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Problem statement



The shallow water equations with topography

ath + axq =0,

1,
atq + 0y F ar Egh = *ghaXZ(X)

The equations are written under the form 0:W + 0,F (W) = S(W).

* h(x,t): water height

- u(x,t): water velocity

+ g = hu: water discharge
+ Z(x): known topography

+ g: gravity constant

X

We will consider solutions of prime importance:

the
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Steady solutions and well-balanced schemes

Definition: steady solution
W is a steady solution of ;W + 0,F(W) = S(W) if, and only if,
oW = 0, i.e. W satisfies the following ODE:

OxF(W) = S(W).

Example: For the shallow water equations with topography, the ODE
governing smooth steady solutions can be simplified.
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Shallow water equations: steady solutions

Taking 9:W = 0 in the shallow water system yields

0xq =0, q = cst = qo,
smooth
Q> 1, —
Oy h + 5gh = _ghaxz) solution | 9, = 0.

We summarize the second relation by introducing a function B such
that, for a steady solution,
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Shallow water equations: steady solutions

Taking 9:W = 0 in the shallow water system yields

0xq =0, q = cst = qo,
smooth
Q> 1, —
Oy h + 5gh = _ghaxz) solution | 9, = 0.

We summarize the second relation by introducing a function B such
that, for a steady solution,

Two cases are distinguished:

* o = 0 ~ lake at rest
we get B(h, go,Z) = h +Z = cst: linear equation in h

* (o # 0 ~ moving steady solution

we get : nonlinear equation in h!
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Finite volume scheme

Recall the compact form of the shallow water equations:
0tW + 0F(W) = S(W).

We take a generic finite volume numerical scheme approximating
the shallow water equations:

Vvﬂ+4 A*VVU 1
1 1 Wn Wn
~ar - ml

I+1

) = F(W WP | + (WP, WP, W),

with ,and S a
consistent numerical source term.

W(x, t) Cow

i—1 X X1 Xig
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Finite volume scheme

Recall the compact form of the shallow water equations:
0tW + 0F(W) = S(W).

We take a generic finite volume numerical scheme approximating
the shallow water equations:

Wit —wp

= [T, W) — T (W, W) | + (WP W, W),

with ,and S a
consistent numerical source term.

Definition: well-balanced scheme

A numerical method approximating the solution of a balance law
is called well-balanced if it exactly preserves the steady solutions.

Question: can we make this generic finite volume scheme well-
balanced? 4/33




An answer for the lake at rest: the hydrostatic reconstruction

The hydrostatic reconstruction was introduced’ in 2004, as a way to

make it possible for any finite volume scheme to capture the lake at
rest steady solution.

It relies on:

1. providing a relevant expression for §,
2. evaluating the numerical flux at a of W.

Tsee E. Audusse et al., SIAM J. Sci. Comput. (2004)

5/33




An answer for the lake at rest: the hydrostatic reconstruction

The hydrostatic reconstruction was introduced’ in 2004, as a way to
make it possible for any finite volume scheme to capture the lake at
rest steady solution.

It relies on:

1. providing a relevant expression for §,

2. evaluating the numerical flux at a of W.
: hi i
h; |
‘ AZi+4
5 !
Xjy1

Tsee E. Audusse et al., SIAM J. Sci. Comput. (2004)
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An answer for the lake at rest: the hydrostatic reconstruction

The hydrostatic reconstruction was introduced’ in 2004, as a way to
make it possible for any finite volume scheme to capture the lake at
rest steady solution.

It relies on:

1. providing a relevant expression for §,

2. evaluating the numerical flux at a of W.
[k |
hi | 1y
—
‘ Zi+1 ] ‘ Zi+‘l
Z ! Z !
A Xi+

Tsee E. Audusse et al., SIAM J. Sci. Comput. (2004)

5/33




The hydrostatic reconstruction

The scheme becomes

W{‘P—H o W_n 1
= [Fw, )—Fwr, )|+,

where the approximate source term is 8" = (0, (84)7)T, with:

)7 =2 [(hs )P = (7, )]

2
and with the reconstructed values

Z:

I

hi s =max(hi +Z; — Z:+ ,0), q:n+%ﬁ =l g uy,

i+3,

+1 = max(Z,-, Zi+1 ))
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Objectives

Main goal of this work: Provide a linear reconstruction able to
capture the steady solutions with g # 0.

