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Numerical simulation of a tsunami

Context: 2011 Tōhoku tsunami
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Ingredients required for a numerical simulation

Tsunami initialization
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Numerical simulation of a tsunami

Starting the simulation with a naive numerical method
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Numerical simulation of a tsunami: failure

... that did not work, the ocean at rest, far from the tsunami, starts
spontaneously producing waves.

 The simulation is not usable!

This comes from the non-preservation of stationary solutions:

∂

∂tu(x, t) +
∂

∂x f (u(x, t)) = s(u(x, t))

Hence the need to develop numerical methods that preserve
stationary solutions: so-called well-balanced methods.
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Numerical simulation of a tsunami: well-balanced method
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The shallow water equations

The shallow water equations are governed by the following PDE:
∂th+ ∂xq = 0,

∂tq+ ∂x

(
q2

h +
1
2gh

2
)

= −gh∂xZ(x).

x

u(x, t)

Z(x)

h(x, t)

• h(x, t): water height
• u(x, t): water velocity
• q = hu: water discharge
• Z(x): known topography
• g: gravity constant
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The shallow water equations: steady solutions

The steady solutions of the shallow water equations are governed
by the following ODEs:

∂xq = 0,

∂x

(
q2

h +
1
2gh

2
)

= −gh∂xZ(x).

x

Z(x)

h(x)

For the shallow water equations,
if the velocity vanishes, we obtain
the lake at rest steady solution:

h+ Z = cst.
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Finite volume method, visualized

x

y

W(x)

Wi =
1
∆x

∫ xi+ 1
2

xi− 1
2

W(x) dx + O(∆x)
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Discontinuous Galerkin, visualized

x

y

W(x)

W(xi−1/2) + O(∆x2)

W(xi+1/2) + O(∆x2)
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Discontinuous Galerkin, visualized

x

y

W(x)

W(xi−1/2) + O(∆x3)

W(xi+1/2) + O(∆x3)
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Discontinuous Galerkin: an example

On the previous slide, the unknown function W is represented by

• a polynomial of degree 2 in each cell (Galerkin approximation),
• which is Discontinuous at interfaces between cells.

Therefore, in each cell Ωi, W is approximated by

W
∣∣
Ωi

' WDG
i := α0 + α1x + α2x2 =

2∑
j=0

αjxj,

where the polynomial coefficients α0, α1 and α2 are determined to
ensure fitness between the continuous data and its polynomial
approximation.

Any polynomial of degree two can be exactly represented this way.
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Discontinuous Galerkin: polynomial basis

More generally, we define a polynomial basis ϕ0, . . . , ϕN on each cell
Ωi and approximate the solution in this basis.

A usual example is the following so-called modal basis:

∀j ∈ {0, . . . ,N}, ϕj(x) = xj.

Main takeaway: The DG scheme is exact on every function that can
be exactly represented in the basis!
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Main idea

Recall that the DG scheme will be exact on every function that can
be exactly represented in the DG basis.

Main idea
Enhance the DG basis by using the steady solution!

 If the basis is enhanced with an approximation of the steady
solution, then the enhanced DG scheme will provide a better
approximation of the steady solution than the classical version.
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Enhanced DG bases

Assume that you know a prior W on the steady solution.

The goal is now to enhance the modal basis V using W:

V = {1, x, x2, . . . , xN}.

A possibility is to replace the first element with W

V = {W, x, x2, . . . , xN}.

We can prove that the prior W needs to provide a good
approximation of the derivatives of the steady solution (in addition
to the steady solution itself).

 A Physics-Informed Neural Network (PINN) is the ideal candidate!
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Steady solutions as boundary value problems

As seen in the previous section, we seek an approximation of a
steady solution using a PINN.

A steady solution is nothing but the solution to a boundary value
problem (BVP): {

D(W, x) = 0 for x ∈ Ω,

W(x) = g(x) for x ∈ ∂Ω,

where D is a differential operator containing derivatives of W.
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PINNs

Remark: Neural networks are smooth functions of the inputs
(provided smooth activation functions are used!).

Since their derivatives are easily computable by automatic
differentiation, they are therefore natural objects to approximate
solutions to PDEs or ODEs.

