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Tsunami simulation

Ingredients for a tsunami simulation:

• a physical model: the shallow water
(Saint-Venant) equations

• applied mathematics: developing
numerical methods for solving these
equations

• data: topography, mesh, water
height measurements, …

portrait of Adhémar Jean Claude

Barré de Saint-Venant (1797-1886)
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Ingredients required for a numerical simulation

How to perform a numerical simulation?
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Ingredients required for a numerical simulation

First step: Discretization (Lisbon University geophysicists)
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Ingredients required for a numerical simulation

Second step : Tsunami initialization (Lisbon University geophysicists)
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Ingredients required for a numerical simulation

Third step : Starting the simulation
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Ingredients required for a numerical simulation

... that did not work, the ocean at rest, far from the tsunami, starts
spontaneously producing waves.

 The simulation is not usable!

This comes from the non-preservation of stationary solutions:

∂

∂tu(x, t) +
∂

∂x f (u(x, t)) = s(u(x, t))

Hence the need to develop numerical methods that exactly
preserve stationary solutions: so-called well-balanced methods.
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Ingredients required for a numerical simulation
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Ingredients required for a numerical simulation
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Ingredients required for a numerical simulation
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Ingredients required for a numerical simulation

Fourth step: Verification of the numerical results
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Simulation of the 2011 Japan tsunami

Water depth at sensors:
• #1: 5700 m;

• #2: 6100 m;

• #3: 4400 m.

Plots of the time variation
of the water height (in meters).
data in black, simulation in orange
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Estuary modeling

Gironde estuary : satellite picture Gironde estuary :
2D mesh 10/40



Estuary modeling
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Estuary modeling

Dordogne

Garonne

Gironde
from the 2D mesh:

• 1D description of the rivers
following their meanders

• treatment of the confluence

• interaction with the tide

Bordeaux
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Estuary modeling
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Estuary modeling

1D description :

West

North
North
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Estuary modeling

1D description :
I identification of the
left and right banks

West

North
North
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Estuary modeling

1D description :
I identification of the
left and right banks

I creation of the
river centerline

West

North
North
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Estuary modeling

1D description :
I identification of the
left and right banks

I creation of the
river centerline

West

North
North

1D instead of 2D : each “slice” of the river is

shrunk onto a point
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The shallow water equations with topography
∂th+ ∂xq = 0,

∂tq+ ∂x

(
q2

h +
1
2gh

2
)

= −gh∂xZ(x)

x

u(x, t)

Z(x)

h(x, t)

• h(x, t): water height
• u(x, t): water velocity
• q = hu: water discharge
• Z(x): known topography
• g: gravity constant

We will consider solutions of prime importance:

the steady solutions.

For additional details, check the {white, black}board!
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Hyperbolic systems of conservation laws

The shallow water equations fall within the broad framework of
hyperbolic systems of conservation laws.

In one space dimension, they are PDE systems with the following form:
∂W(t, x)

∂t +
∂F(W(t, x))

∂x = 0,

where:

• W : R+ × R → Rp is the unknown function, which depends on
time t and space x,

• F : Rp → Rp is the physical flux function.

Hyperbolic systems have several important (and linked) properties:

1. finite information propagation speed,
2. creation of discontinuities, even from smooth initial data,
3. conservation of the quantity W.
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Finite information propagation speed

We assume that the Jacobian matrix of the flux function F has real
eigenvalues: this is linked to a finite information propagation speed.

A typical example is the advection equation

∂tW + ∂x(cW) = 0,

where

• W(t, x) ∈ R,
• F : W 7→ cW is a linear function, with a fixed c 6= 0;
• the derivative of F is W 7→ c ∈ R∗.

This equation transports the initial condition W(0, x) with velocity c.
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Linear hyperbolic system: the advection equation
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Linear hyperbolic system: the advection equation
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Creation of discontinuities

Another property of nonlinear hyperbolic systems is that continuous
initial data can lead to a discontinuous solution in finite time.

A typical example is the inviscid Burgers’ equation

∂tW + ∂x

(
W2

2

)
= 0,

where

• W(t, x) ∈ R,
• F : W 7→ 1

2W
2 is a nonlinear function;

• the derivative of F is W 7→ W ∈ R.

This equation “transports the initial condition W(0, x) with velocity W”.
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Nonlinear hyperbolic system: Burgers’ equation
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Nonlinear hyperbolic system: Burgers’ equation
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Non-hyperbolic systems

To conclude this overview, we give an example of a non-hyperbolic
system.

The heat equation
∂tW + ∂xxW = 0

is an example of a parabolic system, where1

• the information travels at infinite speed;
• a regularizing effect is applied, rather than a production of dis-
continuities.

