A fully well-balanced hydrodynamic reconstruction

Christophe Berthon*, Victor Michel-Dansac

April 6, 2023 JPV66, Banyuls-sur-Mer

^{*}LMJL, Université de Nantes, France

Université de Strasbourg, CNRS, Inria, IRMA, France

Problem statement

The hydrodynamic reconstruction

Suitable expression of ${\mathcal H}$

Linear high-order extension

Numerical experiments

Conclusion

The shallow water equations with topography

$$\begin{cases} \partial_t h + \partial_x q = 0, \\ \partial_t q + \partial_x \left(\frac{q^2}{h} + \frac{1}{2} g h^2 \right) = -g h \partial_x Z(x) \end{cases}$$

The equations are written under the form $\partial_t W + \partial_x F(W) = S(W)$.

- h(x, t): water height
- u(x,t): water velocity
- q = hu: water discharge
- Z(x): known topography
- g: gravity constant

We will consider solutions of prime importance:

the steady solutions.

Steady solutions and well-balanced schemes

Definition: steady solution

W is a steady solution of $\partial_t W + \partial_x F(W) = S(W)$ if, and only if, $\partial_t W = 0$, i.e. W satisfies the following ODE:

$$\partial_X F(W) = S(W)$$
.

Example: For the shallow water equations with topography, the ODE governing smooth steady solutions can be simplified.

Shallow water equations: steady solutions

Taking $\partial_t W = 0$ in the shallow water system yields

$$\begin{cases} \partial_x q = 0, \\ \partial_x \left(\frac{q^2}{h} + \frac{1}{2}gh^2 \right) = -gh\partial_x Z, & \overset{\text{smooth}}{\underset{\text{solution}}{\longrightarrow}} \begin{cases} q = \text{cst} = q_0, \\ \partial_x \left(\frac{q_0^2}{2h^2} + g(h + Z) \right) = 0. \end{cases}$$

We summarize the second relation by introducing a function B such that, for a steady solution, $B(h, q_0, Z) = B_0$.

Shallow water equations: steady solutions

Taking $\partial_t W = 0$ in the shallow water system yields

$$\begin{cases} \partial_x q = 0, \\ \partial_x \left(\frac{q^2}{h} + \frac{1}{2}gh^2 \right) = -gh\partial_x Z, \stackrel{\text{smooth}}{\underset{\text{solution}}{\Longrightarrow}} \begin{cases} q = \text{cst} = q_0, \\ \partial_x \left(\frac{q_0^2}{2h^2} + g(h+Z) \right) = 0. \end{cases}$$

We summarize the second relation by introducing a function B such that, for a steady solution, $B(h, q_0, Z) = B_0$.

Two cases are distinguished:

- $\mathbf{q_0} = \mathbf{0} \leadsto \text{lake at rest}$ we get $B(h, q_0, Z) = h + Z = \text{cst: linear equation in } h$
- $\mathbf{q_0} \neq \mathbf{0} \leadsto$ moving steady solution we get $B(h, q_0, Z) = \frac{q_0^2}{2h^2} + g(h + Z) = B_0$: nonlinear equation in h!

Finite volume scheme

Recall the compact form of the shallow water equations:

$$\partial_t W + \partial_x F(W) = S(W).$$

We take a generic finite volume numerical scheme approximating the shallow water equations:

$$\frac{W_i^{n+1} - W_i^n}{\Delta t} = \frac{1}{\Delta x} \Big[\mathcal{F}(W_i^n, W_{i+1}^n) - \mathcal{F}(W_{i-1}^n, W_i^n) \Big] + \mathcal{S}(W_{i-1}^n, W_i^n, W_{i+1}^n),$$

with \mathcal{F} a consistent numerical flux, i.e. $\mathcal{F}(W, W) = F(W)$, and \mathcal{S} a consistent numerical source term.

Finite volume scheme

Recall the compact form of the shallow water equations:

$$\partial_t W + \partial_x F(W) = S(W)$$
.

