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Tsunami simulation: failure

 The simulation is not usable!

Indeed, the ocean at rest, far from the tsunami, started spontaneously producing waves.

This comes from the non-preservation of stationary solutions, hence the need to
develop numerical methods that preserve stationary solutions: so-called well-balanced
methods.
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Generic systems of balance laws

We consider a generic system of balance laws:

∂tW + ∂xF(W) = S(W, x), x ∈ R, t > 0,
where:

• W is the vector of unknowns,
• F is the physical flux function,
• S is the source term.

We assume that the homogeneous system is hyperbolic.

Example: the shallow water equations with topography.
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The shallow water equations with topography
∂th+ ∂xq = 0,

∂tq+ ∂x

(
q2

h +
1
2gh

2
)

= −gh∂xZ(x)

The equations are written under the form ∂tW + ∂xF(W) = S(W).

x

u(x, t)

Z(x)

h(x, t)

• h(x, t): water height
• u(x, t): water velocity
• q = hu: water discharge
• Z(x): known topography
• g: gravity constant

We pay particular attention to solutions of prime importance: the steady solutions.
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Steady solutions and well-balanced schemes

Definition: steady solution
W is a steady solution of ∂tW + ∂xF(W) = S(W, x) if, and only if, ∂tW = 0, i.e. W satisfies
the following ODE:

∂xF(W) = S(W, x).

Example: For the shallow water equations with topography, the ODE governing smooth
steady solutions can be simplified.

Definition: well-balanced scheme
A numerical method approximating the solution of a balance law is called
well-balanced if it exactly preserves the steady solutions.

Victor Michel-Dansac | High-order well-balanced schemes | Séminaire CSM, Bordeaux 6/54



Steady solutions and well-balanced schemes

Definition: steady solution
W is a steady solution of ∂tW + ∂xF(W) = S(W, x) if, and only if, ∂tW = 0, i.e. W satisfies
the following ODE:

∂xF(W) = S(W, x).

Example: For the shallow water equations with topography, the ODE governing smooth
steady solutions can be simplified.

Definition: well-balanced scheme
A numerical method approximating the solution of a balance law is called
well-balanced if it exactly preserves the steady solutions.

Victor Michel-Dansac | High-order well-balanced schemes | Séminaire CSM, Bordeaux 6/54



Shallow water equations: steady solutions

Taking ∂tW = 0 in the shallow water system yields
∂xq = 0,

∂x

(
q2

h +
1
2gh

2
)

= −gh∂xZ,
smooth
=⇒

solution


q = cst = q0,

∂x

(
q20
2h2 + g(h+ Z)

)
= 0.

We summarize the second relation by introducing a function B such that, for a steady
solution, B(h,q0, Z) = B0.

Two cases are distinguished:

• q = 0 lake at rest
we get B(h,q0, Z) = h+ Z = B0: linear equation in h

• q 6= 0 moving steady solution

we get B(h,q0, Z) =
q20
2h2 + g(h+ Z) = B0: nonlinear equation in h!
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General objectives

Main objectives of this work: develop numerical schemes that

• are high-order accurate and fully well-balanced (WB) (e.g. preserving equilibria with
nonzero velocity),

• can be applied to generic hyperbolic systems of balance laws,
• have a low computational cost, mostly ensured by avoiding costly inversions of
nonlinear systems.

We present three strategies:

1. build a high-order WB extension of a given first-order WB scheme,
2. build a first-order WB scheme for the shallow water equations that uses an arbi-
trary consistent numerical flux function,

3. enhance a Discontinuous Galerkin scheme using a prior on the steady solution.
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First-order accuracy in space: visualized

x

y

W(x)

xi− 1
2

xi+ 1
2

Wi =
1
∆x

∫ xi+ 1
2

xi− 1
2

W(x) dx + O(∆x)
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Second-order accuracy in space: visualized

x

y

xi− 1
2

xi+ 1
2

Wi,− = W(xi− 1
2
) + O(∆x2)

Wi,+ = W(xi+ 1
2
) + O(∆x2)
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Second-order accuracy in space: the reconstruction

The naive approach1 consists in adding the slope between cells i+ 1 and i− 1 to the
value in cell i, to get:

Wn
i,± = Wn

i ±
Wn
i+1 −Wn

i−1
4 .