1Note that these two properties are not satisfied by every non-hyperbolic system.
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Non-hyperbolic system: the heat equation
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Non-hyperbolic system: the heat equation
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The finite volume method: discretization

Objective: Approximate the solution W(t, x) of the conservation law.

We partition the space domain in cells (Ωi)i, of length ∆x and of
evenly spaced centers xi, and we define:

• xi− 1
2
and xi+ 1

2
, the boundaries of cell Ωi;

• Wi(t), an approximation of W(t, x), defined by

Wi(t) =
1
∆x

∫ xi+ 1
2

xi− 1
2

W(t, x)dx.

xW(x, t) x
Wi(t)
×
xi

×
xi−1

×
xi+1xi− 1

2
xi+ 1

2

Remark: the approximation Wi(t) of W(t, x) is constant on each cell.
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Finite volume space discretization, visualized

x

y

W(x)

|

xi−1 xi− 1
2

|

xi xi+ 1
2

|

xi+1

Wi =
1
∆x

∫ xi+ 1
2

xi− 1
2

W(x) dx
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The finite volume method: numerical approximation

To derive the finite volume discretization of a system of
conservation laws, we average the system in space and time:

∫ ∆x
2

−∆x
2

∫∆t
0

∂tW(t, x)dt dx +
∫∆t
0

∫ ∆x
2

−∆x
2

∂xF(W(t, x))dx dt = 0.

We eventually obtain (check the {white, black}board!)

Wn+1
i = Wn

i −
∆t
∆x
[
F(Wn

i ,W
n
i+1) − F(Wn

i−1,W
n
i )
]
,

where the numerical flux F is such that F(W,W) = F(W).
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Hyperbolic systems of balance laws

To model complex physical phenomena, we often consider
hyperbolic systems of balance laws, with the following form:

∂tW + ∂xF(W) = S(W, x),

where:

• W : R+ × R → Rp is the unknown function,
• F : Rp → Rp is the physical flux function,
• S : Rp × R → Rp is the source term .

Compared to conservation laws, the presence of the source term
disrupts the conservation property.
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System of balance laws: the shallow water equations

A typical example of a system of balance laws is the shallow water
equations, governed by the following PDE:

∂th+ ∂xq = 0,

∂tq+ ∂x

(
q2

h +
1
2gh

2
)

= −gh∂xZ(x).

x

u(x, t)

Z(x)

h(x, t)

• h(x, t): water height
• u(x, t): water velocity
• q = hu: water discharge
• Z(x): known topography
• g: gravity constant
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Steady solutions

Moreover, balance laws have an additional kind of solution:
non-trivial steady solutions.

Definition: steady solution
W is a steady solution of ∂tW + ∂xF(W) = S(W, x) if, and only if,
∂tW = 0, i.e.

∂xF(W) = S(W, x).

x

Z(x)

h(x)

For the shallow water equations,
if the velocity vanishes, we obtain
the lake at rest steady solution:

h+ Z = cst.
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Finite volume scheme: application to balance laws

For a system of balance laws, i.e. with a source term, the finite
volume scheme becomes

Wn+1
i = Wn

i −
∆t
∆x
[
F(Wn

i ,W
n
i+1) − F(Wn

i−1,W
n
i )
]

+ ∆tS(Wn
i−1,W

n
i ,W

n
i+1),

where S is an approximation of the source term.

33/40



What about the steady solutions?

Recall that steady solutions are defined by taking ∂tW = 0, which
yields the ODE

∂xF(W) = S(W).

The discrete analogue is Wn+1
i = Wn

i , which is ensured if, and only if,

1
∆x
[
F(Wn

i ,W
n
i+1) − F(Wn

i−1,W
n
i )
]
= S(Wn

i−1,W
n
i ,W

n
i+1)

for all steady solutions. This relation obviously requires ad hoc
definitions of F and S, which will depend on the system under
consideration, and can be quite involved.

Definition: well-balanced scheme
A numerical method approximating the solution of a balance law is
called well-balanced if it preserves the steady solutions.
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An answer for the lake at rest: the hydrostatic reconstruction

The hydrostatic reconstruction was introduced in E. Audusse et al.,
SIAM J. Sci. Comput. (2004), as a way to make it possible for any
finite volume scheme to capture the lake at rest steady solution.

xi+ 1
2

Zi
Zi+1

hi
hi+1

xi+ 1
2

Zi
Zi+1

hi+ 1
2 ,−

hi+ 1
2 ,+

Zi+ 1
2

For additional details, check the {white, black}board!
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The hydrodynamic reconstruction

The hydrodynamic reconstruction is an improvement of the
hydrostatic reconstruction, introduced in [C. Berthon and
V. Michel-Dansac (2023)] to preserve moving steady solutions.