We take a generic finite volume numerical scheme approximating the shallow water equations:

$$\frac{W_{i}^{n+1} - W_{i}^{n}}{\Delta t} = \frac{1}{\Delta x} \Big[\mathcal{F}(W_{i}^{n}, W_{i+1}^{n}) - \mathcal{F}(W_{i-1}^{n}, W_{i}^{n}) \Big] + \mathcal{S}(W_{i-1}^{n}, W_{i}^{n}, W_{i+1}^{n}),$$

with \mathcal{F} a consistent numerical flux, i.e. $\mathcal{F}(W,W) = F(W)$, and \mathcal{S} a consistent numerical source term.

Definition: well-balanced scheme

A numerical method approximating the solution of a balance law is called well-balanced if it exactly preserves the steady solutions.

Question: can we make this generic finite volume scheme well-balanced?

An answer for the lake at rest: the hydrostatic reconstruction

The **hydrostatic reconstruction** was introduced¹ in 2004, as a way to make it possible for any finite volume scheme to capture the **lake at rest** steady solution.

It relies on:

- 1. providing a relevant expression for S,
- 2. evaluating the numerical flux at a specific reconstruction of W.

¹see E. Audusse et al., SIAM J. Sci. Comput. (2004)

An answer for the lake at rest: the hydrostatic reconstruction

The **hydrostatic reconstruction** was introduced¹ in 2004, as a way to make it possible for any finite volume scheme to capture the **lake at rest** steady solution.

It relies on:

- 1. providing a relevant expression for S,
- 2. evaluating the numerical flux at a specific reconstruction of W.

¹see E. Audusse et al., SIAM J. Sci. Comput. (2004)

An answer for the lake at rest: the hydrostatic reconstruction

The **hydrostatic reconstruction** was introduced¹ in 2004, as a way to make it possible for any finite volume scheme to capture the **lake at rest** steady solution.

It relies on:

- 1. providing a relevant expression for S,
- 2. evaluating the numerical flux at a specific reconstruction of W.

¹see E. Audusse et al., SIAM J. Sci. Comput. (2004)

The hydrostatic reconstruction

The scheme becomes

$$\frac{W_{i}^{n+1}-W_{i}^{n}}{\Delta t}=\frac{1}{\Delta x}\Big[\mathcal{F}(W_{i+\frac{1}{2},-}^{n},W_{i+\frac{1}{2},+}^{n})-\mathcal{F}(W_{i-\frac{1}{2},-}^{n},W_{i-\frac{1}{2},+}^{n})\Big]+\mathcal{S}_{i}^{n},$$

where the approximate source term is $S_i^n = (0, (S_q)_i^n)^\intercal$, with:

$$(S_q)_i^n = \frac{g}{2} \Big[\big(h_{i+\frac{1}{2},-}^n \big)^2 - \big(h_{i-\frac{1}{2},+}^n \big)^2 \Big],$$

and with the reconstructed values

$$\begin{split} Z_{i+\frac{1}{2}} &= \max(Z_i, Z_{i+1}), \\ h^n_{i+\frac{1}{2},-} &= \max(h^n_i + Z_i - Z_{i+\frac{1}{2}}, 0), \quad q^n_{i+\frac{1}{2},-} = h^n_{i+\frac{1}{2},-} u^n_i, \\ h^n_{i+\frac{1}{2},+} &= \max(h^n_{i+1} + Z_{i+1} - Z_{i+\frac{1}{2}}, 0), \quad q^n_{i+\frac{1}{2},+} = h^n_{i+\frac{1}{2},+} u^n_{i+1}. \end{split}$$

Objectives

Main goal of this work: Provide a **linear** reconstruction able to capture the steady solutions with $q \neq 0$.

The objectives of our hydrodynamic reconstruction include:

- · making sure that the result scheme is consistent,
- ensuring the capture of steady solutions with $q \neq 0$,
- handling dry areas and transitions between wet and dry areas (not presented in this talk),
- a linear and well-balanced high-order extension.

