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Problem under consideration

To fix notation, consider the following stationary PDE:

{
D(W, x) = 0 for x ∈ Ω,
W(x) = g(x) for x ∈ ∂Ω,

where

• Ω ⊂ Rd is the spatial domain,
• W ∈ Rq is the unknown solution,
• D is some differential operator,
• g is a known function.
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Common framework for some classical methods

Parametric approximation in some classical methods for stationary PDEs
In many classical numerical methods, the solution is approximated by a parametric
function, linear in its parameters, and a basis (ϕj)j depending on the chosen method:

Wθ(x) =
N∑
j=1

θjϕj(x); the parameters (θj)j∈{1,...,N} are called degrees of freedom.

• mesh-based methods, with mesh (xj)j∈{1,...,N}:
I finite difference: ϕj = δxj
I 1st-order finite volume: ϕj are piecewise constant
I finite element: ϕj are piecewise polynomial

• mesh-free methods:
I spectral methods: ϕj = eikjx in Fourier space
I SPH: ϕj(x) = Ξ(|x − xj|) with Ξ a kernel function
I diffuse elements: ϕj are piecewise polynomial

Most of these approaches are local in space, and the number of degrees of freedom N
exponentially increases with the dimension.

Victor Michel-Dansac | Hybrid methods for elliptic and hyperbolic PDEs | Séminaire EDPs2 , LAMA 2/48



Common framework for some classical methods

Parametric approximation in some classical methods for stationary PDEs
In many classical numerical methods, the solution is approximated by a parametric
function, linear in its parameters, and a basis (ϕj)j depending on the chosen method:

Wθ(x) =
N∑
j=1

θjϕj(x); the parameters (θj)j∈{1,...,N} are called degrees of freedom.

• mesh-based methods, with mesh (xj)j∈{1,...,N}:
I finite difference: ϕj = δxj
I 1st-order finite volume: ϕj are piecewise constant
I finite element: ϕj are piecewise polynomial

• mesh-free methods:
I spectral methods: ϕj = eikjx in Fourier space
I SPH: ϕj(x) = Ξ(|x − xj|) with Ξ a kernel function
I diffuse elements: ϕj are piecewise polynomial

Most of these approaches are local in space, and the number of degrees of freedom N
exponentially increases with the dimension.

Victor Michel-Dansac | Hybrid methods for elliptic and hyperbolic PDEs | Séminaire EDPs2 , LAMA 2/48



Common framework for some classical methods

Parametric approximation in some classical methods for stationary PDEs
In many classical numerical methods, the solution is approximated by a parametric
function, linear in its parameters, and a basis (ϕj)j depending on the chosen method:

Wθ(x) =
N∑
j=1

θjϕj(x); the parameters (θj)j∈{1,...,N} are called degrees of freedom.

• mesh-based methods, with mesh (xj)j∈{1,...,N}:
I finite difference: ϕj = δxj
I 1st-order finite volume: ϕj are piecewise constant
I finite element: ϕj are piecewise polynomial

• mesh-free methods:
I spectral methods: ϕj = eikjx in Fourier space
I SPH: ϕj(x) = Ξ(|x − xj|) with Ξ a kernel function
I diffuse elements: ϕj are piecewise polynomial

Most of these approaches are local in space, and the number of degrees of freedom N
exponentially increases with the dimension.

Victor Michel-Dansac | Hybrid methods for elliptic and hyperbolic PDEs | Séminaire EDPs2 , LAMA 2/48



Common framework for some classical methods

Parametric approximation in some classical methods for stationary PDEs
In many classical numerical methods, the solution is approximated by a parametric
function, linear in its parameters, and a basis (ϕj)j depending on the chosen method:

Wθ(x) =
N∑
j=1

θjϕj(x); the parameters (θj)j∈{1,...,N} are called degrees of freedom.

• mesh-based methods, with mesh (xj)j∈{1,...,N}:
I finite difference: ϕj = δxj
I 1st-order finite volume: ϕj are piecewise constant
I finite element: ϕj are piecewise polynomial

• mesh-free methods:
I spectral methods: ϕj = eikjx in Fourier space
I SPH: ϕj(x) = Ξ(|x − xj|) with Ξ a kernel function
I diffuse elements: ϕj are piecewise polynomial

Most of these approaches are local in space, and the number of degrees of freedom N
exponentially increases with the dimension.

Victor Michel-Dansac | Hybrid methods for elliptic and hyperbolic PDEs | Séminaire EDPs2 , LAMA 2/48



Example: the finite element method

Consider the Poisson problem and its weak formulation, with unknown W ∈ H1
0(Ω):{

−∆W = f in Ω,
W = 0 on ∂Ω,

⇐⇒ ∀ψ ∈ H1
0(Ω),

∫
Ω

∇W · ∇ψdx =
∫
Ω

fψdx.

Now, approximate H1
0(Ω) by a linear subspace of polynomial functions V = Span((ϕj)j).

The finite element approximation of W is, for x ∈ Ω, Wθ(x) =
∑N

j=1 θjϕj(x).