hni+ 1
2 ,−

= hni +
(
Zi − Zi+ 1

2

)
+ 2Fr2

(
hni ,h

n
i+ 1

2
,qni
)
H
(
hni ,h

n
i+ 1

2
,qni , Zi+ 1

2
− Zi

)
,

hni+ 1
2 ,+

= hni+1 +
(
Zi+1 − Zi+ 1

2

)
+ 2Fr2

(
hni+1,h

n
i+ 1

2
,qni+1

)
H
(
hni+1,h

n
i+ 1

2
,qni+1, Zi+ 1

2
− Zi+1

)
,

where we have defined the function H by

H =
1
2

E − sgn(1− Fr2)sgn(∆Z)

√
E2 +

√
1
2 |∆Z||[h]|

3

,

with E = [h] + 1− Fr2

2 sgn(∆Z)

√
|[h]|3
2|∆Z| . 36/40
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High-order accuracy

The Discontinuous Galerkin (DG) method offers a way to increase the
order of accuracy of traditional finite volume methods.

Definition: order of a numerical scheme
A numerical method is of order p (in space) if the error e(∆x)
between the approximate and exact solutions behaves as follows:

e(∆x) = O(∆xp).

Alternate definition: order of a numerical scheme
A numerical method is of order p (in space) if it is exact on
polynomials up to degree p− 1.
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High-order accuracy, visualized

x

y

W(x)

Wi =
1
∆x

∫ xi+ 1
2

xi− 1
2

W(x) dx + O(∆x)
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High-order accuracy, visualized

x

y

W(x)

W(xi−1/2) + O(∆x2)

W(xi+1/2) + O(∆x2)
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High-order accuracy, visualized

x

y

W(x)

W(xi−1/2) + O(∆x3)

W(xi+1/2) + O(∆x3)
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Thank you for your attention!



Conservation

Finally, we present the property of conservation.

To that end, we integrate the conservation law on the space domain
(a,b) ⊂ R. ∫b

a
∂tW dx +

∫b
a
∂xF(W)dx = 0

=⇒ ∂t

(∫b
a
W dx

)
+
(
F(W(t,b)) − F(W(t,a))

)
= 0.

If F(W(t,a)) = F(W(t,b)), meaning a balance between what enters
and leaves the space domain, then we obtain the conservation of W:

∂t

(∫b
a
W dx

)
= 0.



Link to the conservation property

The space domain is [a,b] =
⋃
i[xi− 1

2
, xi+ 1

2
], and so we get∫b

a
W dx =

∑
i

∫ xi+ 1
2

xi− 1
2

W dx = ∆x
∑
i

Wi(t).

Therefore, the discrete analogue of the conservation property is∑
i

Wn+1
i =

∑
i

Wn
i .

Using the definition of the numerical scheme, we obtain∑
i

Wn+1
i =

∑
i

Wn
i −

∆t
∆x

∑
i

(
Fni+ 1

2
− Fni− 1

2

)
∑
i

Wn+1
i =

∑
i

Wn
i −

∆t
∆x
(
F(W(tn,b)) − F(W(tn,a))

)
∑
i

Wn+1
i =

∑
i

Wn
i ,

and the discrete conservation property is recovered by the finite
volume method.
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The finite volume method: numerical approximation

To derive the space discretization of a system of conservation laws,
we fix some t > 0 and average the system on each cell:

1
∆x

∫ xi+ 1
2

xi− 1
2

∂tW(t, x)dx + 1
∆x

∫ xi+ 1
2

xi− 1
2

∂xF(W(t, x))dx = 0

=⇒ ∂t

 1
∆x

∫ xi+ 1
2

xi− 1
2

W(t, x)dx

+
1
∆x
(
F(W(t, xi+ 1

2
)) − F(W(t, xi− 1

2
))
)
= 0

=⇒ ∂tWi(t) +
1
∆x
(
F(W(t, xi+ 1

2
)) − F(W(t, xi− 1

2
))
)
= 0.

Given an approximation Fi+ 1
2
(t) ' F(W(t, xi+ 1

2
)), we obtain the

semi-discrete scheme in time

∂tWi(t) +
1
∆x
(
Fi+ 1

2
(t) − Fi− 1

2
(t)
)
= 0.



The finite volume method: numerical approximation

To derive the space discretization of a system of conservation laws,
we fix some t > 0 and average the system on each cell:
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Time discretization

Note that the semi-discrete scheme in time

∂tWi(t) +
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2
(t)
)
= 0

is nothing but an ordinary differential equation. To approximate its
solution, we partition the time domain (0, T) in intervals (tn, tn+1) of
size ∆t.

Using the usual explicit Euler time discretization, we obtain the fully
discrete scheme:
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2
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2
(tn)

)
= 0.

Introducing notation Wn
i = Wi(tn), we obtain the final form of the

finite volume scheme:
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