Problem statemen

The hydrodynamic reconstruction

Suitable expression of H

Linear high-order extension

Numerical experiments

Conclusion

Expression of the hydrodynamic reconstruction

Away from dry areas, the hydrostatic reconstruction reads:

$$h_{i+\frac{1}{2},-}^n = h_i^n + (Z_i - Z_{i+\frac{1}{2}}),$$

$$h_{i+\frac{1}{2},+}^n = h_{i+1}^n + (Z_{i+1} - Z_{i+\frac{1}{2}}).$$

Expression of the hydrodynamic reconstruction

Away from dry areas, the hydrodynamic reconstruction reads:

$$\begin{split} h^n_{i+\frac{1}{2},-} &= h^n_i + \left(Z_i - Z_{i+\frac{1}{2}} \right) \\ &\quad + 2 \text{Fr}^2 (h^n_i, h^n_{i+\frac{1}{2}}, q^n_i) \, \mathfrak{H} \Big(h^n_i, h^n_{i+\frac{1}{2}}, q^n_i, Z_{i+\frac{1}{2}} - Z_i \Big), \\ h^n_{i+\frac{1}{2},+} &= h^n_{i+1} + \left(Z_{i+1} - Z_{i+\frac{1}{2}} \right) \\ &\quad + 2 \text{Fr}^2 (h^n_{i+1}, h^n_{i+\frac{1}{2}}, q^n_{i+1}) \, \mathfrak{H} \Big(h^n_{i+1}, h^n_{i+\frac{1}{2}}, q^n_{i+1}, Z_{i+\frac{1}{2}} - Z_{i+1} \Big), \end{split}$$

with \mathcal{H} a function of h_L , h_R , \bar{q} and $\Delta Z := Z_R - Z_L$ and

$$\operatorname{Fr}^2(h_L, h_R, \bar{q}) = \frac{\bar{q}^2(h_L + h_R)}{2gh_L^2h_R^2}.$$

Expression of the hydrodynamic reconstruction

Away from dry areas, the hydrodynamic reconstruction reads:

$$\begin{split} h^n_{i+\frac{1}{2},-} &= h^n_i + \left(Z_i - Z_{i+\frac{1}{2}} \right) \\ &\quad + 2 \text{Fr}^2 (h^n_i, h^n_{i+\frac{1}{2}}, q^n_i) \, \mathfrak{H} \Big(h^n_i, h^n_{i+\frac{1}{2}}, q^n_i, Z_{i+\frac{1}{2}} - Z_i \Big), \\ h^n_{i+\frac{1}{2},+} &= h^n_{i+1} + \left(Z_{i+1} - Z_{i+\frac{1}{2}} \right) \\ &\quad + 2 \text{Fr}^2 (h^n_{i+1}, h^n_{i+\frac{1}{2}}, q^n_{i+1}) \, \mathfrak{H} \Big(h^n_{i+1}, h^n_{i+\frac{1}{2}}, q^n_{i+1}, Z_{i+\frac{1}{2}} - Z_{i+1} \Big), \end{split}$$

with \mathcal{H} a function of h_L , h_R , \bar{q} and $\Delta Z := Z_R - Z_L$ and

$$\operatorname{Fr}^2(h_L, h_R, \bar{q}) = \frac{\bar{q}^2(h_L + h_R)}{2gh_L^2h_R^2}.$$

The hydrodynamic reconstruction relies on deriving a suitable function \mathcal{H} .