Definition: PINN
A PINN is a neural network with input x and trainable weights θ,
approximating the solution to a PDE or ODE, and denoted by Wθ(x).
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PINNs: using the ODE residual

Recall that the PINN Wθ approximates the solution to the BVP{
D(W, x) = 0 for x ∈ Ω,

W(x) = g(x) for x ∈ ∂Ω.

Based on this observation, we know that the PINN Wθ should
approximately satisfy the above BVP:{

D(Wθ, x) ' 0 for x ∈ Ω,

Wθ(x) ' g(x) for x ∈ ∂Ω.

The idea behind PINNs training is to find the optimal weights θopt by
minimizing a loss function built from the ODE residual:

θopt = argmin
θ

(∫
Ω

‖D(Wθ, x)‖22 dx +
∫
∂Ω

‖Wθ(x) − g(x)‖22 dx.
)

The Monte-Carlo method is used for the integrals, which makes the
whole approach mesh-less and able to deal with parametric BVPs.
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Perturbation of a shallow water steady solution
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Perturbation of a shallow water steady solution
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Perturbation of a shallow water steady solution
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Perturbation of a shallow water steady solution
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Thank you for your attention!



Ingredients required for a numerical simulation

Fourth step: Verification of the numerical results



Simulation of the 2011 Japan tsunami

Water depth at sensors:
• #1: 5700 m;

• #2: 6100 m;

• #3: 4400 m.

Plots of the time variation
of the water height (in meters).
data in black, simulation in orange
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PINNs: advantages and drawbacks

Once trained, PINNs with Monte-Carlo integration are able to

• quickly provide an approximation to the steady solution,
• in a mesh-less fashion,
• independently of the dimension.

However, PINNs

• have trouble generalizing to x /∈ Ω;
• are not competitive with classical numerical methods for com-
putational fluid dynamics: to reach a given error (if possible),
training takes longer than using a classical numerical method.

The most interesting use of PINNs, in our case, is to deal with
parametric ODEs and PDEs, where dimension-insensitivity is
paramount.



PINNs: advantages and drawbacks

Once trained, PINNs with Monte-Carlo integration are able to

• quickly provide an approximation to the steady solution,
• in a mesh-less fashion,
• independently of the dimension.

However, PINNs

• have trouble generalizing to x /∈ Ω;
• are not competitive with classical numerical methods for com-
putational fluid dynamics: to reach a given error (if possible),
training takes longer than using a classical numerical method.

The most interesting use of PINNs, in our case, is to deal with
parametric ODEs and PDEs, where dimension-insensitivity is
paramount.



PINNs: advantages and drawbacks

Once trained, PINNs with Monte-Carlo integration are able to

• quickly provide an approximation to the steady solution,
• in a mesh-less fashion,
• independently of the dimension.

However, PINNs

• have trouble generalizing to x /∈ Ω;
• are not competitive with classical numerical methods for com-
putational fluid dynamics: to reach a given error (if possible),
training takes longer than using a classical numerical method.

The most interesting use of PINNs, in our case, is to deal with
parametric ODEs and PDEs, where dimension-insensitivity is
paramount.



Parametric PINNs: approximation using the ODE residual

The parametric PINN Wθ(x;µ), with parameters µ ∈ P ⊂ Rm

approximates the solution to the parametric BVP{
D(W, x;µ) = 0 for x ∈ Ω,µ ∈ P,

W(x) = g(x;µ) for x ∈ ∂Ω,µ ∈ P.

Based on this observation, we know that the PINN Wθ should
approximately satisfy the above BVP:{

D(Wθ, x;µ) ' 0 for x ∈ Ω,µ ∈ P,

Wθ(x;µ) ' g(x;µ) for x ∈ ∂Ω,µ ∈ P.

The loss function then becomes

JODE(θ) =

∫
P

∫
Ω

‖D(Wθ, x;µ)‖22 dxdµ

JΩ(θ)

+

∫
P

∫
∂Ω

‖Wθ(x;µ) − g(x;µ)‖22 dxdµ

Jboundary(θ)

.
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