Plugging these approximations in the weak formulation, we get

∀k ∈ {1, . . . ,N},
N∑
j=1

θj

∫
Ω

∇ϕj · ∇ϕk dx

Akj

=

∫
Ω

fϕk dx

bk

,

i.e., with θ = (θj)j, A = (Akj)kj and b = (bk)k, we have the linear system Aθ = b.
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Example: the Ritz-Galerkin method

Consider the Poisson problem and its energy formulation, with unknown W ∈ H1
0(Ω):{

−∆W = f in Ω,
W = 0 on ∂Ω,

⇐⇒ W = argmin
ψ∈H1

0(Ω)

[
1
2

∫
Ω

|∇ψ|2 −
∫
Ω

fψ
]
.

Now, approximate H1
0(Ω) by a linear subspace of polynomial functions V = Span((ϕj)j) .

The finite element approximation of W is, for x ∈ Ω, Wθ(x) =
∑N

j=1 θjϕj(x). Therefore,

Wθ = argmin
ϕ∈V

[
1
2

∫
Ω

|∇ϕ|2 −
∫
Ω

fϕ
]
.

We can write θ = argminϑ∈RN J(ϑ), with J a quadratic function.

Solving this quadratic minimization problem, we obtain the same linear system Aθ = b.
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Example: the “Deep Ritz” method [W. E and B. Yu (2018)]

Consider the Poisson problem and its energy formulation:{
−∆W = f in Ω,
W = 0 on ∂Ω,

⇐⇒ W = argmin
ψ∈H1

0(Ω)

[
1
2

∫
Ω

|∇ψ|2 −
∫
Ω

fψ
]
.

We approximate H1
0(Ω) by the subspace V = {x 7→ ϕ(x, θ), θ ∈ RN}, with ϕ : Rd × RN → R

a nonlinear function of both inputs.

The nonlinear approximation of W becomes, for x ∈ Ω, Wθ(x) = ϕ(x, θ). Therefore,

Wθ = argmin
ϕ∈V

[
1
2

∫
Ω

|∇ϕ(x, θ)|2 dx −
∫
Ω

f (x)ϕ(x, θ)dx
]
.

We can write θ = argminϑ∈RN J(ϑ), with J a quadratic function.

We now have to solve a nonlinear minimization problem!
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Summary

We have presented two ways of approximating our unknown function W. In both cases,
we define degrees of freedom θ ∈ RN, and set W(x) ' Wθ(x) = ϕ(x, θ), for all x ∈ Ω.

The main difference lies in the choice of the function ϕ: it is always nonlinear in space,
but its behavior with respect to θ changes the nature of the approximation problem.

1. ϕ is linear in θ , ϕ(x, θ) =
∑N

j=1 θjϕj(x):
1.1 W is projected onto a finite-dimensional

linear subspace
1.2 solve a convex quadratic optimization

problem to determine θ

2. ϕ is nonlinear in θ:
2.1 W is projected onto a finite-dimensional

“submanifold”
2.2 solve a nonlinear, (usually) non-convex

optimization problem to determine θ

Question: How to construct suitable nonlinear functions ϕ?
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Multilayer perceptron (MLP)

Input Output

x00

...

x0q0

x`0

...

x`ql

x10

x11

...

x1q1

x0

x`−11

...

x`−1q`−1

x20

...

...

...

x2q2

z0 ∈ Rq0 z` ∈ Rq`

z1 ∈ Rq1

z2 ∈ Rq2

z`−1 ∈ Rq`−1

σ
(
W1z0 + b1

)
σ
(
W`z`−1 + b`

)
σ
(
W2z1 + b2

)

...

σ
(
Wkzk−1 + bk

)

Schematic of an MLP (by A. Bélières-Frendo).

An MLP is a nonlinear parametric function
ϕ : Rd × RN → Rq.

It results from a composition of several non-
linear layers. For instance, the first layer is:
• z1 = σ(A1z0 + b1) ∈ Rq1 ,
• z0 ∈ Rq0 (with q0 = d),
• A1 ∈ Mq1,q0(R),
• b1 ∈ Rq1 ,
• σ ∈ C0(R,R), applied component-wise.

In the end, the function ϕ : (z0, θ) 7→ z` reads

ϕ(z0, θ) = σ(A`σ(A`−1 . . . σ(A1z0 + b1) · · ·+ b`−1) + b`).

The degrees of freedom are θ = (A1,b1, . . . ,A`,b`) ∈ RN, with N =
∑`

i=1 qi(qi−1 + 1).
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Universal approximation theorems

Arbitrary-width case [G. Cybenko, Math. Control Signals Systems (1989)]
Let σ ∈ C0(R,R) be a non-polynomial function. Then, for all (m,n) ∈ N2, K ⊆ Rn

compact set, f ∈ C0(K,Rm), and ε > 0, there exist k ∈ N, A ∈ Mk,n(R), b ∈ Rk and
C ∈ Mm,k(R) such that

‖f (x) − Cσ(Ax + b)‖L∞(K) < ε.

Arbitrary-depth case [P. Kidger and T. Lyons, (2020)]
Let σ ∈ C0(R,R) be a non-affine function, continuously differentiable in at least one
point. Let Nσn,m,n+m+2 denote the set of MLPs with n inputs, m outputs, whose hidden
layers have n+m+ 2 neurons, and with activation function σ. Then, for all (m,n) ∈ N2,
K ⊆ Rn compact set, f ∈ C0(K,Rm), and ε > 0, there exists Wθ ∈ Nσn,m,n+m+2 such that

‖f (x) −Wθ(x)‖L∞(K) < ε.
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Determination of the parameters θ – PINNs

Equipped with the expression of Wθ : Rd → Rq, with Wθ = ϕ(·, θ), the goal is to
determine the N parameters θ such that Wθ is an approximation to the PDE solution W.