Requirements of the hydrodynamic reconstruction

We seek three main properties of the hydrodynamic reconstruction:

- 1. it should vanish when the topography is flat;
- 2. it should degenerate towards the hydrostatic reconstruction when the velocity vanishes;
- 3. it should be well-balanced:

steady solution
$$\implies h^n_{i+\frac{1}{2},-} = h^n_{i+\frac{1}{2}} = h^n_{i+\frac{1}{2},+}.$$

We have defined an interface state in an upwind way:

$$(h_{i+\frac{1}{2}}^n, Z_{i+\frac{1}{2}}) = \begin{cases} (h_i^n, Z_i) & \text{if } Z_i > Z_{i+1}, \\ (h_{i+1}^n, Z_{i+1}) & \text{otherwise.} \end{cases}$$

First property: consistency

$$\begin{split} h^n_{i+\frac{1}{2},-} &= h^n_i + \left(Z_i - Z_{i+\frac{1}{2}} \right) \\ &\quad + 2 \text{Fr}^2(h^n_i, h^n_{i+\frac{1}{2}}, q^n_i) \, \mathfrak{H} \Big(h^n_i, h^n_{i+\frac{1}{2}}, q^n_i, Z_{i+\frac{1}{2}} - Z_i \Big), \\ h^n_{i+\frac{1}{2},+} &= h^n_{i+1} + \left(Z_{i+1} - Z_{i+\frac{1}{2}} \right) \\ &\quad + 2 \text{Fr}^2(h^n_{i+1}, h^n_{i+\frac{1}{2}}, q^n_{i+1}) \, \mathfrak{H} \Big(h^n_{i+1}, h^n_{i+\frac{1}{2}}, q^n_{i+1}, Z_{i+\frac{1}{2}} - Z_{i+1} \Big), \end{split}$$

For the hydrodynamic reconstruction to vanish when the topography is flat, we impose

$$\mathcal{H}(h_L, h_R, \bar{q}, \Delta Z) = \mathcal{O}(\Delta Z).$$

Second property: lake at rest

$$\begin{split} h^n_{i+\frac{1}{2},-} &= h^n_i + \left(Z_i - Z_{i+\frac{1}{2}} \right) \\ &\quad + 2 \text{Fr}^2(h^n_i, h^n_{i+\frac{1}{2}}, q^n_i) \, \mathfrak{H} \Big(h^n_i, h^n_{i+\frac{1}{2}}, q^n_i, Z_{i+\frac{1}{2}} - Z_i \Big), \\ h^n_{i+\frac{1}{2},+} &= h^n_{i+1} + \left(Z_{i+1} - Z_{i+\frac{1}{2}} \right) \\ &\quad + 2 \text{Fr}^2(h^n_{i+1}, h^n_{i+\frac{1}{2}}, q^n_{i+1}) \, \mathfrak{H} \Big(h^n_{i+1}, h^n_{i+\frac{1}{2}}, q^n_{i+1}, Z_{i+\frac{1}{2}} - Z_{i+1} \Big), \end{split}$$

Since $\text{Fr}(h_L, h_R, 0) = 0$, the hydrodynamic reconstruction automatically degenerates towards the hydrostatic reconstruction when $q_i^n = q_{i+1}^n = 0$ if we assume that $\mathcal H$ is bounded.

$$\begin{split} h^n_{i+\frac{1}{2},-} &= h^n_i + \left(Z_i - Z_{i+\frac{1}{2}} \right) \\ &+ 2 F r^2 (h^n_i, h^n_{i+\frac{1}{2}}, q^n_i) \, \mathcal{H} \Big(h^n_i, h^n_{i+\frac{1}{2}}, q^n_i, Z_{i+\frac{1}{2}} - Z_i \Big), \end{split}$$

We have to prove² that $h_{i+\frac{1}{2},-}^n = h_{i+\frac{1}{2}}^n$ when the solution is steady.

Recall that the interface state is defined by

$$(h_{i+\frac{1}{2}}^n, Z_{i+\frac{1}{2}}) = \begin{cases} (h_i^n, Z_i) & \text{if } Z_i > Z_{i+1}, \\ (h_{i+1}^n, Z_{i+1}) & \text{otherwise.} \end{cases}$$

Therefore, since the solution is steady, with $\bar{q} = q_i = q_{i+1}$, dropping the time indices for simplicity, we get:

$$\frac{\bar{q}^2}{2h_i^2} + g(h_i + Z_i) = \frac{\bar{q}^2}{2h_{i+\frac{1}{2}}^2} + g(h_{i+\frac{1}{2}} + Z_{i+\frac{1}{2}}) = \frac{\bar{q}^2}{2h_{i+1}^2} + g(h_{i+1} + Z_{i+1}).$$

²Proving that $h_{i+1}^n = h_{i+1}^n$ leads to the same conclusion.