If the first-order scheme is well-balanced, then the second-order scheme will also be
well-balanced if

steady solution for (Wn
i−1,W

n
i ,W

n
i+1) =⇒ steady solution for Wn

i,±.

Usual method: Reconstruct other variables, and deduce Wn
i,± from these reconstructions.

1Usually, one uses a slope limiter to avoid spurious oscillations; it is omitted here for clarity, but the forth-
coming discussion remains valid when a limiter is involved.
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Application to the shallow water equations: q = 0

Simple case of the lake at rest: q = 0

The steady solutions are given by q = 0 and h+ Z = cst =: H0: we reconstruct these
quantities, as well as Z. For instance, we get

(h+ Z)ni,± = (h+ Z)ni ±
1
4
(
(h+ Z)ni+1 − (h+ Z)ni−1

)
,

= H0 ±
1
4
(H0 − H0) for a steady solution,

= H0.

The reconstructed height hni,± is deduced as follows:

hni,± = (h+ Z)ni,± − Zni,± =⇒ hni,± + Zni,± = H0 for a steady solution.

The same reasoning applies to the discharge q.

Therefore, the reconstruction coincides with the steady solution, and the second-order
scheme preserves the steady states at rest.
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Application to the shallow water equations: q 6= 0

General case of the moving steady solutions: q 6= 0

The steady solutions are given by q = cst := q0 and B(h,q0, Z) = cst =: B0: we reconstruct
these quantities, as well as Z.

Thus, we get qni,± = q0 and Bni,± = B0; recall that

B(h,q0, Z) =
q20
2h2 + g(h+ Z).

The reconstructed height hni,± should be deduced as follows:

(qni,±)
2

2(hni,±)2
+ g(hni,± + Zni,±) = Bni,± : this is a nonlinear equation in hni,±!

Therefore, for the reconstruction to coincide with the steady solution, two nonlinear
equations must be solved in each cell and at each time step! This leads to a very heavy
computational cost.
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Main idea behind the well-balanced correction

A remark on accuracy and well-balancing
A well-balanced scheme is exact on steady solutions; therefore, it is more accurate
than any high-order scheme. Well-balanced schemes are formally of infinite order on
steady solutions.

Main idea behind the well-balanced correction:

• if the solution is steady, use the first-order well-balanced scheme, since it is exact;
• otherwise, use a high-order scheme.

This idea is implemented by introducing a convex combination.

This convex combination concerns both the source term and the reconstruction; in this
talk, we focus on the reconstruction.
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Very easy well-balanced correction: the reconstruction

Recall that the naive reconstruction is given by

Wn
i,− = Wn

i −
Wn
i+1 −Wn

i−1
4 and Wn

i,+ = Wn
i +

Wn
i+1 −Wn

i−1
4 .

well-balanced first-order scheme, and
(steady solution) =⇒ (Wn

i,± = Wn
i )

}
=⇒ steady solutions preserved by

the second-order scheme

How to modify the reconstruction close to a steady solution?

We introduce the following modification of the reconstruction:

Wn
i,− = Wn

i − θni− 1
2

Wn
i+1 −Wn

i−1
4 and Wn

i,+ = Wn
i + θni+ 1

2

Wn
i+1 −Wn

i−1
4 ,

where θni± 1
2
is a steady solution indicator (defined on the next slide):

• θni± 1
2
' 1 far away from a steady solution;

• θni± 1
2
= 0 when a steady solution is reached.
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An expression of θni+1/2

The convex combination parameter θni+ 1
2
must therefore satisfy the following properties:

• vanish when the pair (Wn
i ,W

n
i+1) defines a steady state;

• be an approximation of 1 up to O(∆x2) otherwise.

Define G such that

(Wn
i ,W

n
i+1) is a steady solution ⇐⇒ G(Wn

i , xi) = G(Wn
i+1, xi+1).

