Introduction to well-balanced numerical methods

Victor Michel-Dansac*

November 09, 2023

DU IRMIA++, Strasbourg

*TONUS (soon-to-be MACARON) project-team, Université de Strasbourg, CNRS, Inria, IRMA, France

Introduction and motivation

Simulating a tsunami

Simulating an estuary

The shallow water equations

Hyperbolic equations: theory and numerical approximation

Hyperbolic systems of conservation laws

The finite volume method

Hyperbolic systems of balance laws

Well-balanced schemes

A simple well-balanced strategy: the hydrostatic reconstruction

Further challenges

Preservation of other steady solutions

High-order accurate methods

Introduction and motivation

Simulating a tsunami

Simulating an estuary

The shallow water equations

Hyperbolic equations: theory and numerical approximation

Hyperbolic systems of conservation laws

The finite volume method

Hyperbolic systems of balance laws

Well-balanced schemes

A simple well-balanced strategy: the hydrostatic reconstruction

Further challenges

Preservation of other steady solutions

High-order accurate methods

Tsunami simulation

Ingredients for a tsunami simulation:

- a physical model: the shallow water (Saint-Venant) equations
- applied mathematics: developing numerical methods for solving these equations
- data: topography, mesh, water height measurements, ...

portrait of Adhémar Jean Claude Barré de Saint-Venant (1797-1886)

How to perform a numerical simulation?

First step: Discretization (Lisbon University geophysicists)

Second step: Tsunami initialization (Lisbon University geophysicists)

Third step: Starting the simulation

Third step: Starting the simulation

... that did not work, the ocean at rest, far from the tsunami, starts spontaneously producing waves.

→ The simulation is not usable!

This comes from the non-preservation of stationary solutions:

$$\frac{\partial}{\partial t}u(x,t) + \frac{\partial}{\partial x}f(u(x,t)) = s(u(x,t))$$

... that did not work, the ocean at rest, far from the tsunami, starts spontaneously producing waves.

→ The simulation is not usable!

This comes from the non-preservation of stationary solutions:

$$\frac{\partial}{\partial x}f(u(x,t)) = s(u(x,t))$$
 if $\frac{\partial}{\partial t}u(x,t) = 0$ (stationary solution)

... that did not work, the ocean at rest, far from the tsunami, starts spontaneously producing waves.

→ The simulation is not usable!

This comes from the non-preservation of stationary solutions:

$$\frac{\partial}{\partial x} f(u(x,t)) = s(u(x,t))$$
 if $\frac{\partial}{\partial t} u(x,t) = 0$ (stationary solution)

Hence the need to develop numerical methods that **exactly preserve stationary solutions**: so-called **well-balanced** methods.

Fourth step: Verification of the numerical results

Simulation of the 2011 Japan tsunami

Water depth at sensors:

- #1: 5700 m;
- #2: 6100 m;
- #3: 4400 m.

Plots of the time variation of the water height (in meters). data in black, simulation in orange

Introduction and motivation

Simulating a tsunami

Simulating an estuary

The shallow water equations

Hyperbolic equations: theory and numerical approximation

Hyperbolic systems of conservation laws

The finite volume method

Hyperbolic systems of balance laws

Well-balanced schemes

A simple well-balanced strategy: the hydrostatic reconstruction

Further challenges

Preservation of other steady solutions

High-order accurate methods

Gironde estuary : satellite picture

Gironde estuary : 2D mesh

10/40

1D description :

1D description : ► identification of the left and right banks ► creation of the

river centerline

➤ West

North

Introduction and motivation

Simulating a tsunami

Simulating an estuary

The shallow water equations

Hyperbolic equations: theory and numerical approximation

Hyperbolic systems of conservation laws

The finite volume method

Hyperbolic systems of balance laws

Well-balanced schemes

A simple well-balanced strategy: the hydrostatic reconstruction

Further challenges

Preservation of other steady solutions

High-order accurate methods

The shallow water equations with topography

$$\begin{cases} \partial_t h + \partial_x q = 0, \\ \partial_t q + \partial_x \left(\frac{q^2}{h} + \frac{1}{2} g h^2 \right) = -g h \partial_x Z(x) \end{cases}$$

- h(x,t): water height
- u(x,t): water velocity
- q = hu: water discharge
- Z(x): known topography
- g: gravity constant

We will consider solutions of prime importance:

the steady solutions.

