 0.

Therefore, since v(y−) = v(y+) = 0, we get:∫ y+
y−
ht dy +

∫ y+
y−

(hu)x dy = 0 =⇒ St + Qx = 0.

2. Now, we consider the second equation (which we multiply by h):

hut + huux + hvuy +
1
ε

δ

J0
h(h+ φ)x =

1
ε
h
(
−
u
√
u2 + R2uv2
C2hp −

I0
J0
bx

)
.

Arguing the mass conservation and integrating between y− and y+ yields:

Qt +
( ∫ y+

y−
hu2 dy

)
x
=
1
ε

∫ y+
y−
h
(
−
I0
J0
bx −

δ

J0
(h+ φ)x

)
dy

−
1
ε

∫ y+
y−

u
√
u2 + R2uv2
C2hp−1 dy.
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Averaging the 2D system

We can simplify, in the current setting, the topography and friction
source term within the discharge equation; recall h+φ = H+O

(
ε2
)
.

Qt +
( ∫ y+

y−
hu2 dy

)
x
=
1
ε

∫ y+
y−
h
(
−
I0
J0
bx −

δ

J0
(h+ φ)x

)
dy

−
1
ε

∫ y+
y−

u
√
u2 + R2uv2
C2hp−1 dy
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Averaging the 2D system

We can simplify, in the current setting, the topography and friction
source term within the discharge equation; recall h+φ = H+O

(
ε2
)
.

Qt +
( ∫ y+

y−
hu2 dy

)
x
=
1
ε

∫ y+
y−
h
(
−
I0
J0
bx −

δ

J0
(h+ φ)x

)Λ(x, t) + O
(
ε2
)

dy

−
1
ε

∫ y+
y−

u
√
u2 + R2uv2

u|u|+ O
(
ε2
) 1
C2hp−1 dy
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Averaging the 2D system

We can simplify, in the current setting, the topography and friction
source term within the discharge equation; recall h+φ = H+O

(
ε2
)
.

Qt +
( ∫ y+

y−
hu2 dy

)
x
=
1
ε

Λ

∫ y+
y−
hdy

−
1
ε

∫ y+
y−

u|u|
C2hp−1 dy + O(ε)
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Averaging the 2D system

We can simplify, in the current setting, the topography and friction
source term within the discharge equation; recall h+φ = H+O

(
ε2
)
.

Qt +
( ∫ y+

y−
hu2 dy

)
x
=
1
ε

ΛS

−
1
ε

∫ y+
y−

u|u|
C2hp−1 dy + O(ε)

16/44



Averaging the 2D system

Finally, the averaged system reads as follows, up to O
(
ε2
)
:


St + Qx = 0,

Qt +
( ∫ y+

y−
hu2 dy

)
x
=
1
ε

(
ΛS −

∫ y+
y−

u|u|
C2hp−1 dy

)
+ O(ε).

Next step: Build a truly 1D model, either zeroth-order accurate (up to
O(ε)) or first-order accurate (up to O

(
ε2
)
), from the averaged system.

That is to say:

• for the zeroth-order model, we need Q = Q(0)
2D + O(ε);

• for the first-order model, we need Q = Q(0)
2D + εQ(1)

2D + O
(
ε2
)
.
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Setting up the model

The integrated discharge equation, highlighting the dominant terms
and multiplying by ε, is

ΛS −
∫ y+
y−

u|u|
C2hp−1 dy = ε

(
Qt +

( ∫ y+
y−
hu2 dy

)
x

)
+ O

(
ε2
)
.

At the zeroth order, i.e. up to O(ε), the right-hand side of this
equation is neglected, and we get:

ΛS −
∫ y+
y−

u|u|
C2hp−1 dy = O(ε).

We cannot directly use this equation in a 1D model, since it contains
the unknown u, which depends on y.

Instead, we approximate the integral, up to O(ε), with a new 1D
friction term.
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The friction model

First, we choose this 1D friction term as a usual hydraulic
engineering model. Thus, we impose the following formula:

Q|Q|
C21DS

=

∫ y+
y−

u|u|
C2hp−1 dy + O(ε).

It contains a 1D friction coefficient5 C1D, to be determined.

According to the discharge equation, we get, up to O(ε):

Q|Q|
C21DS

= ΛS + O(ε) =⇒ C21D =
Q|Q|
ΛS2 + O(ε).

Second, we impose Q = Q(0)
2D + O(ε), to get the following expression

of the friction coefficient:

C21D =
Q(0)
2D
∣∣Q(0)

2D
∣∣

ΛS2 .