We propose the following expression, with C some scaling parameter:

θni+ 1
2
=

εni+ 1
2

εni+ 1
2
+ C∆x2 , with εni+ 1

2
=

1
∆x
∥∥G(Wn

i+1, xi+1) − G(Wn
i , xi)

∥∥,
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Extended definition of θni+1/2
To handle a scheme of order δ and non-unique equilibria given by L functions2 G`, we
propose the following expression of θni+ 1

2
:

θni+ 1
2
=

εni+ 1
2

εni+ 1
2
+ C∆xδ

, with εni+ 1
2
=

L∏
`=1

1
∆x
∥∥G`(Wn

i+1, xi+1) − G`(Wn
i , xi)

∥∥.
We have made two changes to the steady solution detector:
• the exponent in θni+ 1

2
,

• the expression of εni+ 1
2
.

Next step: Build a first-order well-balanced scheme; we consider the example of the
shallow water equations.

2For instance, for the Euler system with gravity, we get L = 3.
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Finite volume scheme

Recall the compact form of the shallow water equations:

∂tW + ∂xF(W) = S(W).

We take a generic finite volume numerical scheme approximating the shallow water
equations:

Wn+1
i −Wn

i
∆t +

1
∆x

[
F
(
Wn
i ,W

n
i+1
)
− F

(
Wn
i−1,W

n
i
)]

= S
(
Wn
i−1,W

n
i ,W

n
i+1
)
,

with F a consistent numerical flux, i.e. F(W,W) = F(W), and S a consistent numerical
source term.

xW(x, t) xWn
i−1 Wn

i Wn
i+1

×
xi−1

×
xi

×
xi+1xi− 1

2
xi+ 1

2
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Finite volume scheme

Recall the compact form of the shallow water equations:

∂tW + ∂xF(W) = S(W).

We take a generic finite volume numerical scheme approximating the shallow water
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Wn+1
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i
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1
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F
(
Wn
i ,W

n
i+1
)
− F

(
Wn
i−1,W

n
i
)]

= S
(
Wn
i−1,W

n
i ,W

n
i+1
)
,

with F a consistent numerical flux, i.e. F(W,W) = F(W), and S a consistent numerical
source term.

Question: can we make this generic finite volume scheme well-balanced without chang-
ing the numerical flux?
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Lake at rest preservation: the hydrostatic reconstruction

The hydrostatic reconstruction was introduced in E. Audusse et al., SIAM J. Sci. Comput.
(2004), as a way to make it possible for any finite volume scheme to capture the lake at
rest steady solution.

It relies on:

1. providing a relevant expression for S,
2. evaluating the numerical flux at a specific reconstruction of W.

Wn+1
i −Wn

i
∆t +

1
∆x

[
F
(
Wn
i , Wn

i+1
)
− F

(
Wn
i−1 , Wn

i
)]

= Sni

xi+ 1
2

Zi
Zi+1

hi
hi+1

xi+ 1
2

Zi
Zi+1

hi+ 1
2 ,−

hi+ 1
2 ,+

Zi+ 1
2
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Objectives

Main goal of this work: Provide a reconstruction able to capture the steady solutions
with q0 = 0 or q0 6= 0, without solving nonlinear equations.

The objectives of our hydrodynamic reconstruction include:

• making sure that the resulting scheme is consistent,
• ensuring the capture of steady solutions with q0 = 0 or q0 6= 0,
• handling dry areas and transitions between wet and dry areas
(not presented in this talk).

Victor Michel-Dansac | High-order well-balanced schemes | Séminaire CSM, Bordeaux 20/54



Motivation and general objectives

1/ Extending a first-order well-balanced scheme to high-order accuracy
Berthon, Bulteau, Foucher, M’Baye, M.-D., SIAM SISC, 2022

2/ Making any consistent numerical flux fully WB for the shallow water equations
Berthon, M.-D., J. Numer. Math., 2024

The hydrodynamic reconstruction

Suitable expression of H

Numerical experiments

3/ Enhancing Discontinuous Galerkin bases with a prior
Franck, M.-D., Navoret, in revision, 2024