Some algebraic manipulations allow us to write

$$\begin{split} \frac{\bar{q}^2}{2h_i^2} + g(h_i + Z_i) &= \frac{\bar{q}^2}{2h_{i+\frac{1}{2}}^2} + g(h_{i+\frac{1}{2}} + Z_{i+\frac{1}{2}}) \\ \iff \\ Z_{i+\frac{1}{2}} - Z_i &= -\Big(h_{i+\frac{1}{2}} - h_i\Big)\Big(1 - \operatorname{Fr}^2(h_i, h_{i+\frac{1}{2}}, \bar{q})\Big), \end{split}$$

which is nothing but the usual discrete characterization of smooth steady solutions.

We claim that imposing the following property on $\ensuremath{\mathcal{H}}$ will be enough to preserve steady solutions:

$$\Delta Z = -(h_R - h_L)(1 - \operatorname{Fr}^2(h_L, h_R, \bar{q})) \implies \mathcal{H}(h_L, h_R, \bar{q}, \Delta Z) = \frac{h_R - h_L}{2}.$$

Indeed, we then obtain the following sequence of equalities:

$$\begin{split} h^n_{i+\frac{1}{2},-} &= h^n_i + \left(Z_i - Z_{i+\frac{1}{2}} \right) \\ &\quad + 2 F r^2 \Big(h^n_i, h^n_{i+\frac{1}{2}}, q^n_i \Big) \, \mathfrak{H} \Big(h^n_i, h^n_{i+\frac{1}{2}}, q^n_i, Z_{i+\frac{1}{2}} - Z_i \Big), \end{split}$$

Indeed, we then obtain the following sequence of equalities:

$$\begin{split} h^{n}_{i+\frac{1}{2},-} &= h^{n}_{i} + \left(Z_{i} - Z_{i+\frac{1}{2}}\right) \\ &+ 2 \text{Fr}^{2} \left(h^{n}_{i}, h^{n}_{i+\frac{1}{2}}, q^{n}_{i}\right) \mathcal{H} \left(h^{n}_{i}, h^{n}_{i+\frac{1}{2}}, q^{n}_{i}, Z_{i+\frac{1}{2}} - Z_{i}\right), \\ h^{n}_{i+\frac{1}{2},-} &= h^{n}_{i} + \left(Z_{i} - Z_{i+\frac{1}{2}}\right) \\ &+ \text{Fr}^{2} \left(h^{n}_{i}, h^{n}_{i+\frac{1}{2}}, q^{n}_{i}\right) \left(h^{n}_{i+\frac{1}{2}} - h^{n}_{i}\right), \end{split}$$

Indeed, we then obtain the following sequence of equalities:

$$\begin{split} h^{n}_{i+\frac{1}{2},-} &= h^{n}_{i} + \left(Z_{i} - Z_{i+\frac{1}{2}}\right) \\ &\quad + 2 Fr^{2} \left(h^{n}_{i}, h^{n}_{i+\frac{1}{2}}, q^{n}_{i}\right) \mathfrak{H}\left(h^{n}_{i}, h^{n}_{i+\frac{1}{2}}, q^{n}_{i}, Z_{i+\frac{1}{2}} - Z_{i}\right), \\ h^{n}_{i+\frac{1}{2},-} &= h^{n}_{i} + \left(Z_{i} - Z_{i+\frac{1}{2}}\right) \\ &\quad + Fr^{2} \left(h^{n}_{i}, h^{n}_{i+\frac{1}{2}}, q^{n}_{i}\right) \left(h^{n}_{i+\frac{1}{2}} - h^{n}_{i}\right), \\ h^{n}_{i+\frac{1}{2},-} &= h^{n}_{i} + \left(Z_{i} - Z_{i+\frac{1}{2}}\right) \\ &\quad + \left(Z_{i+\frac{1}{2}} - Z_{i}\right) + \left(h_{i+\frac{1}{2}} - h_{i}\right), \end{split}$$