5The coefficient C21D usually contains the hydraulic radius, the Chézy coefficient, …
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The final system

With the new friction model, the discharge equation reads

ΛS − Q|Q|
C21DS

= ε

(
Qt +

(∫ y+
y−
hu2 dy

)
x

)
+ O(ε).

We choose to approximate the integral in the flux to describe the
advection of the discharge:

ε

∫ y+
y−
hu2 dy = ε

(∫ y+
y−
hudy

)2
∫ y+
y−
hdy

+ O(ε) = ε
Q2

S + O(ε).

The resulting discharge equation, divided by ε, is

Qt +
(
Q2

S

)
x
=
1
ε
S
(
Λ−

Q|Q|
C21DS2

J

)
+ O(1).

20/44



The final system

Finally, the zeroth-order accurate 1D system reads:
St + Qx = 0,

Qt +
(
Q2

S

)
x
=
1
ε
S(Λ− J).

Let us double check that this model indeed recovers the zeroth-
order expansion of Q.

Since Q = Q(0) + O(ε), we get, at the zeroth order:

Λ = J+ O(ε) =⇒ Λ = Λ
Q|Q|

Q(0)
2D
∣∣Q(0)

2D
∣∣

J

+ O(ε) = Λ
Q(0)

∣∣Q(0)
∣∣

Q(0)
2D
∣∣Q(0)

2D
∣∣ + O(ε)

=⇒ Q(0) = Q(0)
2D + O(ε).
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The final system

Finally, the zeroth-order accurate 1D system reads:
St + Qx = 0,

Qt +
(
Q2

S

)
x
=
1
ε
S
(
−
I0
J0
bx −

δ

J0
Hx − J

)
.
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The final system

Finally, the zeroth-order accurate 1D system reads:
St + Qx = 0,

Qt +
(
Q2

S

)
x
=
1
ε
S
(
−
I0
J0
bx

I

−
δ

J0
Hx − J

)
.
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The final system

Finally, the zeroth-order accurate 1D system reads:
St + Qx = 0,

Qt +
(
Q2

S

)
x
+
SHx
F2 =

1
ε
S(I− J).

This is quite similar to the usual models: all the complexity lies
within the friction model J, and the expression of the friction
coefficient C1D.

 We have derived a zeroth-order model.

What about a first-order one?
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Derivation of a consistent energy equation

The procedure developed in the previous section introduces an error
inO(1) on the discharge equation. To get a first-order accuratemodel,
we need to lower this error to O(ε).

However, we already have a nice structure (hyperbolicity, …): we keep
this discharge equation and we focus on the the energy equation6.

With E2D =
h
2 ‖u‖

2 +
1
2gh

2, the 2D energy equation is:

(E2D)t +∇ ·
(
u
(
E2D +

1
2gh

2
))

= gh
(
−u ·∇Z − ‖u‖3

C2hhp

)
.

6see Luchini and Charru, 2010, in the context of thin film flows
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Derivation of a consistent energy equation

The procedure developed in the previous section introduces an error
inO(1) on the discharge equation. To get a first-order accuratemodel,
we need to lower this error to O(ε).

However, we already have a nice structure (hyperbolicity, …): we keep
this discharge equation and we focus on the the energy equation6.

With E2D =
1
2hu

2+
h2

2F2+O
(
ε2
)
, the integrated equation is, up toO

(
ε2
)
:(∫ y+

y−

1
2hu

2 dy
)
t
+

(∫ y+
y−

1
2hu

3 dy
)
x
=
1
ε

(
ΛQ−

∫ y+
y−

u2|u|
C2hp−1 dy

)
+ O(ε).

We build a 1D equation consistent, up toO
(
ε2
)
, with the energy equa-

tion: the first step is the introduction of a new 1D source term.

6see Luchini and Charru, 2010, in the context of thin film flows
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Derivation of a consistent energy equation

The asymptotic expansion of Q is Q = Q(0) + εQ(1) + O
(
ε2
)
.

At the moment, we have a zeroth order model:

• with the source term 1
ε
S(Λ− J) on the discharge equation,

• that recovers Q = Q(0)
2D + O(ε).

To obtain a first order model, we build an energy equation:

• whose source term is, by analogy, 1
ε
Q(Λ− J),

• that recovers Q = Q(0)
2D + εQ(1)

2D + O
(
ε2
)
.

We show that the resulting equation deviates with O
(
ε2
)
from the

integrated 2D energy equation.
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Derivation of a consistent energy equation

We impose Q = Q(0)
2D + εQ(1)

2D + O
(
ε2
)
.