Conclusion and perspectives



Expression of the hydrodynamic reconstruction

Away from dry areas, the hydrostatic reconstruction reads:

hni+ 1
2 ,−

= hni +
(
Zi − Zi+ 1

2

)
,

hni+ 1
2 ,+

= hni+1 +
(
Zi+1 − Zi+ 1

2

)
.
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2

)
+ 2Fr2

(
hni ,h
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2
,qni
)
H
(
hni ,h

n
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2
,qni , Zi+ 1

2
− Zi

)
,

hni+ 1
2 ,+

= hni+1 +
(
Zi+1 − Zi+ 1

2

)
+ 2Fr2

(
hni+1,h

n
i+ 1

2
,qni+1

)
H
(
hni+1,h

n
i+ 1

2
,qni+1, Zi+ 1

2
− Zi+1

)
,

with H a function of hL, hR, q̄ and ∆Z := ZR − ZL, and with

Fr2(hL,hR, q̄) =
q̄2(hL + hR)
2gh2Lh2R

.
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2gh2Lh2R

.

The hydrodynamic reconstruction relies on deriving a suitable functionH.
For instance, for consistency, H should vanish when ∆Z does.
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Characterization of interface steady relations

hni+ 1
2 ,−

= hni +
(
Zi − Zi+ 1

2

)
+ 2Fr2

(
hni ,h

n
i+ 1

2
,qni
)
H
(
hni ,h

n
i+ 1

2
,qni , Zi+ 1

2
− Zi

)
Define the interface state by

(hni+ 1
2
, Zi+ 1

2
) =

{
(hni , Zi) if Zi > Zi+1,
(hni+1, Zi+1) otherwise.

The relations hni+ 1
2 ,−

= hni+ 1
2
= hni+ 1

2 ,+
have to hold for steady solutions.

When the solution is steady, setting q̄ = qi = qi+1, we get:
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The relations hni+ 1
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= hni+ 1
2
= hni+ 1

2 ,+
have to hold for steady solutions.

When the solution is steady, setting q̄ = qi = qi+1, we get:
q̄2

2h2i
+ g(hi + Zi) =

q̄2

2h2i+ 1
2

+ g(hi+ 1
2
+ Zi+ 1

2
) =

q̄2

2h2i+1
+ g(hi+1 + Zi+1).
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Well-balancing requirement onH – statement

Some algebraic manipulations allow us to write

q̄2

2h2i
+ g(hi + Zi) =

q̄2

2h2i+ 1
2

+ g(hi+ 1
2
+ Zi+ 1

2
)

⇐⇒

Zi+ 1
2
− Zi = −

(
hi+ 1

2
− hi

)(
1− Fr2

(
hi,hi+ 1

2
, q̄
))

,

which is nothing but the usual discrete characterization of smooth steady solutions.

We claim that imposing the following property on H will be enough to preserve steady
solutions:

∆Z = −(hR − hL)(1− Fr2(hL,hR, q̄)) =⇒ H(hL,hR, q̄, ∆Z) =
hR − hL

2 .
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Well-balancing requirement onH – proof

Indeed, assuming that the solution is steady, we obtain the following identities:

hni+ 1
2 ,−

= hni +
(
Zi − Zi+ 1

2

)
+ 2Fr2

(
hni ,h

n
i+ 1

2
,qni
)
H
(
hni ,h

n
i+ 1

2
,qni , Zi+ 1

2
− Zi

)
,

hni+ 1
2 ,−

= hni +
(
Zi − Zi+ 1

2

)
+ Fr2

(
hni ,h

n
i+ 1

2
,qni
)(

hni+ 1
2
− hni

)
,

hni+ 1
2 ,−

= hni +
(
Zi − Zi+ 1

2

)
+
(
Zi+ 1

2
− Zi

)
+
(
hni+ 1

2
− hni

)
,

hni+ 1
2 ,−

= hni+ 1
2
,

which proves that the scheme is well-balanced.
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Summary and source term discretization

To summarize, for the reconstruction to be consistent and well-balanced, we require the
following two properties on the bounded function H:

1. H(hL,hR, q̄, ∆Z) =
∆Z→0

O(∆Z),

2. ∆Z = −(hR − hL)(1− Fr2(hL,hR, q̄)) =⇒ H(hL,hR, q̄, ∆Z) =
hR − hL

2 .