The objectives of our hydrodynamic reconstruction include:
+ making sure that the result scheme is consistent,
« ensuring the capture of steady solutions with g # 0,

- handling dry areas and transitions between wet and dry areas
(not presented in this talk),

- a linear and well-balanced high-order extension.
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The hydrodynamic reconstruction



Expression of the hydrodynamic reconstruction

Away from dry areas, the hydrostatic reconstruction reads:

i+3,—

B =+ (Zia = Ziy)
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Expression of the hydrodynamic reconstruction

Away from dry areas, the reads:
+
h?+%,+ =hi,, + (Zi+1 7Zi+%)
+

with 3 a function of h;, hg, G and AZ .= Zz — Z; and

g*(h. + hg)

Fr’(he, hg, Q) =
2gh?h?
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Expression of the hydrodynamic reconstruction

Away from dry areas, the reads:
?+;,7 = hi' (Zi _Zi+§)
+
h?+%,+ - hln+1 + (Zi+1 *Zi+%)
+

with 3 a function of h;, hg, G and AZ .= Zz — Z; and

g*(h. + hg)

Fr’(he, hg, Q) =
2gh?h?

The hydrodynamic reconstruction relies on deriving a suitable function 7.
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Requirements of the hydrodynamic reconstruction

We seek three main properties of the hydrodynamic reconstruction:

1. it should vanish when the topography is flat;

2. it should degenerate towards the hydrostatic reconstruction
when the velocity vanishes;

3. it should be well-balanced:

steady solution = hj.7+17:h,f'+ h,”+ L
5

We have defined an interface state in an upwind way:

bz = | DB 2> 2
2’ Zit3 (h?.1,Zis1) otherwise.

9/33




First property: consistency

Ly =+ (22
+
hﬁgﬁf:hﬂ1+(zw1*2wg)
_l’_

For the hydrodynamic reconstruction to vanish when the
topography is flat, we impose

U{Un,hmé,AZ)A;:OO(AZL

—
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Second property: lake at rest

1 =hi't+ (Zi —Zi+;>
+
h?+%,+ = hi, + (Zi+1 *Zi+%)
+

Since Fr(h., hg,0) = 0, the hydrodynamic reconstruction
automatically degenerates towards the hydrostatic reconstruction
when g = g}, ; = 0 if we assume that J{ is bounded.

11/33




Third property: general steady solutions

+

We have to prove? that h? , _=h! . when the solution is steady.
2

Recall that the interface state is defined by
(hn 1 ) o (h,nazl] Ile > Zi+‘l)
»Zis (h?.1,Zix1) otherwise.

Therefore, since the solution is steady, with g = g; = g;..4, dropping
the time indices for simplicity, we get:

C_Iz C_]2 C_]2
Trw,?+g(h it+Zj) = 2h +g(hi 1 +21) = T +g(hipq + Ziyq)-
I+— i+1
2Proving that h;’ = h_, leads to the same conclusion.
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Third property: general steady solutions

Some algebraic manipulations allow us to write

q’ q’

sz H9hi+2) = +9(hiy1 +Z41)

2h? 2he,, Oy T iy
=

Zivy = Zi=—(hipy — i) (1= Fe(hi, iy, @),

which is nothing but the usual discrete characterization of smooth
steady solutions.

We claim that imposing the following property on 3 will be enough
to preserve steady solutions:

_ _ hg —h
AZ = —(hg — hy) (1~ F(hi, e, 7)) = H(hi, he,§,42) = =——.
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Third property: general steady solutions

Indeed, we then obtain the following sequence of equalities:

hg%ﬁ =h! + (Z,~—Z,~+%)

+
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Third property: general steady solutions

Indeed, we then obtain the following sequence of equalities:

hg%ﬁ =h! + (Z,~—Z,~+%)

+
_|_
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Third property: general steady solutions

Indeed, we then obtain the following sequence of equalities:

hg%ﬁ =h! + (Z,~—Z,~+%)

+
h;?%f =h'+ (Z,—Z,-+%)
+
h;’%f =h!+ (Z,~—Z,-+%)
+
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Third property: general steady solutions

Indeed, we then obtain the following sequence of equalities:

hg%ﬁ =h! + (Z,~—Z,~+%)

+
h;?%f =h'+ (Z,-—Z,-+%)
+
h;’%ﬁ =h!+ (Z,~ —Z,-+%)
+
hlnv 1—= h?\ 1

which proves that the scheme is well-balanced.
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Summary and source term discretization

To summarize, for the reconstruction to be consistent and
, we require the following two properties on the
bounded function :

1. 3¢(hi, he,3,02) = 0(A2),
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Summary and source term discretization

To summarize, for the reconstruction to be consistent and
, we require the following two properties on the
bounded function :

1. 3¢(hi, he,3,02) = 0(A2),

2.