This is done through nonlinear optimization1: define a loss function J measuring2 the
PDE residual, i.e.,

J(θ) =

∫
Ω

D(Wθ, x)2 dx +
∫
∂Ω

(Wθ(x) − g(x))2 dx.

The optimal parameters are then given by:

θopt = argmin
θ

J(θ).

1Usually, using the ADAM algorithm [D. Kingma and J. Ba, (2015)] for stochastic gradient descent.
2This corresponds to PINNs (Physics-Informed Neural Networks, M. Raissi et al., J. Comput. Phys. (2019)).
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Determination of the parameters θ – Deep Ritz

Another way of determining parameters θ lies in the Deep Ritz method3. The solution
remains approximated by a neural network Wθ : Rd → Rq.

This time, the PDE is written in energy form. In the case of the Poisson problem, this
leads to the following minimization problem:

θ = argmin
ϑ∈RN

[
1
2

∫
Ω

|∇Wθ(x)|2 dx −
∫
Ω

f (x)Wθ(x)dx
]
.

We can write θ = argminϑ∈RN J(ϑ), which is a nonlinear optimization problem.

3see W. E and B. Yu, Commun. Math. Stat. (2018)
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PINNs: recap

The PINN Wθ approximates the solution W to the BVP:{
D(W, x) = 0 for x ∈ Ω,
W(x) = g(x) for x ∈ ∂Ω.

 

{
D(Wθ, x) ' 0 for x ∈ Ω,
Wθ(x) ' g(x) for x ∈ ∂Ω.

To train the PINN (i.e., to determine the optimal parameters θopt), one fashions a loss
function using the PDE residual:

JPDE(θ) =

∫
Ω

‖D(Wθ, x)‖22 dx +
∫
∂Ω

‖Wθ(x) − g(x)‖22 dx, and then θopt = argmin
θ

JPDE(θ).

 How to compute the integrals?
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Multidimensional integration

JPDE(θ) =

∫
Ω

‖D(Wθ, x)‖22 dx

JΩ(θ)

+

∫
∂Ω

‖Wθ(x) − g(x)‖22 dx

Jboundary(θ)

We have to compute two integrals:

• JΩ(θ) over Ω ⊂ Rd,
• Jboundary(θ) over ∂Ω ⊂ Rd−1.

The classical approach involves quadrature methods. However, they require a grid,
which is a problem in high dimension or on complex domains…

 Use the Monte-Carlo approach, a mesh-less method whose convergence is slow but
independent of the dimension.
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PINNs: advantages and drawbacks

Once trained, PINNs with Monte-Carlo integration are able to

• quickly provide an approximation to the PDE solution,
• in a mesh-less fashion and on complex domains,
• independently of the dimension.

However, PINNs

• have trouble generalizing to x /∈ Ω;
• are usually not competitive with classical numerical methods for computational fluid
dynamics: to reach a given error (if possible), training takes longer than using a classical
numerical method, and no convincing convergence results exist at the moment.

The most interesting use of PINNs, in our case, is to deal with parametric PDEs, where
dimension-insensitivity is paramount.
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Parametric PINNs: approximation using the PDE residual

The parametric PINN Wθ(x;µ) with parameters µ ∈ M ⊂ Rm approximates the solution W
to the parametric BVP:

{
D(W, x;µ) = 0 for x ∈ Ω,µ ∈ M,

W(x) = g(x;µ) for x ∈ ∂Ω,µ ∈ M.
 

{
D(Wθ, x;µ) ' 0 for x ∈ Ω,µ ∈ M,

Wθ(x;µ) ' g(x;µ) for x ∈ ∂Ω,µ ∈ M.

The loss function then becomes

JPDE(θ) =

∫
M

∫
Ω

‖D(Wθ, x;µ)‖22 dxdµ

JΩ(θ)

+

∫
M

∫
∂Ω

‖Wθ(x;µ) − g(x;µ)‖22 dxdµ

Jboundary(θ)

.

Both integrals are, once again, approximated by the Monte-Carlo method.
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Solving the nonlinear optimization problem

PINNs amount to solving a nonlinear optimization problem.

For such problems, state-of-the-art approaches rely on stochastic gradient descent4,
and so require differentiating the loss function with respect to θ.

Because of the Monte-Carlo estimation, the loss function contains terms in D(Wθ, xj;µi).
Say D contains a Laplace operator: we need to compute, among other things,

∇θ∆Wθ(xj;µi).

These differentials are exactly computed, thanks to automatic differentiation tools.

Fortunately, these tools are already implemented in several libraries (we used pytorch).

4Namely, on the ADAM algorithm: see D. Kingma and J. Ba, (2015).
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Implementation details

PINNs are implemented in scimba5, developed in-house in the MACARON team.

The networks have 5 hidden layers of 20 neurons each, and σ = tanh. In total, Wθ has
1 761 parameters (one can compare this to a FEM with 1 761 degrees of freedom). We train
for 2 500 epochs (number of descent steps) and Nc = 5 000 Monte-Carlo samples.

All computations are run on a single GPU, an AMD Instinct MI210.