In addition, the whole scheme will also be consistent and well-balanced if the following
numerical source term is used:

∆x(Sq)ni = −g
2hni− 1

2 ,+
hni+ 1

2 ,−

hni− 1
2 ,+

+ hni+ 1
2 ,−

(
Zi+ 1

2
− Zi− 1

2

)
+

4g
hni− 1

2 ,+
+ hni+ 1

2 ,−

H
(
hni− 1

2 ,+
,hni+ 1

2 ,−
,qi, Zi+ 1

2
− Zi− 1

2

)3
.

The proof results from algebraic manipulations (not detailed here).

Next step: obtain a suitable expression ofH.
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Motivation and general objectives

1/ Extending a first-order well-balanced scheme to high-order accuracy
Berthon, Bulteau, Foucher, M’Baye, M.-D., SIAM SISC, 2022

2/ Making any consistent numerical flux fully WB for the shallow water equations
Berthon, M.-D., J. Numer. Math., 2024

The hydrodynamic reconstruction

Suitable expression of H

Numerical experiments

3/ Enhancing Discontinuous Galerkin bases with a prior
Franck, M.-D., Navoret, in revision, 2024

Conclusion and perspectives



Satisfying the well-balanced property

Recall that, when H is applied to a discrete steady solution, we need

H(hL,hR, q̄, ∆Z) =
hR − hL

2 .

To obtain an expression of H satisfying this property, we need to understand how
(hR − hL)/2 behaves for discrete steady solutions.

We now seek a relation to characterize the jump of h at the interface, i.e. an expression
of (hR − hL)/2 for steady solutions.

We assume that the solution is steady, and introduce notation

h̄ :=
hL + hR

2 and [h] := hR − hL
2 ,

so that hL and hR satisfy

hL = h̄− [h] and hR = h̄+ [h].

The goal is now to rewrite the steady relation in terms of h̄ and [h].
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A local relation to characterize steady solutions

Recall that the steady solutions are governed by

B(h,q0, Z) =
q20
2h2 + g(h+ Z) = B0.

That is to say, at the interface between states WL and WR, the solution is locally steady if
qL = qR = q̄ and

B(hL, q̄, ZL) = B(hR, q̄, ZR) ⇐⇒ q̄2

2h2L
+ g(hL + ZL) =

q̄2

2h2R
+ g(hR + ZR).

We set out to rewrite the above relation using h̄ and [h] instead of hL and hR.
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A nonlinear relation for the interface jump

q̄2

2h2L
+ g(hL + ZL) =

q̄2

2h2R
+ g(hR + ZR)

⇐⇒
q̄2

2(h̄− [h])2
+ g(h̄− [h] + ZL) =

q̄2

2(h̄+ [h])2
+ g(h̄+ [h] + ZR)

⇐⇒
. . .

⇐⇒

2[h]
(
g
(
h̄2 − [h]2

)2
− q̄2h̄

)
= −g(ZR − ZL)

(
h̄2 − [h]2

)2
.

Victor Michel-Dansac | High-order well-balanced schemes | Séminaire CSM, Bordeaux 28/54



“Quadratized” relation

2H
(
g
(
h̄2 −H2)2 − q̄2h̄

)
= −g∆Z

(
h̄2 −H2)2 (∗)

Equation (∗) is nonlinear, and using it would incur considerable computational cost. To
avoid this issue, we proceed with a linearization-like simplification. First, for H 6= h̄, we
get

(∗) ⇐⇒ 2H
(
1− q̄2h̄

g
(
h̄2 −H2

)2
)

= −∆Z.

We then choose a “quadratization” of this expression around H = [h]:
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)2
)

= −∆Z.

We then choose a “quadratization” of this expression around H = [h]:

2H
(
1− q̄2(hL + hR)

2g(h̄2 − [h]2)
+ a
(
[h] −H

))
= −∆Z.
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We then choose a “quadratization” of this expression around H = [h]:

2H
(
1− q̄2(hL + hR)

2gh2Lh2R
Fr2

+ a
(
[h] −H

))
= −∆Z.

In practice, after some testing, we choose a = sgn(∆Z)

√
|∆Z|
2|[h]|3 .
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Final expression ofH

We are left with H satisfying a quadratic relation.

