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Tsunami simulation: failure

 The simulation is not usable!

Indeed, the ocean at rest, far from the tsunami, started spontaneously producing waves.

This comes from the non-preservation of stationary solutions, hence the need to
develop numerical methods that preserve stationary solutions: so-called well-balanced
methods.
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Objectives

The goal of this work is to provide a numerical method which:

• is able to deal with generic systems,
• can provide a very good approximation of families of steady solutions,
• is as accurate as classical methods on unsteady solutions,
• with provable convergence estimates.

Before outlining the chosen numerical framework, we give an example of a physical
model that will be used to validate the method.
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The shallow water equations

In one space dimension, the shallow water equations are governed by the following PDE:
∂th+ ∂xq = 0,

∂tq+ ∂x

(
q2

h +
1
2gh

2
)

= −gh∂xZ(x).

x

u(x, t)

Z(x)

h(x, t)
• h(x, t): water depth
• u(x, t): water velocity
• q = hu: water discharge
• Z(x): known topography
• g: gravity constant
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The shallow water equations: steady solutions

The steady solutions of the shallow water equations are governed by the following ODEs:
∂xq = 0,

∂x

(
q2

h +
1
2gh

2
)

= −gh∂xZ(x),
 


q = cst =: q0,
q20
2h2 + g(h+ Z) = cst.

x
Z(x)

H0

h(x) If the velocity vanishes, i.e.
q0 = 0, we obtain the lake at
rest steady solution:

h+ Z = cst =: H0.
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1
2gh

2
)

= −gh∂xZ(x),
 


q = cst =: q0,
q20
2h2 + g(h+ Z) = cst.

x

u(x) = q0/h(x)

Z(x)

h(x)
For a nonzero discharge
q0 6= 0, we obtain a moving
steady solution: h(x) satisfies
a polynomial equation of de-
gree 3 for all x.
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The finite volume method, visualized in one space dimension

x

y

W(x)

Wi =
1
∆x

∫ xi+ 1
2

xi− 1
2

W(x) dx + O(∆x)
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The discontinuous Galerkin method, visualized in one space dimension

x

y

W(x)

W(xi−1/2) + O(∆x2)

W(xi+1/2) + O(∆x2)
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The discontinuous Galerkin method, visualized in one space dimension

x

y

W(x)

W(xi−1/2) + O(∆x3)

W(xi+1/2) + O(∆x3)
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Discontinuous Galerkin: an example

On the previous slide, the physical unknown W is represented by

• a polynomial of degree 2 in each cell (Galerkin approximation),
• which is Discontinuous at interfaces between cells.

Therefore, in each cell Ωi, W is approximated by

W
∣∣
Ωi

' WDG
i := α0 + α1x + α2x2 =

2∑
j=0

αjxj,

where the polynomial coefficients α0, α1 and α2 are determined to ensure fitness
between the unknown at the continuous level, and its polynomial approximation.

Any polynomial of degree two can be exactly represented this way.
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Discontinuous Galerkin: polynomial basis

More generally, we define a polynomial basis ϕ0, . . . , ϕN on each cell Ωi and
approximate the solution in this basis.

A usual example is the following so-called modal basis:

∀j ∈ {0, . . . ,N}, ϕj(x) = xj.

Main takeaway: The DG scheme is exact on every function that can be exactly
represented in the basis!
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Main idea

Recall that the DG scheme will be exact on every function that can be exactly
represented in the DG basis, as soon as it is also a solution to the PDE.

Main idea
Enhance the DG basis by using the steady solution!

 If the steady solution or an approximation thereof is contained in the basis, then:

• using the exact steady solution in the basis will make the scheme exactly well-
balanced;

• using an approximation of the steady solution will make the scheme approximately
well-balanced.
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Enhanced DG bases

Assume that you know a prior Wθ on the steady solution.

It can be the exact steady solution (Wθ = Weq), or it can be an approximation (Wθ ' Weq).

The goal is now to enhance the modal basis V using Wθ:

V = {1, x, x2, . . . , xN}.

First possibility: multiply the whole basis by Wθ

Vθ
∗ = {Wθ, x Wθ, x2Wθ, . . . , xNWθ}.

Second possibility: replace the first element with Wθ

Vθ
+ = {Wθ, x, x2, . . . , xN}.
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Error estimates

We denote by:

• Wex the exact solution,
• WDG the approximate solution without prior,
• Wθ

DG the approximate solution with prior Wθ and basis Vθ
∗ .