We present PINN solutions, for several Ω and f , of a four-dimensional parametric BVP,
whose solution depends on x ∈ Ω ⊂ R2 and µ = (α,β) ∈ M ⊂ R2:{

∆W(x;µ) + βW(x;µ) = f (x;µ) for (x,µ) ∈ Ω×M,

W(x;µ) = 0 for (x,µ) ∈ ∂Ω×M.

5freely accessible at https://gitlab.inria.fr/scimba/scimba
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Square domain, with a boundary loss function
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Square domain, hard-constrained boundary conditions
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Potato-like domain with a hole, with a boundary loss function
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Potato-like domain with a hole, with a boundary loss function
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Potato-like domain with a hole, with a boundary loss function
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What now?

The main objectives of this work are to improve:

• the accuracy of parametric PINNs, and
• the error constant of classical methods

by hybridizing PINNs with classical numerical methods.

More specifically, we enrich the polynomial bases of:

1. Continuous Galerkin (CG) methods for elliptic PDEs;
2. Discontinuous Galerkin (DG) methods for hyperbolic PDEs with source terms.
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Context of hybrid methods

Advantages of the Continuous Galerkin (CG) method

• The CG method is provably convergent: more DOFs lead to a more accurate solu-
tion.

• Optimized software is widely used in industry and academia.

Advantages of PINNs

• PINNs are mesh-less, which is good for e.g. complex geometries.
• High-dimensional parametric problems are easily tackled.
• Once the network is trained, the solution inference is quick.

Hybrid methods seek to combine the best of both worlds: in our case, using a PINN to
improve the resolution of the CG solution while retaining its order of accuracy.
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Correcting the CG method with PINNs

We consider a parametric elliptic PDE D(u, x;µ) = 0.

We propose a two-step hybrid method:

1. Offline phase: train a neural network (e.g. a parametric PINN) to approximate a
large family of solutions to the PDE;

2. Online phase: use the trained network to correct the FEM approximation space, and
run the CG simulation on a coarse grid.
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Classical CG method (finite element method)

The classical CG method relies on the following steps.

1. Rewrite the PDE D(u, x;µ) = 0 as a variational problem:
Find u ∈ V such that a(u, v) = `(v) ∀v ∈ V,

where V = Hm
0 (Ω) is a Hilbert space, a a bilinear form, and ` a linear form.

2. Discretize the domain Ω and introduce Vh a finite-dimensional subspace of V , to get

Find uh ∈ Vh such that a(uh, vh) = `(vh) ∀vh ∈ Vh.

3. Solve the above linear system to get the approximation uh of u.

The approximation space Vh is made of piecewise polynomial functions on the mesh Th:

Vh =
{
vh ∈ Hm

0 (Ω) ∩ C0(Ω) such that ∀K ∈ Th, vh
∣∣
K ∈ Pq(K)

}
.
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Enriching the approximation space

Assume that we have a prior6 uθ ∈ Hm
0 (Ω) on the solution u.

 How to use uθ to improve the CG solution?

We suggest to modify the CG approximation space, replacing Vh by V+
h , defined by:

V+
h =

{
vh = uθ + p+h , p+h ∈ Vh

}
.

Since uθ ∈ Hm
0 (Ω), V+

h remains a subspace of Hm
0 (Ω), like Vh.

The discrete variational problem becomes7:(
Find uh ∈ Vh such that

∀vh ∈ Vh, a(uh, vh) = `(vh)

)
 

(
Find u+h ∈ V+

h such that
∀vh ∈ Vh, a(uh, vh) = `(vh)

)

6Here, given by a PINN, but that is not necessarily the case.

7This sets the method in the Petrov-Galerkin framework, where trial and test spaces are different.
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Find uh ∈ Vh such that

∀vh ∈ Vh, a(uh, vh) = `(vh)

)
 

(
Find u+h ∈ V+

h such that
∀vh ∈ Vh, a(uh, vh) = `(vh)

)
6Here, given by a PINN, but that is not necessarily the case.
7This sets the method in the Petrov-Galerkin framework, where trial and test spaces are different.
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Error analysis (proof in appendix)

Equipped with the modified approximation space, we now perform an error analysis.

Theorem: Let u ∈ Hm
0 be the exact solution of the BVP, uθ ∈ Hm

0 (Ω) a prior on u, and
u+h ∈ V+

h the enriched CG solution (considering Pq polynomials, with m 6 q). Then:

‖u− u+h ‖Hm . C
+
gain hq+1−m|u|Hq+1

classical CG error

.

In this result, the constant
C+gain =

|u− uθ|Hq+1

|u|Hq+1

represents the potential gain compared to the error of the classical CG method.

Key remark: The prior uθ must be a good approximation of the (q+ 1)th derivative of u.
This is why we use PINNs, rather than purely data-driven priors!
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Summary

This hybrid method can be seen as
• enriching the CG approximation space with a PINN prior, to get V+

h ;
• or ensuring the convergence of a PINN approximation by adding a CG approxima-
tion on a coarse grid.

Remark: The hybrid method consists in offline and online parts:
Offline: Train the PINN on the parametric PDE (potentially time-consuming).
Online: There are two online substeps:

1. evaluate the NN at Gauss points to compute the approximation space,
2. use a regular, coarse CG solver with the new approximation space.