Solving this quadratic equation for H leads to

H =
1
2

E − sgn(1− Fr2)sgn(∆Z)

√
E2 +

√
1
2 |∆Z||[h]|

3

,

with E = [h] + 1− Fr2

2 sgn(∆Z)

√
|[h]|3
2|∆Z| .

We show that, if ∆Z and 1− Fr2 do not simultaneously vanish:
1. this expression of H is well-balanced;
2. this expression of H is consistent, despite the divisions by ∆Z.
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Motivation and general objectives

1/ Extending a first-order well-balanced scheme to high-order accuracy
Berthon, Bulteau, Foucher, M’Baye, M.-D., SIAM SISC, 2022

2/ Making any consistent numerical flux fully WB for the shallow water equations
Berthon, M.-D., J. Numer. Math., 2024

The hydrodynamic reconstruction

Suitable expression of H

Numerical experiments

3/ Enhancing Discontinuous Galerkin bases with a prior
Franck, M.-D., Navoret, in revision, 2024

Conclusion and perspectives



Setup

We provide several numerical tests with a finite volume scheme using the HLL flux:

• an order of convergence test,
• three tests of the well-balanced property,
• a dam-break on a dry slope.

These tests are performed with the hydrostatic reconstruction (HSR) and the
hydrodynamic reconstruction (HDR).

The schemes of order δ are denoted by HSRδ and HDRδ, and they make use of the
indicator developed in the previous section.
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Order of convergence
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Emerged lake at rest (50 cells)
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Subcritical flow (75 cells)
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Transcritical flow (75 cells)
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Dam-break on a dry slope (50 cells)
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Large perturbation of a steady solution

The initial condition (dotted line) consists in a large perturbation of a steady solution.

We show the evolution of the perturbation after a short time.
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Large perturbation of a steady solution

After a long physical time, the perturbation is dissipated:
• numerical noise remains with the Pd scheme;
• the unperturbed steady state is exactly recovered with the PWBd scheme.
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Large perturbation of a steady solution

We note that the correction in the PWBd scheme incurs a negligible computational cost, as
evidenced in the following table.

P0 scheme P1 scheme PWB1 scheme P2 scheme PWB2 scheme

CPU time (s) 2.91 8.59 9.5 23.78 24

Victor Michel-Dansac | High-order well-balanced schemes | Séminaire CSM, Bordeaux 37/54



Motivation and general objectives
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Finite volume method, visualized
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Discontinuous Galerkin, visualized
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Discontinuous Galerkin, visualized
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Discontinuous Galerkin: an example

On the previous slide, the data W is represented by

• a polynomial of degree 2 in each cell (Galerkin approximation),
• which is Discontinuous at interfaces between cells.

Therefore, in each cell Ωi, W is approximated by

W
∣∣
Ωi

' WDG
i := α0 + α1x + α2x2 =

2∑
j=0

αjxj,

where the polynomial coefficients α0, α1 and α2 are determined to ensure fitness
between the continuous data and its polynomial approximation.

Any polynomial of degree two can be exactly represented this way.
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Discontinuous Galerkin: polynomial basis

More generally, we define a polynomial basis ϕ0, . . . , ϕN on each cell Ωi and
approximate the solution in this basis.

A usual example is the following so-called modal basis:

∀j ∈ {0, . . . ,N}, ϕj(x) = xj.

Main takeaway: The DG scheme is exact on every function that can be exactly
represented in the basis!
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Main idea

Recall that the DG scheme will be exact on every function that can be exactly
represented in the DG basis, as soon as it is also a solution to the PDE.

Main idea
Enhance the DG basis by using the steady solution!

 If the steady solution or an approximation thereof is contained in the basis, then:

• using the exact steady solution in the basis will make the scheme exactly well-
balanced;

• using an approximation of the steady solution will make the scheme approximately
well-balanced.
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Enhanced DG bases

Assume that you know a prior W on the steady solution.

It can be the exact steady solution (W = Weq), or it can be an approximation (W ' Weq).

The goal is now to enhance the modal basis V using W:

V = {1, x, x2, . . . , xN}.