In addition, the whole scheme will also be consistent and
well-balanced if the following numerical source term is used:

AX(8)T 2h?—%,+h?+%,— 7 7 4g
R S T PPN R N
, h?—%,+ +7h?+%,7 ’ ’ h?*%,+ +’hg+%,7

H(h,[%‘ hn ,‘qi»Zu;—z,.f%)?’.

+Vi+3,

The proof results from algebraic manipulations (not detailed here).
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Summary and source term discretization

To summarize, for the reconstruction to be consistent and
, we require the following two properties on the
bounded function :

1. 3¢(hi, he,3,02) = 0(A2),

2.

In addition, the whole scheme will also be consistent and
well-balanced if the following numerical source term is used:

AX(8)T 2h?—%,+h?+%,— 7 7 4g
R S T PPN R N
, h?—%,+ +7h?+%,7 ’ ’ h?*%,+ +’hg+%,7

H(h,[%‘ hn ,‘qi»Zu;—z,.f%)?’.

+Vi+3,
The proof results from algebraic manipulations (not detailed here).

Next step: obtain a suitable expression of K.
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Suitable expression of H



Satisfying the well-balanced property

Recall that we need
hg — h;
2
as soon as a steady solution is under consideration.

j{(hb hR) C_LAZ) =

To obtain an expression of H satisfying this property, we need to
understand how hg — h; behaves for discrete steady solutions.
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Satisfying the well-balanced property

Recall that we need
hg — h;
2
as soon as a steady solution is under consideration.

j{(hL) hR) ‘_%AZ) =

To obtain an expression of H satisfying this property, we need to
understand how hg — h; behaves for discrete steady solutions.

We now seek a relation to characterize the jump of h at the
interface, i.e. an expression of hg — h; for steady solutions.

We assume that the solution is steady, and introduce notation

hy + hg o hg — hy
> and H = 5
so that h, and hp satisfy

hy=h—% and hgr=h+K.

h=

The goal is now to rewrite the steady relation in terms of h and .
16/33




A local relation to characterize steady solutions

Recall that the are governed by

Bh, 40,2) = 5+ g(h +2) = B

That is to say, at the interface between states W, and Wk, the
solution is locally steady as soon as g, = gr = g and

B(hba)ZL) = B(hqu)ZR) —

We set out to rewrite using h and % instead of h;,
and hg.
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A nonlinear relation for the interface jump

g° g°
ZT%‘FQ(hL-FZL):ﬁ‘FQ(hR-FZR)
—
g° - g° s
g =942 = s g9+ 20
RN
—

18/33




A nonlinear relation for the interface jump: properties

23¢(g(R? - 3¢%)" — gh) = —gAZ(R* - 3¢%)" (%)

Can , implicitly given by the above expression, satisfy the required
consistency and properties?
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A nonlinear relation for the interface jump: properties

23¢(g(R? - 3¢%)" — gh) = —gAZ(R* - 3¢%)" (%)

Can , implicitly given by the above expression, satisfy the required
consistency and properties?

1. For the consistency, we need H(h(, hg, g, AZ) O(AZ): at least

one solution to () satisfies this property.

AZ—0
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A nonlinear relation for the interface jump: properties

25¢(9(R ~5¢)" - h) = —gaz(ie -3¢ ()

Can , implicitly given by the above expression, satisfy the required

consistency and properties?
1. For the consistency, we need H(hy, hR,E],AZ)AZ: OO(AZ): at least
one solution to () satisfies this property. -
2. For the , we need
2 = = hR — hL
AZZ*(hR*hL)(‘I*Fr (hL)hR)q)) - }C(hLahRaQaAZ) = 2 .

This property holds since (*) has been derived so that 2J{ = hz — h;
is a solution as soon as the flow is steady.
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“Quadratized” relation

23¢(g (R — 3)° - ) = ~gAZ(* ~ 3¢)° (4

Equation (*) is nonlinear, and using it would incur considerable
computational cost. To avoid this issue, we proceed with
-like simplification: for H +# h, we get

(x) <= 2%(1_@252> =—AZ
g(h*—30)

We choose a “ " of this expression around H = Ah/2:

72
2% (1 U R e 23{)) — AL

2gh?h? |Ah?
—
Fr?
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Final expression of J{

We are left with H satisfying a quadratic relation.