NN inference is quick, so the online cost of using the NN is negligible!
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2D+2D Poisson problem

First, we tackle the following 4D PDE (2D in space, with two parameters):{
−∆u = f in Ω,
u = 0 on ∂Ω,

with Ω = (−π2 ,
π
2 )

2, parameters x01 , x02 ∼ U(−0.5, 0.5) and exact solution

u
(
x1, x2; x01 , x02

)
= sin(2x1) sin(2x2) exp

(
−
1
2
(
(x1 − x01 )2 + (x2 − x02 )2

))
.

With a given q, we compare, averaging over 50 values of the parameters (x01 , x02 ), the
relative L2 errors of the enhanced Pq CG method (with approximation space V+

h ) to
• the classical Pq CG method (with approximation space Vh);
• the results of the PINN.
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2D+2D Poisson problem – gains

We add a component to the loss function: the derivatives with respect to the parameters

‖∂x01 (∆uθ + f )‖+ ‖∂x02 (∆uθ + f )‖.

Gains (L2 error): Gains (L2 error):
ours w.r.t. PINNs ours w.r.t. CG

q N min max mean min max mean

1 20 18.28 66.19 43.42 243.79 874.3 633.45
1 40 73.45 272.36 176.52 241.8 843.29 621.68

2 20 362.57 2,052.78 1,025.28 177.74 476.76 376.16
2 40 3,081.22 17,532.62 8,725.57 177.16 472.55 371.93

3 20 4,879.13 32,757.68 14,646.89 116.52 298.33 208.35
3 40 88,736.63 587,716.86 264,383.45 117.46 296.34 208.29
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2D+2D Poisson problem – convergence

16 32 64 128 25610−7
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2

1
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L2 error, q = 1
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1
N

L2 error, q = 2

classical CG (using Vh) enriched CG (using V+h )
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2D+2D Poisson problem – computation time

We now compare computation times: we record the mesh size and the computation
time T (excluding training time! see appendix) required to reach an error E.

0.5 5 50

10−4

10−3

10−2

10−1

N=8

N=1
6

N=3
2

N=6
4

N=1
28

N=1
0

N=1
5
N=2

0
N=2

5
N=3

0

T

L2 error, q = 1

classical CG (using Vh) enriched CG (using V+h )

E 10−3 10−4

N
Vh 120 373
V+
h 8 25

gain 15 14.9

T
Vh 43 424
V+
h 0.24 1.93

gain 179 220
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2D+2D Poisson problem on a donut

We now consider the Poisson problem on a donut, with Dirichlet boundary conditions.
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2D+2D Poisson problem on a donut – gains

Gains (L2 error): Gains (L2 error):
ours w.r.t. PINNs ours w.r.t. CG

q N min max mean min max mean

1 20 10.18 35.8 19.49 71.17 254.32 153.44
1 40 33.35 125.03 65.64 63.93 199.95 131.06

2 20 189.1 1,331.27 485.95 32.47 80.69 58.98
2 40 1,241.42 9,686.46 3,261.71 30.57 74.15 54.09

3 20 5,630.17 39,651.58 14,987.25 15.73 32.1 23.07
3 40 74,794.74 573,631.63 202,631.9 13.67 29.52 20.57
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Tsunami simulation: naive numerical method
Tsunami initialization Simulation with a naive numerical method
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Tsunami simulation: failure

 The simulation is not usable!

Indeed, the ocean at rest, far from the tsunami, started spontaneously producing waves.

This comes from the non-preservation of stationary solutions, hence the need to
develop numerical methods that preserve stationary solutions: so-called well-balanced
methods.
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Tsunami simulation: well-balanced method
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Objectives

The goal of this work is to provide a numerical method which:

• is able to deal with generic systems of balance laws,
• can provide a very good approximation of families of steady solutions,
• is as accurate as classical methods on unsteady solutions,
• with provable convergence estimates.

To that end, we select the Discontinuous Galerkin (DG) framework.
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The shallow water equations

The shallow water equations are governed by the following PDE:
∂th+ ∂xq = 0,

∂tq+ ∂x

(
q2

h +
1
2gh

2
)

= −gh∂xZ(x).

x

u(x, t)

Z(x)

h(x, t)
• h(x, t): water depth
• u(x, t): water velocity
• q = hu: water discharge
• Z(x): known topography
• g: gravity constant
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The shallow water equations: steady solutions

The steady solutions of the shallow water equations are governed by the following ODEs:
∂xq = 0,

∂x

(
q2

h +
1
2gh

2
)

= −gh∂xZ(x),
 


q = cst =: q0,
q20
2h2 + g(h+ Z) = cst.

x
Z(x)

H0

h(x) If the velocity vanishes, i.e.
q0 = 0, we obtain the lake at
rest steady solution:

h+ Z = cst =: H0.
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∂x

(
q2

h +
1
2gh

2
)

= −gh∂xZ(x),
 


q = cst =: q0,
q20
2h2 + g(h+ Z) = cst.

x

u(x) = q0/h(x)

Z(x)

h(x)
For a nonzero discharge
q0 6= 0, we obtain a moving
steady solution: h(x) satisfies
a polynomial equation of de-
gree 3 for all x.
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Finite volume method, visualized

x

y

W(x)

Wi =
1
∆x

∫ xi+ 1
2

xi− 1
2

W(x) dx + O(∆x)
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Discontinuous Galerkin, visualized

x

y

W(x)

W(xi−1/2) + O(∆x2)

W(xi+1/2) + O(∆x2)
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Discontinuous Galerkin, visualized

x

y

W(x)

W(xi−1/2) + O(∆x3)

W(xi+1/2) + O(∆x3)
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Discontinuous Galerkin: an example

On the previous slide, the data W is represented by

• a polynomial of degree 2 in each cell (Galerkin approximation),
• which is Discontinuous at interfaces between cells.