First possibility: multiply the whole basis by W

V∗ = {W, x W, x2W, . . . , xNW}.

Second possibility: replace the first element with W

V+ = {W, x, x2, . . . , xN}.
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Error estimates

We denote by:

• Wex the exact solution,
• WDG the approximate solution without prior,
• WDG the approximate solution with prior W and basis V∗.

For a DG scheme of order q+ 1, we obtain3 the following error estimates:

‖Wex −WDG‖ .
∣∣Wex

∣∣
Hq+1 ∆xq+1,

‖Wex −WDG‖ .
∣∣∣∣Wex

W

∣∣∣∣
Hq+1

∆xq+1 ‖W‖L∞ .

Conclusion of the error estimates: the prior W needs to provide a good approximation
of the derivatives of the steady solution.

3Rigorous error estimates are written in terms of the error in the projection onto both bases.
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Obtaining a prior

For very simple systems, one can use the exact steady solution as a prior.

However, in many cases, even for some simple and well-known systems, one cannot
compute the exact steady solution. Therefore, an approximation is required.

How to obtain such an approximation?

1. First possibility: use a traditional numerical approximation, obtained by classical
ODE solvers (e.g. Runge-Kutta schemes).

2. Second possibility: use a Physics-Informed Neural Network (PINN), a specifically-
trained neural network.

Next step: Present the PINNs, which will be preferred since they are mesh-less and able
to approximate solutions to parametric PDEs.
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PINNs

Remark: Neural networks are smooth functions of the inputs (provided smooth
activation functions are used!).

Since their derivatives are easily computable by automatic differentiation, they are
therefore natural objects to approximate solutions to PDEs or ODEs.

Definition: PINN
A PINN is a neural network with input x and trainable weights θ, approximating the
solution to a PDE or ODE, and denoted by Wθ(x).

Hence, the PINN Wθ will approximate the solution to the PDE

D(W, x) = 0,

with D a differential operator.
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PINNs: loss function

Ommitting boundary conditions, the problem becomes

find W such that D(W, x) = 0 for all x ∈ Ω ⊂ Rd.

Based on this observation, the PINN Wθ should approximately satisfy the above PDE, and
the problem becomes:

find θopt such that D(Wθopt , x) ' 0 for all x ∈ Ω ⊂ Rd.

The idea behind PINNs training is to find the optimal weights θopt by minimizing a loss
function built from the ODE residual:

θopt = argmin
θ

∫
Ω

‖D(Wθ, x)‖22 dx.

The Monte-Carlo method is used for the integrals, which makes the whole approach
mesh-less and able to deal with parametric PDEs.
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Parametric PINNs

A parametric PDE is nothing but the following problem:

find W such that D(W, x;µ) = 0 for all x ∈ Ω and µ ∈ P ⊂ Rm.

The parametric PINN Wθ(x;µ) should approximately satisfy the above PDE, and the
problem becomes:

find θopt such that D(Wθopt , x;µ) ' 0 for all x ∈ Ω and µ ∈ P ⊂ Rm.

The minimization problem then becomes

θopt = argmin
θ

∫
P

∫
Ω

‖D(Wθ, x;µ)‖22 dxdµ.
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Setup: the advection equation

We run experiments on the advection equation with source term, with a given initial
condition W0 : R → R:

∂tW + c∂xW = aW + bW2 for x ∈ (0, 1), t ∈ (0, T),
W(0, x) = W0(x) for x ∈ (0, 1),
W(t, 0) = u0 for t ∈ (0, T).

The steady solution Weq satisfies the BVP{
c∂xWeq − aWeq − bW2

eq = 0 for x ∈ (0, 1),
Weq(0) = u0,

whose unique solution is, with parameters µ = {a,b, c,u0} ∈ P ⊂ R4:

Weq(x;µ) =
au0

(a+ bu0)e−
ax
c − bu0

.
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PINNs as a DG prior: steady solution

We use the DG scheme to solve the advection equation with the steady solution as
initial condition. We expect the DG scheme with prior:

• to provide a better approximation of the steady solution than the classical DG
scheme (approximate well-balanced property),

• while converging with the same order of accuracy.