Solving this quadratic equation for H leads to
_ 1 2 2/ 3
H = 4<Esgn(1Fr )sgn(AZ)\/ E2 + 1/ |AZ||Ah| ),

. 1— Fr? AYE
with E = Ah + 4 sgn(AZ) Az

We show that, if AZ and 1— Fr? do not simultaneously vanish:

1. this expression of K is consistent, despite the divisions by AZ;

2. this expression of H is
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Well-balanced property

To show the property, we take , to get

1—Fr? |AhJ3 )
E=Ah+ sgn(— h), / 1—Fr?
4 gn —Fr? ||Ah| | |

+1/|AZ||AR = (Ah) (1+ — 1—Fr2>
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Well-balanced property

To show the property, we take , to get

1—Fr? / _|anp
E=Ah 1—F

+ 4 sgn(— — 2 ||Ah| | r |>

+1/|AZ||AR = (Ah) <1+ 1—Fr2>
Plugging this in 3, we obtain

1 1 . :
4(Ah<14\/|1Fr |) +sgn(Ah)\/(Ah) (1+\/1Fr |> )
_ Ah 1 2 1 21\ _
4(14\/1Fr|+1+4\/1Fr|) ,

which proves the well-balanced property.
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Well-balanced property

To show the property, we take , to get

1— Fr? N
E = Ah 1—F
Ty et “F2ah] n—=Fr ')
IAZIIAE = (Ah) (1 - Fr2>
Plugging this in 3, we obtain

1 1 > 2
=3 (Ah<1 - 4\/m) +sgn(Ah)\/(Ah) (1 4 \/17Fr|> )
__Ah 1 > 1 N
4(14W+1+4m) ==,

which proves the well-balanced property.

Next step: provide a well-balanced high-order extension.
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Linear high-order extension



High-order scheme

A reads:

At _ _ _
WO = W — S (O W ) — T, L W) + ALY

In each cell, we reconstruct a polynomial of degree d, under the form

d
WP (x) =W + Y RMx—x)%,
a=1

where the coefficients R depend on the neighboring cells.

The evaluations at the interfaces Xiy1 are then given by:

d d o
~ AX ~ AX
W,—’jW,—”+ZR,—“<2> and W{Z+W}7+ZR,-“<2) ,

a=1

a=1
and the high-order source term is the following approximation:

08

~ 1 [%i+d 5 . d
[— [ S(WP(x)) dx + O(Ax®HT).

1
AX Jx 23/33

i1
=2




Linear well-balanced correction of the high-order scheme

We introduce a to provide
a well-balanced correction to the high-order scheme, such that:

. if e,-i% = 0, the scheme is well-balanced;

. if e,-i% =1, the scheme is high-order accurate.

The new evaluations at the interfaces Xiy1 are given by:

d

- Ax\* - Ax\*
WP =w+ ZR,-‘"<2> and W, =W+ ZR,‘"(Z),

=1

and the new high-order well-balanced source term reads:

8t = 8T+ 8.

1 1 1

Next step: Provide a suitable choice of the
. We follow the general strategy from [C. Berthon, S.

Bulteau, F. Foucher, M. M'Baye and V. M.-D., SIAM SISC, 2022]. e




Steady solution detector

The convex combination parameter 07, , , must satisfy the following
properties:

- vanish when (W], W/",
- be an approximation of 1 up to O(Ax%*") otherwise.

) are at equilibrium;
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Steady solution detector

The convex combination parameter 07, , , must satisfy the following
properties:

- vanish when (W], W/",
- be an approximation of 1 up to O(Ax%*") otherwise.

) are at equilibrium;

We propose the following expression:

on , — ,
I+3 £P71 4 Cir1+1AXd+'l
2 2

g’ . —q’
W|th En 9 = I+1 U .
2 B(h,n,warlrwzin%)*B(h,qlnaz/')

25/33




Properties of the steady solution detector

n
€. 4 n
hr 4iq

q;
0. . = , with ef,, = i
aE el , +CM , AxTH '( B(h} 1,71 Zita) — (W»WJ[))'
2 2

(WB) We easily note that e, , vanishes (and therefore 07 , does too)
2

as soon as W/ and W” are at equilibrium.

i1
(HO) If ¢? , # 0, then

1
eln+2 - n =1+ 0(ax*T).
1+Axd+1 ’+2

el
I+§

Next step: perform numerical tests to validate the method.
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Numerical experiments



We provide several numerical tests with a finite volume scheme
using the HLL flux:

- an order of convergence test,
- three tests of the well-balanced property,

« a dry dam-break.