Therefore, in each cell Ωi, W is approximated by

W
∣∣
Ωi

' WDG
i := α0 + α1x + α2x2 =

2∑
j=0

αjxj,

where the polynomial coefficients α0, α1 and α2 are determined to ensure fitness
between the continuous data and its polynomial approximation.

Any polynomial of degree two can be exactly represented this way.
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Discontinuous Galerkin: polynomial basis

More generally, we define a polynomial basis ϕ0, . . . , ϕN on each cell Ωi and
approximate the solution in this basis.

A usual example is the following so-called modal basis:

∀j ∈ {0, . . . ,N}, ϕj(x) = xj.

Main takeaway: The DG scheme is exact on every function that can be exactly
represented in the basis!
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Main idea

Recall that the DG scheme will be exact on every function that can be exactly
represented in the DG basis, as soon as it is also a solution to the PDE.

Main idea
Enhance the DG basis by using the steady solution!

 If the steady solution or an approximation thereof is contained in the basis, then:

• using the exact steady solution in the basis will make the scheme exactly well-
balanced;

• using an approximation of the steady solution will make the scheme approximately
well-balanced.
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Enhanced DG bases

Assume that you know a prior Wθ on the steady solution.

It can be the exact steady solution (Wθ = Weq), or it can be an approximation (Wθ ' Weq).

The goal is now to enhance the modal basis V using Wθ:

V = {1, x, x2, . . . , xN}.

First possibility: multiply the whole basis by Wθ

Vθ∗ = {Wθ, x Wθ, x2Wθ, . . . , xNWθ}.

Second possibility: replace the first element with Wθ

Vθ+ = {Wθ, x, x2, . . . , xN}.
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Error estimates

We denote by:

• Wex the exact solution,
• WDG the approximate solution without prior,
• WθDG the approximate solution with prior Wθ and basis Vθ∗ .

For a DG scheme of order q+ 1, we obtain8 the following error estimates:

‖Wex −WDG‖ .
∣∣Wex

∣∣
Hq+1 ∆xq+1,

‖Wex −WθDG‖ .
∣∣∣∣Wex

Wθ

∣∣∣∣
Hq+1

∆xq+1 ‖Wθ‖L∞ .

Conclusion of the error estimates: the prior Wθ needs to provide a good approximation
of the derivatives of the steady solution.

8Rigorous error estimates are written in terms of the error in the projection onto both bases.
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Obtaining a prior

For very simple systems, one can use the exact steady solution as a prior.

However, in many cases, even for some simple and well-known systems, one cannot
compute the exact steady solution. Therefore, an approximation is required.

How to obtain such an approximation?

1. First possibility: use a traditional numerical approximation, obtained by classical
ODE solvers (e.g. Runge-Kutta schemes).

2. Second possibility: use a Physics-Informed Neural Network (PINN).

Since we need a good approximation of the derivatives, we use a PINN.

Next step: Validate the method with several numerical experiments.
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Perturbation of a shallow water steady solution

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

1.7 1.8 1.9 2

PINN trained on a parametric
steady solution, driven by the to-
pography

Z(x;µ) = Γ exp
(
α(r20 − ‖x‖2)

)
,

with physical parameters

µ ∈ P ⇐⇒


α ∈ [0.25, 0.75],
Γ ∈ [0.1, 0.4],
r0 ∈ [0.5, 1.25].

Left plot: initial condition, made of
a perturbed steady solution.
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Perturbation of a shallow water steady solution
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Perturbation of a shallow water steady solution
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Conclusion

We introduced

• a framework for approximating solutions to PDEs with linear or nonlinear functions,
• physics-informed neural networks (PINNs),
• a hybrid method between FEM and PINNs, applied to elliptic problems,
• a hybrid method blending physics-informed learning and DG bases.

Perspectives include

• tackling time-dependent solutions,
• going to complex three-dimensional geometries and richer PDEs.

Related paper: E. Franck, V. Michel-Dansac and L. Navoret.
“Approximately WB DG methods using bases enriched with PINNs.”, J. Comput. Phys., 2024
git repository: https://github.com/Victor-MichelDansac/DG-PINNs
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Exact imposition of the boundary conditions

For the moment, the boundary conditions are viewed as constraints, and the solution
will not exactly satisfy them.

This can be remedied by introducing a suitable ansatz9. To that end, we define

W̃θ = B(Wθ, x, t;µ), such that W̃θ(x, t;µ) = g(x, t;µ) for x ∈ ∂Ω.

Clearly, the new approximate solution W̃θ exactly satifies the boundary conditions.

Moreover, the boundary loss function can be eliminated, thus reducing competition
between the loss functions.

 How to get such an ansatz? We check on an example.