The friction model J then satisfies:

J = Λ
Q|Q|

Q(0)
2D |Q(0)

2D |
= Λ

(
1+ 2ε

Q(1)
2D

Q(0)
2D

)
+ O

(
ε2
)
.

Therefore, the source term of the energy equation is:

1
ε
Q(Λ− J) = −2ΛQ(1)

2D
Q
Q(0)
2D

+ O(ε) = −2ΛQ(1)
2D + O(ε)

= −2Λ · −14Λ

[(∫ y+
y−
h
(
u(0)2D

)2
dy
)
t
+

(∫ y+
y−
h
(
u(0)2D

)3
dy
)
x

]

Q(1)
2D

+ O(ε).
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Derivation of a consistent energy equation

The equation we have just derived reads(
1
2

∫ y+
y−
hu2 dy

)
t
+

(
1
2

∫ y+
y−
hu3 dy

)
x
=
1
ε
Q(Λ− J) + O(ε).

Compare this new equation to the integrated 2D energy equation:(∫ y+
y−

1
2hu

2 dy
)
t
+

(∫ y+
y−

1
2hu

3 dy
)
x
=
1
ε

(
ΛQ−

∫ y+
y−

u2|u|
C2hp−1 dy

)
+ O(ε).

Therefore, the new equation:

• is consistent with the integrated energy equation, up to O
(
ε2
)
;

• is based on the expression of Q(1)
2D , and ensures its recovery.

25/44



The system in conservative form

We have thus obtained the following system:

St + Qx = 0,

Qt +
(∫ y+

y−
hu2 dy

)
x
=
1
ε
S(Λ− J) + O(1),(

1
2

∫ y+
y−
hu2 dy

)
t
+

(
1
2

∫ y+
y−
hu3 dy

)
x
=
1
ε
Q(Λ− J) + O(ε).
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St + Qx = 0,

Qt +
(∫ y+

y−
hu2 dy

)
x
+
SHx
F2 =

1
ε
S(I− J) + O(1),(

1
2

∫ y+
y−
hu2 dy

)
t
+

(
1
2

∫ y+
y−
hu3 dy

)
x
+
QHx
F2 =

1
ε
Q(I− J) + O(ε).
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The system in conservative form

We have thus obtained the following conservative system:

St + Qx = 0,

Qt +
(
Phy +

∫ y+
y−
hu2 dy

)
x
= Plat + 1

ε
S(I− J) + O(1),(

E+
1
2

∫ y+
y−
hu2 dy

)
t
+

(
Q
S

(
E+ Phy

)
+
1
2

∫ y+
y−
hu3 dy

)
x
=
1
ε
Q(I− J) + O(ε),

where we have defined

• L(x, z) such that S =

∫H
0
L(x, z)dz, H(x)

L(x, z)

• Phy = 1
F2

∫H
0
(H− z)L dz, Plat = 1

F2

∫H
0
(H− z)Lx dz, E =

1
F2

∫H
0
zL dz.
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Introduction of a pressure and an energy

The goal is now to rewrite the homogeneous part of the model under
an Euler-like formulation with pressure Pe and energy Ee, as follows:

St + Qx = 0,

Qt +
(
Phy +

∫ y+
y−
hu2 dy

)
x
= 0,(

E+
1
2

∫ y+
y−
hu2 dy

)
t
+

(
Q
S

(
E+ Phy

)
+
1
2

∫ y+
y−
hu3 dy

)
x
= 0,

!



St + (SU)x = 0,

(SU)t + (SU2 + Pe)x = 0,

(Ee)t+(U(Ee + Pe))x = 0.

By analogy, the Euler variables satisfy:

• U such that U =
Q
S , as expected;

• Pe such that Pe = Phy +
∫ y+
y−
hu2 dy − SU2;

• Ee such that Ee = E+
1
2

∫ y+
y−
hu2 dy.
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Introduction of auxiliary variables

To take care of the integrals, we introduce a new variable, the
enstrophy7 Ψ, defined as the variance of the velocity, by

Ψ =

∫ y+
y−
h(u− U)2 dy =

∫ y+
y−
hu2 dy − SU2.

We therefore define a pressure and an energy in the 1D model by:

P = Phy + Ψ and E = E+
1
2SU

2 +
1
2Ψ.

We also introduce the potential Π, defined by

Π =
1
U

∫ y+
y−
hu3 dy − SU2 =

∫ y+
y−
h(u− U)2

(
2+ u

U

)
dy.