We report below some statistics on the gains with 1000 random sets of parameters in P,
for a DG scheme of order q+ 1.

q minimum gain average gain maximum gain

0 63.46 735.08 4571.89
1 32.22 149.38 450.74
2 6.20 54.16 118.45
3 1.55 19.54 108.10
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PINNs as a DG prior: unsteady solution

We use the DG scheme to solve an unsteady advection problem, without a source term.
We expect the DG scheme with prior:

• to provide a similar approximation of the solution than the classical DG scheme,
• while converging with the same order of accuracy.

The table below shows the gains made by using the prior, for several values of the
number n of space cells.

q gain, n = 10 gain, n = 40 gain, n = 160

0 0.80 0.81 0.81
1 1.00 1.00 1.00
2 1.00 1.00 1.00
3 1.00 1.00 1.00
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PINNs as a DG prior: computation time

Finally, we compare the computation time in bases V and V+. We expect that the prior
will:

• increase the computation time of the DG mass matrices,
• have no effect on the computation time of the main loop.

The table below shows the CPU time increase factor when using the prior, for several
values of the number n of space cells. We observe that the increase in computation time
due to the prior is negligible.

q factor, n = 10 factor, n = 40 factor, n = 160

0 1.26 1.07 1.01
1 1.15 1.01 1.00
2 1.04 1.03 1.01
3 1.07 1.00 1.01
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Perturbation of a shallow water steady solution
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PINN trained on a parametric
steady solution, driven by the to-
pography

Z(x;µ) = Γ exp
(
α(r20 − ‖x‖2)

)
,

with physical parameters

µ ∈ P ⇐⇒


α ∈ [0.25, 0.75],
Γ ∈ [0.1, 0.4],
r0 ∈ [0.5, 1.25].

Left plot: initial condition, made of
a perturbed steady solution.
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Perturbation of a shallow water steady solution

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−0.03 −0.02 −0.01 0

(a) classical basis
−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−0.04 −0.03 −0.02 −0.01 0

(b) enhanced basis

Victor Michel-Dansac | High-order well-balanced schemes | Séminaire CSM, Bordeaux 53/54



Perturbation of a shallow water steady solution
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Conclusion and perspectives

We have obtained:

• an approximately well-balanced DG scheme,
• for parameterized families of steady solutions,
• which works for arbitrary balance laws.

Perspectives include:

• using a space-time DG method and time-dependent priors,
• replacing PINNs with neural operators for added flexibility,
• coding the method in the SciMBA framework.

Related preprint: E. Franck, V. Michel-Dansac and L. Navoret.
“Approximately WB DG methods using bases enriched with PINNs.”
git repository: https://github.com/Victor-MichelDansac/DG-PINNs
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Thank you for your attention!



An expression of Cni+1/2

To implement the scheme, we need to give an expression of C = Cni+1/2.
We propose C0i+1/2 = 1, and, for n > 1:

Cni+ 1
2
= Cθ

1
2

(∥∥Wn
i+1 −Wn−1

i+1
∥∥

∆t +

∥∥Wn
i −Wn−1

i
∥∥

∆t

)
,

with Cθ a constant parameter.

Note that

θni+ 1
2
=

εni+ 1
2

εni+ 1
2
+

(
∆x
Cni+ 1

2

)δ
=

εni+ 1
2
(Cni+ 1

2
)δ

εni+ 1
2
(Cni+ 1

2
)δ + ∆xδ

:

we get θni+ 1
2
= 0 if εni+ 1

2
= 0 or Cni+ 1

2
= 0. Why does this make sense?



An expression of Cni+1/2 – reasoning

θni+ 1
2
= 0 if εni+ 1

2
= 0 or Cni+ 1

2
= 0

εni+ 1
2
= 0 =⇒ steady state solution for the equations

=⇒ θni+ 1
2
must vanish to preserve the steady state solution

Cni+ 1
2
= 0 =⇒ vanishing discrete time derivative

=⇒ steady state solution for the high-order scheme
=⇒ not a steady state solution for the equations4

=⇒ θni+ 1
2
must vanish to perturb the solution

4Otherwise, the high-order scheme would be well-balanced.
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