For additional details, check the {white, black}board!

Introduction and motivation

Simulating a tsunami

Simulating an estuary

The shallow water equations

Hyperbolic equations: theory and numerical approximation

Hyperbolic systems of conservation laws

The finite volume method

Hyperbolic systems of balance laws

Well-balanced schemes

A simple well-balanced strategy: the hydrostatic reconstruction

Further challenges

Preservation of other steady solutions

High-order accurate methods

Introduction and motivation

Simulating a tsunami

Simulating an estuary

The shallow water equations

Hyperbolic equations: theory and numerical approximation

Hyperbolic systems of conservation laws

The finite volume method

Hyperbolic systems of balance laws

Well-halanced schemes

A simple well-balanced strategy: the hydrostatic reconstruction

Further challenges

Preservation of other steady solutions

High-order accurate methods

Hyperbolic systems of conservation laws

The shallow water equations fall within the broad framework of **hyperbolic systems of conservation laws**.

In one space dimension, they are PDE systems with the following form:

$$\frac{\partial W(t,x)}{\partial t} + \frac{\partial F(W(t,x))}{\partial x} = 0,$$

where:

- $W: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}^p$ is the unknown function, which depends on time t and space x,
- $F: \mathbb{R}^p \to \mathbb{R}^p$ is the physical flux function.

Hyperbolic systems of conservation laws

The shallow water equations fall within the broad framework of **hyperbolic systems of conservation laws**.

In one space dimension, they are PDE systems with the following form:

$$\frac{\partial W(t,x)}{\partial t} + \frac{\partial F(W(t,x))}{\partial x} = 0,$$

where:

- $W: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}^p$ is the unknown function, which depends on time t and space x,
- $F: \mathbb{R}^p \to \mathbb{R}^p$ is the physical flux function.

Hyperbolic systems have several important (and linked) properties:

- 1. finite information propagation speed,
- 2. creation of discontinuities, even from smooth initial data,
- 3. conservation of the quantity *W*.

Finite information propagation speed

We assume that the Jacobian matrix of the flux function *F* has real eigenvalues: this is linked to a **finite information propagation speed**.

Finite information propagation speed

We assume that the Jacobian matrix of the flux function *F* has real eigenvalues: this is linked to a **finite information propagation speed**.

A typical example is the advection equation

$$\partial_t W + \partial_x (cW) = 0$$
,

where

- $W(t,x) \in \mathbb{R}$,
- $F: W \mapsto c W$ is a linear function, with a fixed $c \neq 0$;
- the derivative of *F* is $W \mapsto c \in \mathbb{R}^*$.

This equation transports the initial condition W(0,x) with velocity c.

Linear hyperbolic system: the advection equation

Linear hyperbolic system: the advection equation

Creation of discontinuities

Another property of **nonlinear** hyperbolic systems is that continuous initial data can lead to a **discontinuous solution in finite time**.

Creation of discontinuities

Another property of **nonlinear** hyperbolic systems is that continuous initial data can lead to a **discontinuous solution in finite time**.

A typical example is the inviscid Burgers' equation

$$\partial_t W + \partial_x \left(\frac{W^2}{2} \right) = 0,$$

where

- $W(t,x) \in \mathbb{R}$,
- $F: W \mapsto \frac{1}{2}W^2$ is a nonlinear function;
- the derivative of F is $W \mapsto W \in \mathbb{R}$.

This equation "transports the initial condition W(0,x) with velocity W".

Nonlinear hyperbolic system: Burgers' equation

Nonlinear hyperbolic system: Burgers' equation

Non-hyperbolic systems

To conclude this overview, we give an example of a **non-hyperbolic system**.

The heat equation

$$\partial_t W + \partial_{xx} W = 0$$

is an example of a parabolic system, where¹

- · the information travels at infinite speed;
- a regularizing effect is applied, rather than a production of discontinuities.

¹Note that these two properties are not satisfied by every non-hyperbolic system.

Non-hyperbolic system: the heat equation

Non-hyperbolic system: the heat equation

Introduction and motivation

Simulating a tsunami

Simulating an estuary

The shallow water equations

Hyperbolic equations: theory and numerical approximation

Hyperbolic systems of conservation laws

The finite volume method

Hyperbolic systems of balance laws

Well-halanced schemes

A simple well-balanced strategy: the hydrostatic reconstruction

Further challenges

Preservation of other steady solutions

High-order accurate methods

The finite volume method: discretization

Objective: Approximate the solution W(t,x) of the conservation law.