For a DG scheme of order q+ 1, we obtain1 the following error estimates:

‖Wex −WDG‖ .
∣∣Wex

∣∣
Hq+1 ∆xq+1,

‖Wex −Wθ
DG‖ .

∣∣∣∣Wex

Wθ

∣∣∣∣
Hq+1

∆xq+1 ‖Wθ‖L∞ .

Conclusion of the error estimates: the prior Wθ needs to provide a good approximation
of the derivatives of the steady solution.

1Rigorous error estimates are written in terms of the error in the projection onto both bases.
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Obtaining a prior

For very simple systems, one can use the exact steady solution as a prior.

However, in many cases, even for some simple and well-known systems, one cannot
compute the exact steady solution. Therefore, an approximation is required.

How to obtain such an approximation?

1. First possibility: use a traditional numerical approximation, obtained by classical
ODE solvers (e.g. Runge-Kutta schemes).

2. Second possibility: use a Physics-Informed Neural Network (PINN).

Since we need a good approximation of the derivatives, we use a PINN.
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Parameterized families of steady solutions

We consider a parametric system of p balance laws, with unknown W : R1+d+m → Rp,

∂tW(t, x;µ) +∇ · F(W(t, x;µ)) = S(W(t, x;µ)),

where t > 0 and x ∈ Ω ⊂ Rd, and with µ ∈ P ⊂ Rm some parameters.

Steady solutions satisfy
∇ · F(W(x;µ)) = S(W(x;µ)),

which is nothing but a parametric, time-independent PDE.

Therefore, the above PDE defines a parameterized family of steady solutions.
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Parametric PINNs

Ommitting the boundary conditions, a parametric PDE is the following problem:

find W such that D(W, x;µ) = 0 for all x ∈ Ω and µ ∈ P ⊂ Rm.

The parametric PINN
Wθ : Ω× P ⊂ Rm+d → Rp

(x,µ) 7→ Wθ(x;µ)

should approximately satisfy the above PDE, and the problem becomes:

find θopt such that D(Wθopt , x;µ) ' 0 for all x ∈ Ω and µ ∈ P ⊂ Rm.

To find θopt, the minimization problem simply reads:

θopt = argmin
θ

∫
P

∫
Ω

‖D(Wθ, x;µ)‖22 dxdµ.
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Perturbation of a shallow water steady solution

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

1.7 1.8 1.9 2

PINN trained on a parametric
steady solution, driven by the to-
pography

Z(x;µ) = Γ exp
(
α(r20 − ‖x‖2)

)
,

with physical parameters

µ ∈ P ⇐⇒


α ∈ [0.25, 0.75],
Γ ∈ [0.1, 0.4],
r0 ∈ [0.5, 1.25].

Left plot: initial condition, made of
a perturbed steady solution.
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Perturbation of a shallow water steady solution

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−0.03 −0.02 −0.01 0

(a) classical basis
−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−0.04 −0.03 −0.02 −0.01 0

(b) enhanced basis
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Perturbation of a shallow water steady solution
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Conclusion and related work

We have obtained:

• an approximately well-balanced DG scheme,
• for parameterized families of steady solutions,
• which works for arbitrary hyperbolic balance laws.

Related work include using ML tools for

• enriching finite element approximation spaces
(Frédérique Lecourtier’s talk in MS025A, on Thursday afternoon),

• predicting an initial guess for Newton’s method,
• performing shape optimization with a volume constraint.

Article presenting this work: E. Franck, V. Michel-Dansac and L. Navoret.
“Approximately WB DG methods using bases enriched with PINNs.”, J. Comput. Phys., 2024
git repository: https://github.com/Victor-MichelDansac/DG-PINNs
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Thank you for your attention!



Exact imposition of the boundary conditions

For the moment, the boundary conditions are viewed as constraints, and the solution
will not exactly satisfy them.

This can be remedied by introducing a suitable ansatz2. To that end, we define

W̃θ = B(Wθ, x, t;µ), such that W̃θ(x, t;µ) = g(x, t;µ) for x ∈ ∂Ω.

Clearly, the new approximate solution W̃θ exactly satifies the boundary conditions.

Moreover, the boundary loss function can be eliminated, thus reducing competition
between the loss functions.

 How to get such an ansatz? We check on an example.

2I. E. Lagaris et al., IEEE Trans. Neural Netw. (1998)



Exact imposition of the boundary conditions: example

Let us go back to the parameterized Laplace equation, where µ = (α,β):{
∆W(x;µ) + βW(x;µ) = f (x;µ) for (x,µ) ∈ Ω× P,

W(x;µ) = 0 for (x,µ) ∈ ∂Ω× P.