In practice, we cannot directly compute Ψ and Π since we do not
know u. The final 1D model will have to address this issue.
7see Richard and Gavrilyuk, 2012
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Introduction of auxiliary variables

With the integrals, the homogeneous model reads:

St + Qx = 0,

Qt +
(
Phy +

∫ y+
y−
hu2 dy

)
x
= 0,(

E+
1
2

∫ y+
y−
hu2 dy

)
t
+

(
Q
S

(
E+ Phy

)
+
1
2

∫ y+
y−
hu3 dy

)
x
= 0.
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Introduction of auxiliary variables

With the energy and the pressure, the homogeneous model reads:
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)
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Q
S
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1
2
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St + Qx = 0,

Qt +
(
Q2

S + P
)
x
= 0,

Et +
(
Q
S
(E + P)

)
x

Euler-like

+

(
1
2
Q
S
(Π− 3Ψ)

)
x

non-Euler-like

= 0.

 How to handle the non-Euler-like part?

We introduce a new variable, the internal energy e = e(S, Ψ,Π),
which satisfies the equation

et +
(
Q
S e
)
x
−

(
1
2
Q
S
(Π− 3Ψ)

)
x
= 0.
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Introduction of auxiliary variables

With the internal energy, the homogeneous model reads:

St + Qx = 0,

Qt +
(
Q2

S + P
)
x
= 0,

(E + e)t +
(
Q
S
(E + e+ P)

)
x
= 0,

et +
(
Q
S

(
e− 1

2
(Π− 3Ψ)

))
x
= 0.

We get an Euler-like model, with energy E + e. How to make it hyperbolic?

We take e =
1
2
(Π− 3Ψ): the wave velocities then are

0, U, U±

√
S

F2L(H) +
Π

S , as opposed to U±

√
S

F2L(H) for classical SW.
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Final homogeneous model

The final homogeneous model reads:

St + Qx = 0,

Qt +
(
Q2

S + P
)
x
= 0,

(E + e)t +
(
Q
S
(E + e+ P)

)
x
= 0,

et = 0,

with the pressure and the total energy satisfying:

• P(S,U, E) = 2
(
E − 1

2SU
2
)
+

1
F2

∫H
0
(H− 3z) L dz;

• E + e = E+
1
2SU

2 +
1
2

∫ y+
y−
h(u− U)2 dy + 1

2U

∫ y+
y−
h(u− U)3 dy.
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Model with source terms: zeroth-order

Let us write the non-homogeneous model with Ψ and Π:

St + Qx = 0,

Qt +
(
Q2

S + Ψ

)
x
=
1
ε
S(Λ− J),(

1
2
Q2

S +
1
2Ψ
)
t
+

(
Q
S

(
1
2
Q2

S +
1
2Π
))

x
=
1
ε
Q(Λ− J),(

1
2 (Π− 3Ψ)

)
t
= 0.

We check the zeroth-order expansion: we write Q = Q(0) + O(ε), to get

Λ = J+ O(ε) =⇒ Λ = Λ
Q|Q|

Q(0)
2D |Q(0)

2D |
+ O(ε)

=⇒ Q(0) = Q(0)
2D + O(ε),

and the zeroth-order expansion of Q is indeed still recovered.

What about the first-order expansion of Q?
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Model with source terms: first-order

We study the first-order expansion of the energy equation: with
Q = Q(0)

2D + εQ(1) +O
(
ε2
)
, Ψ = Ψ(0) +O(ε) and Π = Π(0) +O(ε), we get

−2ΛQ(1) =

(
1
2

(
Q(0)
2D
)2

S +
1
2Ψ

(0)

)
t

+

(
Q(0)
2D
S

(
1
2

(
Q(0)
2D
)2

S +
1
2Π

(0)

))
x

.

Moreover, straighforward computations show that

−2ΛQ(1)
2D =

(
1
2

(
Q(0)
2D
)2

S +
1
2Ψ

(0)
2D

)
t

+

(
Q(0)
2D
S

(
1
2

(
Q(0)
2D
)2

S +
1
2Π

(0)
2D

))
x

.

To ensure Q(1) = Q(1)
2D , it is sufficient for the enstrophy and potential

to satisfy Ψ(0) = Ψ
(0)
2D + O(ε) and Π(0) = Π

(0)
2D + O(ε).
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Model with source terms: first-order

To recover the zeroth-order expansions of Ψ and Π, we introduce
two new relaxation source terms in the system. These source terms
have to ensure that Ψ = Ψ

(0)
2D + O(ε) and Π = Π

(0)
2D + O(ε).

We choose the following forms, where K1 and K2 are to be determined:

K1
ε
SΛ
(
1− Ψ

Ψ
(0)
2D

)
and K2

ε
QΛ
(

Ψ

Ψ
(0)
2D

−
Π

Π
(0)
2D

)
.