The finite volume method: discretization

Objective: Approximate the solution W(t,x) of the conservation law.

We partition the space domain in **cells** $(\Omega_i)_i$, of length Δx and of evenly spaced centers x_i , and we define:

- $x_{i-\frac{1}{2}}$ and $x_{i+\frac{1}{2}}$, the boundaries of cell Ω_i ;
- $W_i(t)$, an approximation of W(t,x), defined by

$$W_i(t) = \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} W(t,x) dx.$$

Remark: the approximation $W_i(t)$ of W(t,x) is constant on each cell.

Finite volume space discretization, visualized

To derive the **finite volume discretization** of a system of conservation laws, we **average the system in space and time**:

$$\int_{-\frac{\Delta x}{2}}^{\frac{\Delta x}{2}} \int_{0}^{\Delta t} \partial_t W(t,x) \, dt \, dx + \int_{0}^{\Delta t} \int_{-\frac{\Delta x}{2}}^{\frac{\Delta x}{2}} \partial_x F(W(t,x)) \, dx \, dt = 0.$$

We eventually obtain (check the {white, black}board!)

$$W_{i}^{n+1} = W_{i}^{n} - \frac{\Delta t}{\Delta x} \big[\mathcal{F}(W_{i}^{n}, W_{i+1}^{n}) - \mathcal{F}(W_{i-1}^{n}, W_{i}^{n}) \big],$$

where the numerical flux \mathcal{F} is such that $\mathcal{F}(W,W) = F(W)$.

Introduction and motivation

Simulating a tsunami

Simulating an estuary

The shallow water equations

Hyperbolic equations: theory and numerical approximation

Hyperbolic systems of conservation laws

The finite volume method

Hyperbolic systems of balance laws

Well-halanced schemes

A simple well-balanced strategy: the hydrostatic reconstruction

Further challenges

Preservation of other steady solutions

High-order accurate methods

Hyperbolic systems of balance laws

To model complex physical phenomena, we often consider **hyperbolic systems of balance laws**, with the following form:

$$\partial_t W + \partial_x F(W) = S(W, x),$$

where:

- $W: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}^p$ is the unknown function,
- $F: \mathbb{R}^p \to \mathbb{R}^p$ is the physical flux function,
- $S: \mathbb{R}^p \times \mathbb{R} \to \mathbb{R}^p$ is the source term .

Compared to conservation laws, the presence of the source term disrupts the conservation property.

System of balance laws: the shallow water equations

A typical example of a system of balance laws is the shallow water equations, governed by the following PDE:

$$\begin{cases} \partial_t h + \partial_x q = 0, \\ \partial_t q + \partial_x \left(\frac{q^2}{h} + \frac{1}{2} g h^2 \right) = -g h \partial_x Z(x). \end{cases}$$

- h(x,t): water height
- u(x,t): water velocity
- q = hu: water discharge
- Z(x): known topography
- g: gravity constant

Steady solutions

Moreover, balance laws have an additional kind of solution: non-trivial **steady solutions**.

Steady solutions

Moreover, balance laws have an additional kind of solution: non-trivial **steady solutions**.

Definition: steady solution

W is a steady solution of $\partial_t W + \partial_x F(W) = S(W,x)$ if, and only if, $\partial_t W = 0$, i.e. $\partial_x F(W) = S(W,x)$.

Steady solutions

Moreover, balance laws have an additional kind of solution: non-trivial **steady solutions**.

Definition: steady solution

W is a steady solution of $\partial_t W + \partial_x F(W) = S(W, x)$ if, and only if, $\partial_t W = 0$, i.e. $\partial_x F(W) = S(W, x)$.