9I. E. Lagaris et al., IEEE Trans. Neural Netw. (1998)



Exact imposition of the boundary conditions: example

Let us go back to the parameterized Laplace equation, where µ = (α,β):{
∆W(x;µ) + βW(x;µ) = f (x;µ) for (x,µ) ∈ Ω× P,

W(x;µ) = 0 for (x,µ) ∈ ∂Ω× P.

Homogeneous Dirichlet BC are imposed on Ω = (0, 1)2, and so we define the ansatz

W̃θ = B(Wθ, x;µ) = x1(1− x1) x2(1− x2)Wθ.

This obviously satisfies the boundary conditions, since ∀x ∈ ∂Ω, W̃θ(x;µ) = 0.

Therefore, the loss function only has to ensure that W̃θ approximates the solution to the
PDE in the interior of Ω, through minimizing the loss function

JPDE(θ) =

∫
P

∫
Ω

∥∥∥∆W̃θ(x;µ) + βW̃θ(x;µ) − f (x;µ)
∥∥∥2
2
dx dµ.



High-frequency problem: spectral bias of MLPs

Spectral bias: MLPs first learn the low
frequencies, before learning the high
ones (with difficulty).

To illustrate this, we consider the high-
frequency solution

Wexact(x;µ) = αβ sin(8πx1) sin(8πx2).
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High-frequency problem: spectral bias of MLPs
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High-frequency problem: spectral bias of MLPs
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High-frequency problem: spectral bias of MLPs
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High-frequency problem: spectral bias of MLPs
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High-frequency problem: with Fourier features

To overcome the spectral bias of MLPs, we can use Fourier features10.

In this case, we replace the call to the neural network, going from Wθ(x;µ) to

Wθ(x;µ, sin(πa1x), cos(πb1x), . . . , sin(πaKx), cos(πbKx)),

with K ∈ N the number of Fourier features and (ai)i, (bi)i the trainable frequencies.

10See [M. Tancik et al, (2021)], but other methods exist, such as Finite Basis PINNs (FBPINNs, see [V. Dolean et
al., Comput. Method. Appl. M. (2024)]).



High-frequency problem: with Fourier features
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High-frequency problem: with Fourier features
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High-frequency problem: with Fourier features
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High-frequency problem: with Fourier features
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Monte-Carlo integration: convergence

Consider an integrable and bounded function f : Ω× (0, T) → R, and define (Xk, Tk)k a
sequence of independent random variables, uniformly sampled in Ω× (0, T).

We wish to give an approximation to

I =
∫
Ω

∫ T
0
f (x, t)dt dx.

An estimator of I is the following:

În = |Ω|T
n

n∑
k=1

f (Xk, Tk).

Since the (Xk, Tk)k are uniformly sampled, we get

E[f (Xk, Tk)] =
1

|Ω|T

∫
Ω

∫ T
0
f (x, t)dt dx.

Hence, applying the law of large numbers tells us that, with probability 1, În → I.



Monte-Carlo integration: convergence speed

We can also determine the convergence speed of the Monte-Carlo method, assuming
that f 2 is integrable.

The central limit theorem allows us to state that
√
n(În − I) −−−→

n→∞ N(0, σ2),

and so, for large enough n and with probability 1,∣∣În − I
∣∣ = O

(
n−

1
2
)
.

This result is independent of the dimension d of Ω! Contrast this with, for instance, the
trapezoidal rule, with an error in O(n− 2

d ).



Error analysis – proof

To prove this result, we adapt the proof of Céa’s lemma to the additive prior case.

The numerical solution u+h is given for all x ∈ Ω by

u+h (x) = uθ(x) + p+h (x),

with p+h ∈ Vh ⊂ V solution of the new discrete variational problem. We have

a(u− u+h ,u− u+h ) = a
(
u− u+h , (u− uθ) − p+h

)
= a

(
u− u+h , (u− uθ) − p+h − vh + vh

)
, ∀vh ∈ Vh

= a
(
u− u+h , (u− uθ) − vh

)
+ a
(
u− u+h , vh − p+h

)
, ∀vh ∈ Vh.

We will estimate both terms, one by one.



Error analysis – proof (cont’d)

Let us first estimate the second term: a
(
u− u+h , vh − p+h

)
.

Using that Vh ⊂ V , we have, by Galerkin orthogonality,

a(u− u+h , vh) = 0, ∀vh ∈ Vh.

The above equality is valid for all vh ∈ Vh, and vh − p+h ∈ Vh. Therefore, we obtain

a
(
u− u+h , vh − p+h

)
= 0, ∀vh ∈ Vh.

The second term therefore vanishes, and we are left with the first one:

a(u− u+h ,u− u+h ) = a
(
u− u+h , (u− uθ) − vh

)
, ∀vh ∈ Vh.



Error analysis – proof (cont’d)

Denoting by α and γ the coercivity and continuity constants of a, we have

α
∥∥u− u+h

∥∥2
Hm 6 a

(
u− u+h ,u− u+h

)
= a

(
u− u+h , (u− uθ) − vh

)
, ∀vh ∈ Vh,

6 γ
∥∥u− u+h

∥∥
Hm
∥∥(u− uθ) − vh

∥∥
Hm , ∀vh ∈ Vh,

which immediately leads to

‖u− u+h ‖Hm 6
γ

α

∥∥(u− uθ) − vh
∥∥
Hm , ∀vh ∈ Vh.