At the zeroth-order, we indeed get Ψ = Ψ
(0)
2D + O(ε) and Π = Π

(0)
2D + O(ε).

We introduce the condensed notations

JΨ = Λ
Ψ

Ψ
(0)
2D

and JΠ = Λ
Π

Π
(0)
2D

(
similarly to J = Λ

Q|Q|
Q(0)
2D |Q(0)

2D |

)
.
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Model with source terms: first-order

We introduce these relaxation source terms in the system8, to get:

St + Qx = 0,

Qt +
(
Q2

S + Ψ

)
x
=
1
ε
S(Λ− J+ K1(Λ− JΨ)),(

1
2
Q2

S +
1
2Ψ
)
t
+

(
Q
S

(
1
2
Q2

S +
1
2Π
))

x
=
1
ε
Q(Λ− J),(

1
2 (Π− 3Ψ)

)
t
=
1
ε
QK2(JΨ − JΠ).

8In order to ensure the recovery of Q(1)
2D , we do not modify the energy equation.
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St + Qx = 0,

Qt +
(
Q2

S + Ψ

)
x
=
1
ε
S(Λ− J+ K1(Λ− JΨ)),(

1
2
Q2

S +
1
2Ψ
)
t
+

(
Q
S

(
1
2
Q2

S +
1
2Π
))

x
=
1
ε
Q(Λ− J),(

1
2 (Π− 3Ψ)

)
t
=
1
ε
QK2(JΨ − JΠ).

Recall that, at the zeroth-order, the energy equation yields:

Λ = J+ O(ε) =⇒ Q = Q(0)
2D + O(ε).

8In order to ensure the recovery of Q(1)
2D , we do not modify the energy equation.
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We introduce these relaxation source terms in the system8, to get:

St + Qx = 0,

Qt +
(
Q2

S + Ψ

)
x
=
1
ε
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1
2
Q2

S +
1
2Ψ
)
t
+

(
Q
S

(
1
2
Q2

S +
1
2Π
))

x
=
1
ε
Q(Λ− J),(

1
2 (Π− 3Ψ)

)
t
=
1
ε
QK2(JΨ − JΠ).

At the zeroth-order, from the discharge equation, we get:

Λ− J+ K1(Λ− JΨ) = O(ε) =⇒ Λ = JΨ + O(ε) =⇒ Ψ = Ψ
(0)
2D + O(ε).

8In order to ensure the recovery of Q(1)
2D , we do not modify the energy equation.
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We introduce these relaxation source terms in the system8, to get:

St + Qx = 0,

Qt +
(
Q2
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)
x
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ε
S(Λ− J+ K1(Λ− JΨ)),(

1
2
Q2

S +
1
2Ψ
)
t
+

(
Q
S

(
1
2
Q2

S +
1
2Π
))

x
=
1
ε
Q(Λ− J),(

1
2 (Π− 3Ψ)

)
t
=
1
ε
QK2(JΨ − JΠ).

At the zeroth-order, from the internal energy equation, we get:

JΠ = JΨ + O(ε) =⇒ JΠ = Λ+ O(ε) =⇒ Π = Π
(0)
2D + O(ε).

8In order to ensure the recovery of Q(1)
2D , we do not modify the energy equation.
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St + Qx = 0,
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(
Q2

S + Ψ

)
x
=
1
ε
S(Λ− J+ K1(Λ− JΨ)),(

1
2
Q2

S +
1
2Ψ
)
t
+

(
Q
S

(
1
2
Q2

S +
1
2Π
))

x
=
1
ε
Q(Λ− J),(

1
2 (Π− 3Ψ)

)
t
=
1
ε
QK2(JΨ − JΠ).

At the first-order, from the energy equation, we get, up to O(ε):(
1
2
(Q(0)

2D )2

S +
1
2Ψ

(0)
2D

)
t

+

(
Q(0)
2D
S

(
1
2
(Q(0)

2D )2

S +
1
2Π

(0)
2D

))
x

=−2ΛQ(1) =⇒ Q(1) = Q(1)
2D .

8In order to ensure the recovery of Q(1)
2D , we do not modify the energy equation.
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Summary

At this level, the model is, with no differential terms in the source:

St + Qx = 0,

Qt +
(
Q2

S + Ψ

)
x
+ (1+ K1)

SHx
F2 =

1
ε
S(I− J+ K1(I− JΨ)),(

1
2
Q2

S +
1
2Ψ
)
t
+

(
Q
S

(
1
2
Q2

S +
1
2Π
))

x
+
QHx
F2 =

1
ε
Q(I− J),(

1
2 (Π− 3Ψ)

)
t
=
1
ε
QK2(JΨ − JΠ).