For the shallow water equations, if the velocity vanishes, we obtain the lake at rest steady solution:

$$h + Z = cst.$$

Introduction and motivation

Simulating a tsunami

Simulating an estuary

The shallow water equations

Hyperbolic equations: theory and numerical approximation

Hyperbolic systems of conservation laws

The finite volume method

Hyperbolic systems of balance laws

Well-balanced schemes

A simple well-balanced strategy: the hydrostatic reconstruction

Further challenges

Preservation of other steady solutions

High-order accurate methods

Finite volume scheme: application to balance laws

For a system of balance laws, i.e. with a source term, the finite volume scheme becomes

$$W_{i}^{n+1} = W_{i}^{n} - \frac{\Delta t}{\Delta x} \left[\mathcal{F}(W_{i}^{n}, W_{i+1}^{n}) - \mathcal{F}(W_{i-1}^{n}, W_{i}^{n}) \right] + \Delta t \mathcal{S}(W_{i-1}^{n}, W_{i}^{n}, W_{i+1}^{n}),$$

where ${\mathbb S}$ is an approximation of the source term.

What about the steady solutions?

Recall that steady solutions are defined by taking $\vartheta_t \textit{W} = 0$, which yields the ODE

$$\partial_X F(W) = S(W)$$
.

The discrete analogue is $W_i^{n+1} = W_i^n$, which is ensured if, and only if,

$$\frac{1}{\Delta x} \left[\mathcal{F}(W_i^n, W_{i+1}^n) - \mathcal{F}(W_{i-1}^n, W_i^n) \right] = \mathcal{S}(W_{i-1}^n, W_i^n, W_{i+1}^n)$$

for all steady solutions. This relation obviously requires ad hoc definitions of $\mathcal F$ and $\mathcal S$, which will depend on the system under consideration, and can be quite involved.

What about the steady solutions?

Recall that steady solutions are defined by taking $\vartheta_t \textit{W} = 0$, which yields the ODE

$$\partial_X F(W) = S(W)$$
.

The discrete analogue is $W_i^{n+1} = W_i^n$, which is ensured if, and only if,

$$\frac{1}{\Delta x} \big[\mathfrak{F}(W_i^n, W_{i+1}^n) - \mathfrak{F}(W_{i-1}^n, W_i^n) \big] = \mathcal{S}(W_{i-1}^n, W_i^n, W_{i+1}^n)$$

for all steady solutions. This relation obviously requires ad hoc definitions of $\mathcal F$ and $\mathcal S$, which will depend on the system under consideration, and can be quite involved.

Definition: well-balanced scheme

A numerical method approximating the solution of a balance law is called well-balanced if it preserves the steady solutions.

Introduction and motivation

Simulating a tsunami

Simulating an estuary

The shallow water equations

Hyperbolic equations: theory and numerical approximation

Hyperbolic systems of conservation laws

The finite volume method

Hyperbolic systems of balance laws

Well-halanced schemes

A simple well-balanced strategy: the hydrostatic reconstruction

Further challenges

Preservation of other steady solutions

High-order accurate methods

An answer for the lake at rest: the hydrostatic reconstruction

The **hydrostatic reconstruction** was introduced in E. Audusse et al., *SIAM J. Sci. Comput.* (2004), as a way to make it possible for any finite volume scheme to capture the **lake at rest** steady solution.

For additional details, check the {white, black}board!

Introduction and motivation

Simulating a tsunami

Simulating an estuary

The shallow water equations

Hyperbolic equations: theory and numerical approximation

Hyperbolic systems of conservation laws

The finite volume method

Hyperbolic systems of balance laws

Well-balanced schemes

A simple well-balanced strategy: the hydrostatic reconstruction

Further challenges

Preservation of other steady solutions

High-order accurate methods

Introduction and motivation

Simulating a tsunami

Simulating an estuary

The shallow water equations

Hyperbolic equations: theory and numerical approximation

Hyperbolic systems of conservation laws

The finite volume method

Hyperbolic systems of balance laws

Well-balanced schemes

A simple well-balanced strategy: the hydrostatic reconstruction

Further challenges

Preservation of other steady solutions

High-order accurate methods

The hydrodynamic reconstruction

The hydrodynamic reconstruction is an improvement of the hydrostatic reconstruction, introduced in [C. Berthon and V. Michel-Dansac (2023)] to preserve moving steady solutions.