These tests are performed with the hydrostatic reconstruction (HSR)
and the hydrodynamic reconstruction (HDR).

The schemes of order 4 are denoted by HSRd and HDRG.
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Order of convergence

L? error on h L2 erroron g
1071 A

1072 -
A\
.~ 1073 1
1075
2 2
: §

-7 1
1084 : 1 : N 1Y ! ! 1
40 160 640 2560 40 160 640 2560
—m— HSR1 —— HDR1 —e— HDR2 HDR3
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Emerged lake at rest

h+2z q
17 4-1071 |
2-10776 ¢
0.5 | : ‘\
0 \j\«
0 ‘ > X —2.107" * i > X
0 0.5 1 0 0.5 1
---------- HSR1 —— HDR1 —— HDR2 HDR3
HSR, Py HDR, PPy HDR, P, HDR, P,
L? error on h 1.85-10""7 275-10°" 3.07-10"7 1.32-107"
L2 errorong 124107  5.17-107"7 1.24-107" 3.59.10""
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Subcritical flow

h+2z q
2
4.48 +
4.46 +
‘] £4
4.4ty +
0 : : : : > X 442 — i ; o X
0 5 0 15 20 25 0 5 0 15 20 25
---------- HSR1 —— HDR1 —— HDR2 HDR3
HSR, Py HDR, PPy HDR, P4 HDR, P,
L2 errorong 7.73-1072 1.06-10~™ 1.31-107™ 1.30-10"™
L2 error on B 1.79-10" 2.73-10~™ 3.61-107™ 2.68-10—™
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Transcritical flow

h+2z q
1 Jer——
1.56
0.5
1.54
0 : ‘ : : > X 1 il 1 1 > X
0 5 0 15 20 25 0 5 0 15 20 25
---------- HSR1 —— HDR1 —— HDR2 HDR3
HSR, Py HDR, Py HDR, P4 HDR, P,
L2 errorong 3.74-1072  473-10~"™ 515.107™ 5.21-10~™
L% error on B 1.45-10"  4.50-10~™ 512.107"™ 5.92.10~™
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Dry dam-break

h+2Z q

1 “<§\\ 0.6

x3
™ 0.4+
0.5 ™= S
X2 : 0.2 |
O T T X O*
0 0.5 1 0
—— reference - HSR1 —— HDR1 —— HDR2 HDR3
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Conclusion



Conclusion

We have developed a linear reconstruction that allows any finite
volume scheme to be fully well-balanced for the shallow water
system.

This reconstruction has the following properties:

- it leads to a consistent scheme,
- the resulting scheme is well-balanced,

« it can be extended to high-order accuracy with a low computa-
tional cost,

- itis able to handle wet/dry transitions,
- itis easy to implement.
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Thank you for your attention!

Finite Volumes for Complex Applications 10 (FVCA10),
in Strasbourg, 30/10/2023 - 03/11/2023
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Limitations of the method

Of course, the method also has a few limitations.

1. Itis dependent on a C, which could be different for each
experiment.

2. Although the scheme is high-order accurate and well-balanced,
there is an .
Consider an initial condition Wy, steady at interface x;_,,, and un-
steady at interface Xx;, 1 ,,; we need the reconstruction V~V,.O to satisfy

= 1 (Xi+d =
W,-O(x,-f%) = L " Wo(x)dx  and WP(XH%) = Wo(x,-+%)+(‘)(Axd”).

2

This leads to two conditions in cell i, for one unknown W,0



An expression of C! | /2

To implement the scheme, we need to give an expression of C = C!
We propose C?° =1,and,forn > 1

i+1/2°
i+1/2

o) (Wil , w1

ey At At

with Co a constant parameter.

Note that . )
n_ 6iJr% - I+2(CI+2) .
i+ = 5 5
’ " AX :+ (Clr'+2) + AX
RN
i+3

we get . Why does this make sense?



An expression of C[ , , - reasoning

1 n - n —
|fgl.+% _OorC,.+1 =0

2

=0 = steady state solution for the equations

i+3
= 6?+% must vanish to preserve the steady state solution
(.1 =0 = vanishing discrete time derivative
= steady state solution for the high-order scheme
— not a steady state solution for the equations®
—

07, must vanish to perturb the solution
2

30therwise, the high-order scheme would be well-balanced.
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