Homogeneous Dirichlet BC are imposed on Ω = (0, 1)2, and so we define the ansatz

W̃θ = B(Wθ, x;µ) = x1(1− x1) x2(1− x2)Wθ.

This obviously satisfies the boundary conditions, since ∀x ∈ ∂Ω, W̃θ(x;µ) = 0.

Therefore, the loss function only has to ensure that W̃θ approximates the solution to the
PDE in the interior of Ω, through minimizing the loss function

JPDE(θ) =

∫
P

∫
Ω

∥∥∥∆W̃θ(x;µ) + βW̃θ(x;µ) − f (x;µ)
∥∥∥2
2
dx dµ.



PINNs as a DG prior: perturbed steady solution

We use the DG scheme to solve the advection equation with a perturbation of the steady
solution as initial condition:

∂tW + ∂xW = aW + bW2 for x ∈ (0, 1), t ∈ (0, T),
W(0, x) = (1+ ε sin(2πx))Weq(x) for x ∈ (0, 1),
W(t, 0) = u0 for t ∈ (0, T).

We expect:

• both schemes to converge (in time) towards the original, unperturbed steady solu-
tion;

• the DG scheme with prior to provide a better approximation of the unperturbed
steady solution than the classical DG scheme.



PINNs as a DG prior: perturbed steady solution
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PINNs as a DG prior: perturbed steady solution
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PINNs as a DG prior: unsteady solution

We use the DG scheme to solve the advection of a Gaussian bump:
∂tW + ∂xW = aW + bW2 for x ∈ (0, 1), t ∈ (0, T),

W(0, x) = 0.1(1+ e−100(x−0.5)2) for x ∈ (0, 1),
W(t, 0) = 0.1(1+ e−25) for t ∈ (0, T).

We expect the prior not to alter the convergence:

• both schemes to converge with the same error rate;
• the DG scheme with prior to provide a similar approximation to the classical DG
scheme.



PINNs as a DG prior: unsteady solution

We compute the errors in x between the exact and approximate solutions:

• for several numbers of basis elements and discretization cells,
• using a = 0.75; b = 0.75; u0 = 0.15.

without prior with prior

cells error order error order gain

10 4.04e-02 — 5.04e-02 — 0.80
20 3.46e-02 0.22 4.28e-02 0.24 0.81
40 2.84e-02 0.28 3.50e-02 0.29 0.81
80 2.15e-02 0.40 2.64e-02 0.40 0.81
160 1.47e-02 0.55 1.81e-02 0.55 0.81

(a) Errors with a basis composed of one element.



PINNs as a DG prior: unsteady solution

We compute the errors in x between the exact and approximate solutions:

• for several numbers of basis elements and discretization cells,
• using a = 0.75; b = 0.75; u0 = 0.15.

without prior with prior

cells error order error order gain

10 1.92e-02 — 1.93e-02 — 1.00
20 6.26e-03 1.62 6.27e-03 1.62 1.00
40 1.19e-03 2.39 1.20e-03 2.39 1.00
80 1.99e-04 2.59 1.99e-04 2.59 1.00
160 4.19e-05 2.24 4.20e-05 2.24 1.00

(b) Errors with a basis composed of two elements.



PINNs as a DG prior: unsteady solution

We compute the errors in x between the exact and approximate solutions:

• for several numbers of basis elements and discretization cells,
• using a = 0.75; b = 0.75; u0 = 0.15.

without prior with prior

cells error order error order gain

10 5.15e-03 — 5.15e-03 — 1.00
20 4.56e-04 3.50 4.56e-04 3.50 1.00
40 4.55e-05 3.32 4.55e-05 3.32 1.00
80 5.42e-06 3.07 5.42e-06 3.07 1.00
160 6.75e-07 3.01 6.75e-07 3.01 1.00

(c) Errors with a basis composed of three elements.



PINNs as a DG prior: unsteady solution

We compute the errors in x between the exact and approximate solutions:

• for several numbers of basis elements and discretization cells,
• using a = 0.75; b = 0.75; u0 = 0.15.

without prior with prior

cells error order error order gain

10 4.72e-04 — 4.72e-04 — 1.00
20 2.87e-05 4.04 2.87e-05 4.04 1.00
40 1.81e-06 3.99 1.81e-06 3.99 1.00
80 1.14e-07 3.98 1.14e-07 3.98 1.00
160 7.20e-09 3.99 7.20e-09 3.99 1.00

(d) Errors with a basis composed of four elements.
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