$$\begin{split} h^n_{i+\frac{1}{2},-} &= h^n_i + \left(Z_i - Z_{i+\frac{1}{2}} \right) \\ &\quad + 2 \mathrm{Fr}^2 \left(h^n_i, h^n_{i+\frac{1}{2}}, q^n_i \right) \, \mathfrak{H} \left(h^n_i, h^n_{i+\frac{1}{2}}, q^n_i, Z_{i+\frac{1}{2}} - Z_i \right), \\ h^n_{i+\frac{1}{2},+} &= h^n_{i+1} + \left(Z_{i+1} - Z_{i+\frac{1}{2}} \right) \\ &\quad + 2 \mathrm{Fr}^2 \left(h^n_{i+1}, h^n_{i+\frac{1}{2}}, q^n_{i+1} \right) \, \mathfrak{H} \left(h^n_{i+1}, h^n_{i+\frac{1}{2}}, q^n_{i+1}, Z_{i+\frac{1}{2}} - Z_{i+1} \right), \end{split}$$

where we have defined the function ${\mathcal H}$ by

$$\begin{split} \mathcal{H} &= \frac{1}{2} \Biggl(E - \text{sgn}(1 - \text{Fr}^2) \text{sgn}(\Delta Z) \sqrt{E^2 + \sqrt{\frac{1}{2} |\Delta Z| [\![h]\!]^3}} \Biggr), \\ \text{with } E &= [h] + \frac{1 - \text{Fr}^2}{2} \text{sgn}(\Delta Z) \sqrt{\frac{[\![h]\!]^3}{2 |\Delta Z|}}. \end{split}$$

36/40

Introduction and motivation

Simulating a tsunami

Simulating an estuary

The shallow water equations

Hyperbolic equations: theory and numerical approximation

Hyperbolic systems of conservation laws

The finite volume method

Hyperbolic systems of balance laws

Well-balanced schemes

A simple well-balanced strategy: the hydrostatic reconstruction

Further challenges

Preservation of other steady solutions

High-order accurate methods

High-order accuracy

The Discontinuous Galerkin (DG) method offers a way to increase the **order of accuracy** of traditional finite volume methods.

Definition: order of a numerical scheme

A numerical method is of order p (in space) if the error $e(\Delta x)$ between the approximate and exact solutions behaves as follows:

$$e(\Delta x) = \mathcal{O}(\Delta x^p)$$
.

Alternate definition: order of a numerical scheme

A numerical method is of order p (in space) if it is exact on polynomials up to degree p-1.

High-order accuracy, visualized

High-order accuracy, visualized

High-order accuracy, visualized

Thank you for your attention!

Conservation

Finally, we present the property of **conservation**.

To that end, we integrate the conservation law on the space domain $(a,b)\subset\mathbb{R}.$

$$\int_a^b \partial_t W \, dx + \int_a^b \partial_x F(W) \, dx = 0$$

$$\implies \partial_t \left(\int_a^b W \, dx \right) + \left(F(W(t,b)) - F(W(t,a)) \right) = 0.$$

If F(W(t,a)) = F(W(t,b)), meaning a balance between what enters and leaves the space domain, then we obtain the **conservation** of W:

$$\partial_t \left(\int_a^b W \, dx \right) = 0.$$

Link to the conservation property

The space domain is $[a, b] = \bigcup_i [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]$, and so we get

$$\int_{a}^{b} W dx = \sum_{i} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} W dx = \Delta x \sum_{i} W_{i}(t).$$

Therefore, the discrete analogue of the conservation property is

$$\sum_{i} W_i^{n+1} = \sum_{i} W_i^n.$$

Link to the conservation property

The space domain is $[a, b] = \bigcup_i [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]$, and so we get

$$\int_{a}^{b} W \, dx = \sum_{i} \int_{x_{i-1}}^{x_{i+\frac{1}{2}}} W \, dx = \Delta x \sum_{i} W_{i}(t).$$

Therefore, the discrete analogue of the conservation property is

$$\sum_{i} W_i^{n+1} = \sum_{i} W_i^n.$$

Using the definition of the numerical scheme, we obtain

$$\sum_{i} W_{i}^{n+1} = \sum_{i} W_{i}^{n} - \frac{\Delta t}{\Delta x} \sum_{i} \left(\mathcal{F}_{i+\frac{1}{2}}^{n} - \mathcal{F}_{i-\frac{1}{2}}^{n} \right)$$

$$\sum_{i} W_{i}^{n+1} = \sum_{i} W_{i}^{n} - \frac{\Delta t}{\Delta x} \left(F(W(t^{n}, b)) - F(W(t^{n}, a)) \right)$$

$$\sum_{i} W_{i}^{n+1} = \sum_{i} W_{i}^{n},$$

and the discrete conservation property is recovered by the finite volume method.