It ensures the correct asymptotic regime, that is to say

Q = Q(0)
2D + εQ(1)

2D + O
(
ε2
)
.

The quantities K1 and K2 still need to be determined: can we ensure
the hyperbolicity and the linear stability of the model?
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Mathematical properties

After straightforward but tedious computations, we show that, for
small enough F2 and ε:

• a necessary condition for the hyperbolicity is 1+ K1 > 0;
• taking the values

K1 = −
SΨ(0)(
Q(0)

)2 and K2 =
SΠ(0)(
Q(0)

)2
ensures the linear stability of the system, under the condition(

Q(0)(S)
S

)2
<

4S
L(H) +

Π(0)(S)
S .

Note that, in this case, 1+ K1 > 0 in the usual applications.
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Summary

The final model is:

St + Qx = 0,

Qt +
(
Q2

S + Ψ

)
x
+

(
1− SΨ(0)(

Q(0)
)2
)
SHx
F2 =

1
ε
S
(
I− J−

SΨ(0)(
Q(0)

)2 (I− JΨ)

)
,(

1
2
Q2

S +
1
2Ψ
)
t
+

(
Q
S

(
1
2
Q2

S +
1
2Π
))

x
+
QHx
F2 =

1
ε
Q(I− J),(

1
2 (Π− 3Ψ)

)
t
=
1
ε
Q SΠ(0)(
Q(0)

)2 (JΨ − JΠ).

It ensures the correct asymptotic regime, that is to say

Q = Q(0)
2D + εQ(1)

2D + O
(
ε2
)
.

In addition, it is hyperbolic and linearly stable.

Next step: numerical validation of this model
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1. Governing equations

2. Asymptotic expansions

3. Transverse averaging

4. A zeroth-order model

5. A first-order model

6. Numerical validation of the model

7. Conclusion and perspectives



Numerical schemes

To handle the stiff relaxation source term, we introduce an implicit
splitting procedure.

We present this procedure on the zeroth-order model for clarity:
St + Qx = 0,

Qt +
(
Q2

S

)
x
+
1
ε

δ

J0
SHx =

1
ε
S(I− J).

First, we consider the non-stiff part:
St + Qx = 0,

Qt +
(
Q2

S

)
x
= 0,

which we discretize using an upwind finite difference scheme.
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Numerical schemes

Second, we consider the stiff part:
St = 0,

Qt +
1
ε

δ

J0
SHx =

1
ε
S(I− J).

Since St = 0, we are left with the following ODE on Q:

Qt =
1
ε
SΛ
(
1− Q2(

Q(0)
2D
)2
)
,

which we can solve exactly, to get

Q(t) = Q(0)
2D

tanh

(
1
ε

S|Λ|

|Q(0)
2D |

t
)

+
Q(0)
Q(0)
2D

1+ tanh

(
1
ε

S|Λ|

|Q(0)
2D |

t
)
Q(0)
Q(0)
2D

.

The same procedure is applied to the first-order model.
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Unsteady flood flow

We consider a 5-year flood for the Garonne river upstream of
Toulouse; we take F = 0.09 and ε ' 0.175.
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Unsteady flood flow (2D: ref. sol., A0: 0th-order, A1: 1st-order)
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Conclusion

We have developed a new 1D model, based on the 2D shallow water
equations, that is:

• consistent, up to first-order, with the 2D model in the asymp-
totic regime corresponding to a river flow:

I the zeroth-order is obtained with a new explicit friction term,
I the first-order relies on new equations describing the evolution
of the enstrophy and the potential;

• hyperbolic and linearly stable;
• easily implementable and numerically validated.

The preprint related to these results is available on HAL:

V. Michel-Dansac, P. Noble et J.-P. Vila, Consistent section-averaged
shallow water equations with bottom friction, 2018.
https://hal.archives-ouvertes.fr/hal-01962186
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Perspectives

Work related to the model:

• improve the treatment of the river meanders by going to the
first-order instead of the zeroth-order

• adapt this methodology to treat confluences
• consider a time-dependent topography to model the effects of
sedimentation

Work related to the implementation and scientific computation:

• compare the 1D results to the ones given by a fully 2D code, in
real test cases (Garonne, Lèze, Gironde, Amazon, …)

• couple the 1D and 2D equations in the context of the Gironde
estuary (collaboration with the SHOM)
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Thank you for your attention!



Non-dimensional form of the 2D shallow water system

To emphasize the different scales of the flow, we perform a
non-dimensionalization of the 2D system.