Applying the above relation to vh = Ih(u− uθ) with Ih the Lagrange interpolator, and
invoking classical interpolation results from [A. Ern and J.-L. Guermond, (2004)], we get

‖u− u+h ‖Hm .
γ

α
hq+1−m|u− uθ|Hq+1 .

Rewriting the above equation to introduce the error of the classical FEM, we get

‖u− u+h ‖Hm . Cgain hq+1−m|u|Hq+1 with Cgain =
|u− uθ|Hq+1

|u|Hq+1
,

which completes the proof.



Enhancing the approximation space – multiplicative prior

Another possible modification of the FEM approximation space, is to replace Vh by V×
h :

V×
h =

{
vh = uθp×h , p×h ∈ Vh

}
.

The discrete variational problem becomes:(
Find u×h ∈ V×

h such that
∀vh ∈ Vh, a(uh, vh) = `(vh)

)
⇐⇒

(
Find ph ∈ Vh such that

∀vh ∈ Vh, a(uθph, vh) = `(vh).

)

Theorem: Let u be the exact solution of the BVP, uθ ∈ Hm
0 (Ω) a prior on u, and u×h ∈ V×

h
the enhanced FEM solution (considering Pq polynomials, with m 6 q). Then:

‖u− u×h ‖Hm . C
×
gain h

q+1−m|u|Hq+1 .

In this result, the gain constant is C×gain =

∣∣∣∣ uuθ
∣∣∣∣
Hq+1

‖uθ‖Wm,∞
|u|Hq+1

. Beware of the division!
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PINNs as a DG prior: perturbed steady solution

We use the DG scheme to solve the advection equation with a perturbation of the steady
solution as initial condition:

∂tW + ∂xW = aW + bW2 for x ∈ (0, 1), t ∈ (0, T),
W(0, x) = (1+ ε sin(2πx))Weq(x) for x ∈ (0, 1),
W(t, 0) = u0 for t ∈ (0, T).

We expect:

• both schemes to converge (in time) towards the original, unperturbed steady solu-
tion;

• the DG scheme with prior to provide a better approximation of the unperturbed
steady solution than the classical DG scheme.



PINNs as a DG prior: perturbed steady solution
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PINNs as a DG prior: perturbed steady solution
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PINNs as a DG prior: unsteady solution

We use the DG scheme to solve the advection of a Gaussian bump:
∂tW + ∂xW = aW + bW2 for x ∈ (0, 1), t ∈ (0, T),

W(0, x) = 0.1(1+ e−100(x−0.5)2) for x ∈ (0, 1),
W(t, 0) = 0.1(1+ e−25) for t ∈ (0, T).

We expect the prior not to alter the convergence:

• both schemes to converge with the same error rate;
• the DG scheme with prior to provide a similar approximation to the classical DG
scheme.



PINNs as a DG prior: unsteady solution

We compute the errors in x between the exact and approximate solutions:

• for several numbers of basis elements and discretization cells,
• using a = 0.75; b = 0.75; u0 = 0.15.

without prior with prior

cells error order error order gain

10 4.04e-02 — 5.04e-02 — 0.80
20 3.46e-02 0.22 4.28e-02 0.24 0.81
40 2.84e-02 0.28 3.50e-02 0.29 0.81
80 2.15e-02 0.40 2.64e-02 0.40 0.81
160 1.47e-02 0.55 1.81e-02 0.55 0.81

(a) Errors with a basis composed of one element.



PINNs as a DG prior: unsteady solution

We compute the errors in x between the exact and approximate solutions:

• for several numbers of basis elements and discretization cells,
• using a = 0.75; b = 0.75; u0 = 0.15.

without prior with prior

cells error order error order gain

10 1.92e-02 — 1.93e-02 — 1.00
20 6.26e-03 1.62 6.27e-03 1.62 1.00
40 1.19e-03 2.39 1.20e-03 2.39 1.00
80 1.99e-04 2.59 1.99e-04 2.59 1.00
160 4.19e-05 2.24 4.20e-05 2.24 1.00

(b) Errors with a basis composed of two elements.



PINNs as a DG prior: unsteady solution

We compute the errors in x between the exact and approximate solutions:

• for several numbers of basis elements and discretization cells,
• using a = 0.75; b = 0.75; u0 = 0.15.

without prior with prior

cells error order error order gain

10 5.15e-03 — 5.15e-03 — 1.00
20 4.56e-04 3.50 4.56e-04 3.50 1.00
40 4.55e-05 3.32 4.55e-05 3.32 1.00
80 5.42e-06 3.07 5.42e-06 3.07 1.00
160 6.75e-07 3.01 6.75e-07 3.01 1.00

(c) Errors with a basis composed of three elements.



PINNs as a DG prior: unsteady solution

We compute the errors in x between the exact and approximate solutions:

• for several numbers of basis elements and discretization cells,
• using a = 0.75; b = 0.75; u0 = 0.15.

without prior with prior

cells error order error order gain

10 4.72e-04 — 4.72e-04 — 1.00
20 2.87e-05 4.04 2.87e-05 4.04 1.00
40 1.81e-06 3.99 1.81e-06 3.99 1.00
80 1.14e-07 3.98 1.14e-07 3.98 1.00
160 7.20e-09 3.99 7.20e-09 3.99 1.00

(d) Errors with a basis composed of four elements.
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