To derive the **space discretization** of a system of conservation laws, we fix some $t \ge 0$ and **average the system on each cell**:

$$\frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \partial_t W(t,x) \, dx + \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \partial_x F(W(t,x)) \, dx = 0$$

To derive the **space discretization** of a system of conservation laws, we fix some $t \ge 0$ and **average the system on each cell**:

$$\begin{split} \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \partial_t W(t,x) \, dx + \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \partial_x F(W(t,x)) \, dx &= 0 \\ \implies \partial_t \left(\frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} W(t,x) \, dx \right) + \frac{1}{\Delta x} \left(F(W(t,x_{i+\frac{1}{2}})) - F(W(t,x_{i-\frac{1}{2}})) \right) &= 0 \end{split}$$

To derive the **space discretization** of a system of conservation laws, we fix some $t \ge 0$ and **average the system on each cell**:

$$\begin{split} \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \partial_t W(t,x) \, dx + \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \partial_x F(W(t,x)) \, dx &= 0 \\ \implies \partial_t \left(\frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} W(t,x) \, dx \right) + \frac{1}{\Delta x} \left(F(W(t,x_{i+\frac{1}{2}})) - F(W(t,x_{i-\frac{1}{2}})) \right) &= 0 \\ \implies \partial_t W_i(t) + \frac{1}{\Delta x} \left(F(W(t,x_{i+\frac{1}{2}})) - F(W(t,x_{i-\frac{1}{2}})) \right) &= 0. \end{split}$$

To derive the **space discretization** of a system of conservation laws, we fix some $t \ge 0$ and **average the system on each cell**:

$$\begin{split} \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \partial_t W(t,x) \, dx + \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \partial_x F(W(t,x)) \, dx &= 0 \\ \\ \Longrightarrow & \partial_t \left(\frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} W(t,x) \, dx \right) + \frac{1}{\Delta x} \left(F(W(t,x_{i+\frac{1}{2}})) - F(W(t,x_{i-\frac{1}{2}})) \right) &= 0 \\ \\ \Longrightarrow & \partial_t W_i(t) + \frac{1}{\Delta x} \left(F(W(t,x_{i+\frac{1}{2}})) - F(W(t,x_{i-\frac{1}{2}})) \right) &= 0. \end{split}$$

Given an approximation $\mathcal{F}_{i+\frac{1}{2}}(t) \simeq F(W(t,x_{i+\frac{1}{2}}))$, we obtain the **semi-discrete scheme in time**

$$\partial_t W_i(t) + \frac{1}{\Lambda x} \left(\mathcal{F}_{i+\frac{1}{2}}(t) - \mathcal{F}_{i-\frac{1}{2}}(t) \right) = 0.$$

Time discretization

Note that the semi-discrete scheme in time

$$\partial_t W_i(t) + \frac{1}{\Delta x} \left(\mathcal{F}_{i+\frac{1}{2}}(t) - \mathcal{F}_{i-\frac{1}{2}}(t) \right) = 0$$

is nothing but an ordinary differential equation. To approximate its solution, we partition the time domain (0,T) in intervals (t^n,t^{n+1}) of size Δt .

Time discretization

Note that the semi-discrete scheme in time

$$\partial_t W_i(t) + \frac{1}{\Delta x} \left(\mathcal{F}_{i+\frac{1}{2}}(t) - \mathcal{F}_{i-\frac{1}{2}}(t) \right) = 0$$

is nothing but an ordinary differential equation. To approximate its solution, we partition the time domain (0,T) in intervals (t^n,t^{n+1}) of size Δt .

Using the usual **explicit Euler time discretization**, we obtain the fully discrete scheme:

$$\frac{W_i(t^{n+1})-W_i(t^n)}{\Delta t}+\frac{1}{\Delta x}\big(\mathfrak{F}_{i+\frac{1}{2}}(t^n)-\mathfrak{F}_{i-\frac{1}{2}}(t^n)\big)=0.$$

Introducing notation $W_i^n = W_i(t^n)$, we obtain the final form of the finite volume scheme:

$$W_i^{n+1} = W_i^n - \frac{\Delta t}{\Delta x} \left(\mathcal{F}_{i+\frac{1}{2}}^n - \mathcal{F}_{i-\frac{1}{2}}^n \right).$$