We introduce the following dimensionalization scales and related
non-dimensional quantities (which are denoted with a bar, like x):

h := Hh, u := Uu, v := Vv, x := Xx, y := Yy, t := Tt, T :=
X

U
.

The mass conservation equation

∂h
∂t +

∂hu
∂x +

∂hv
∂y = 0

then becomes

H

T

∂h
∂t

+
HU

X

∂hu
∂x +

HV

Y

∂hv
∂y = 0.



Non-dimensional form of the 2D shallow water system

The non-dimensional conservation equation is

H

T

∂h
∂t

+
HU

X

∂hu
∂x +

HV

Y

∂hv
∂y = 0, i.e. ∂h

∂t
+

∂hu
∂x +

V

U

X

Y

∂hv
∂y = 0.

We set Ru := V/U and Rx := Y/X, to get

∂h
∂t

+
∂hu
∂x +

Ru
Rx

∂hv
∂y = 0.

We have

• V � U (quasi-unidimensional flow) =⇒ Ru � 1,
• Y � X (quasi-unidimensional geometry) =⇒ Rx � 1.

We assume Ru = Rx to keep the mass conservation equation
unchanged from the dimensional case.



Non-dimensional form of the 2D shallow water system

Regarding the geometry, we assume that Z(x, y) = b(x) + φ(x, y), where:

• b(x) represents the main longitudinal topography, driving the flow
from upstream to downstream;

• φ(x, y) represents small longitudinal and transverse variations.

The related non-dimensional quantities are

b = Bb
( x
X

)
and φ = Hφ

( x
X
,
y
Y

)
.

The non-dimensional topography gradient then reads:

∇Z =


B

X

∂b
∂x (x) +

H

X

∂φ

∂x (x, y)

H

Y

∂φ

∂y (x, y)

.



Non-dimensional form of the 2D shallow water system

Regarding the friction, we take Ch = C C(x, y).

The non-dimensional friction source term then reads:

u‖u‖
C2h hp

=


U

CHp · u
√
U2u2 + V2v2

C2hp

V

CHp · v
√
U2u2 + V2v2

C2hp

 =


U|U|

CHp ·
u
√
u2 + R2uv2

C2hp

V|U|

CHp ·
v
√
u2 + R2uv2

C2hp

.



Non-dimensional form of the 2D shallow water system

We are finally able to write the non-dimensional form of the 2D
shallow water system: from the dimensional system

ht +∇ · (hu) = 0,

ut + u ·∇u+ g∇h = g
(
−∇Z − u‖u‖

C2h hp

)
,

we get the following non-dimensional form:

ht + (hu)x + (hv)y = 0,

U2

X
ut +

U2

X
uux +

UV

Y
vuy +

gH
X

(
h+ φ

)
x
= g

(
−
U|U|

CHp
u
√
u2 + R2uv2

C2hp
−

B

X
bx

)
,

VU

X
vt +

VU

X
uvx +

V2

Y
vvy +

gH
Y

(
h+ φ

)
y
= g

(
−
V|U|

CHp
v
√
u2 + R2uv2

C2hp

)
.



Non-dimensional form of the 2D shallow water system

We are finally able to write the non-dimensional form of the 2D
shallow water system: from the dimensional system

ht +∇ · (hu) = 0,

ut + u ·∇u+ g∇h = g
(
−∇Z − u‖u‖

C2h hp

)
,

we get the following non-dimensional form:

ht + (hu)x + (hv)y = 0,

ut + uux + vuy +
gH
U2

(
h+ φ

)
x
=
gX
U2

(
−
U|U|

CHp
u
√
u2 + R2uv2

C2hp
−

B

X
bx

)
,

vt + uvx + vvy +
gHX

VUY

(
h+ φ

)
y
=
gX
U2

(
−
U|U|

CHp
v
√
u2 + R2uv2

C2hp

)
.



Non-dimensional form of the 2D shallow water system

We introduce:

• F2 = U2

gH the reference Froude number,

• δ =
H

X
the shallow water parameter,

• I0 =
B

X
and J0 =

U|U|

CHp the topography and friction slopes.

With gX
U2 =

gH
U2

X

H
=

1
δF2 and

gHX

VUY
=
gH
U2

U

V

X

Y
=

1
R2uF2

, we finally get:

ht + (hu)x + (hv)y = 0,

ut + uux + vuy +
1
F2
(
h+ φ

)
x
=

1
δF2

(
−J0

u
√
u2 + R2uv2

C2hp
− I0bx

)
,

vt + uvx + vvy +
1

R2uF2
(
h+ φ

)
y
= −

J0
δF2

v
√
u2 + R2uv2

C2hp
.



Model with source terms: first-order

The zeroth-order expansions of Ψ and Π are defined by

Ψ
(0)
2D = |Λ|

(
M2 −

M2
1

M0

)
and Π

(0)
2D = |Λ|

(
M0

M1
M2 −

M2
1

M0

)
,

whereMn is a shorter notation for

Mn =

∫ y+
y−
h
(
C hp/2

)n
dy (note thatM0 = S andM1 = Q(0)

2D ).



Mathematical properties

To define the hyperbolicity and the linear stability, we write the
system under the condensed form

Wt + A(W)Wx =
1
ε
S(W).

1. Hyperbolicity: We compute the eigenvalues of the matrix A(W).
For the system to be hyperbolic, they have to be real-valued.

2. Linear stability: We linearize the system around W0 = cst such
that S(W0) = 0, by taking W = W0 +Wei(kx−ωt), with |W| < |W0|:
the system is linearly stable if Im(ω) 6 0.
After linearization, we obtain (kA(W0)+ i∇S(W0)/ε−ωId)W = 0,
and therefore

ω is an eigenvalue of M(k) := kA(W0) +
i
ε
∇S(W0).



Hyperbolicity

We study the hyperbolicity of the homogeneous model.
First, the homogeneous classical (S,Q) shallow water system is:

St + Qx = 0,

Qt +
(
Q2

S

)
x
+

SHx
F2 = 0.

This system is hyperbolic, with wave velocities

U
material
velocity

±

√
S

F2L(H)

acoustic
velocity

.



Hyperbolicity

We study the hyperbolicity of the homogeneous model.
The zeroth-order homogeneous model (taking K1 = K2 = 0) reads:

St + Qx = 0,

Qt +
(
Q2

S + Ψ

)
x
+

SHx
F2 = 0,(

1
2
Q2

S +
1
2Ψ
)
t
+

(
Q
S

(
1
2
Q2

S +
1
2Π
))

x
+
QHx
F2 = 0,(

1
2 (Π− 3Ψ)

)
t
= 0.

As mentioned before, this system is hyperbolic, with wave velocities

0
stationary
wave

, U
material
wave

, U
material
velocity

±

√
S

F2L(H) +
Π

S

acoustic
velocity

.



Hyperbolicity

We study the hyperbolicity of the homogeneous model.
Finally, the first-order homogeneous model is:

St + Qx = 0,

Qt +
(
Q2

S + Ψ

)
x
+ (1+ K1)

SHx
F2 = 0,(

1
2
Q2

S +
1
2Ψ
)
t
+

(
Q
S

(
1
2
Q2

S +
1
2Π
))

x
+
QHx
F2 = 0,(

1
2 (Π− 3Ψ)

)
t
= 0.

This system is hyperbolic for small enough F, with wave velocities

0, U1+ 3K1
1+ K1

+ O(F2), U
1+ K1

±

√
S

L(H)

(√
1+ K1
F +

F
2

Π+ K1(2Π+ K1(Π− 3SU2))
S(1+ K1)5/2

)
+ O(F2).

Thus, a necessary condition for the hyperbolicity is 1+ K1 > 0.



Linear stability

Let us first consider the special case k = 0.

For the classical shallow water equations in (S,Q) variables, the
matrix M(0), whose eigenvalues we seek, is:

M(0) = i I
ε

 0 0

sgn(U0)
S0

−2
U0

.

By inspection, the eigenvalues are

0 and − 2i 1
ε

I

U0
< 0.

The case k = 0 is thus treated for the classical shallow water system.



Linear stability

Now, for the model, the eigenvalues for k = 0 are

ω1 = 0, ω2 = −2i 1
ε

I

U0
,

shallow water eigenvalues

ω3 = 2i 1
ε
K1
S0U0
Ψ0

, ω4 = −2i 1
ε
K2
S0U0
Π0

.

We elect to define K1 and K2 by taking ω3 = ω2 and ω4 = ω2, to get:

K1 = −
SΨ(0)(
Q(0)

)2 and K2 =
SΠ(0)(
Q(0)

)2 .
Then, for k 6= 0, tedious computations show that, for small
enough ε, the following linear stability condition holds:

U20 <
4S0
L(H) +

Π

S , as opposed to U20 <
4S0
L(H) for classical SW.



Backwater curves:
⊔
-shaped channel versus trapezoidal river
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Backwater curves:
⊔
-shaped channel versus trapezoidal river
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Backwater curves:
⊔
-shaped channel versus trapezoidal river
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Backwater curves:
⊔
-shaped channel versus trapezoidal river
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