Indeed, we then obtain the following sequence of equalities:

$$\begin{split} h^n_{i+\frac{1}{2},-} &= h^n_i + \left(Z_i - Z_{i+\frac{1}{2}} \right) \\ &\quad + 2 \text{Fr}^2 \Big(h^n_i, h^n_{i+\frac{1}{2}}, q^n_i \Big) \, \mathfrak{H} \Big(h^n_i, h^n_{i+\frac{1}{2}}, q^n_i, Z_{i+\frac{1}{2}} - Z_i \Big), \\ h^n_{i+\frac{1}{2},-} &= h^n_i + \left(Z_i - Z_{i+\frac{1}{2}} \right) \\ &\quad + \text{Fr}^2 \Big(h^n_i, h^n_{i+\frac{1}{2}}, q^n_i \Big) \left(h^n_{i+\frac{1}{2}} - h^n_i \right), \\ h^n_{i+\frac{1}{2},-} &= h^n_i + \left(Z_i - Z_{i+\frac{1}{2}} \right) \\ &\quad + \left(Z_{i+\frac{1}{2}} - Z_i \right) + \left(h_{i+\frac{1}{2}} - h_i \right), \\ h^n_{i+\frac{1}{2},-} &= h^n_{i+\frac{1}{2}}, \end{split}$$

which proves that the scheme is well-balanced.

Summary and source term discretization

To summarize, for the reconstruction to be consistent and well-balanced, we require the **following two properties** on the bounded function \mathcal{H} :

1.
$$\mathcal{H}(h_L, h_R, \bar{q}, \Delta Z) \underset{\Delta Z \to 0}{=} \mathcal{O}(\Delta Z)$$
,

2.
$$\Delta Z = -(h_R - h_L)(1 - Fr^2(h_L, h_R, \bar{q})) \implies \mathcal{H}(h_L, h_R, \bar{q}, \Delta Z) = \frac{h_R - h_L}{2}.$$

Summary and source term discretization

To summarize, for the reconstruction to be consistent and well-balanced, we require the **following two properties** on the bounded function \mathcal{H} :

- 1. $\mathcal{H}(h_L, h_R, \bar{q}, \Delta Z) \underset{\Delta Z \to 0}{=} \mathcal{O}(\Delta Z)$,
- 2. $\Delta Z = -(h_R h_L)(1 \operatorname{Fr}^2(h_L, h_R, \bar{q})) \implies \mathfrak{H}(h_L, h_R, \bar{q}, \Delta Z) = \frac{h_R h_L}{2}.$

In addition, the whole scheme will also be consistent and well-balanced if the following **numerical source term** is used:

$$\Delta x(\mathcal{S}_q)_i^n = -g \frac{2h_{i-\frac{1}{2},+}^n h_{i+\frac{1}{2},-}^n}{h_{i-\frac{1}{2},+}^n + h_{i+\frac{1}{2},-}^n} \left(Z_{i+\frac{1}{2}} - Z_{i-\frac{1}{2}} \right) + \frac{4g}{h_{i-\frac{1}{2},+}^n + h_{i+\frac{1}{2},-}^n} \mathfrak{R} \left(h_{i-\frac{1}{2},+}^n , h_{i+\frac{1}{2},-}^n , q_i, Z_{i+\frac{1}{2}} - Z_{i-\frac{1}{2}} \right)^3.$$

The proof results from algebraic manipulations (not detailed here).

Summary and source term discretization

To summarize, for the reconstruction to be consistent and well-balanced, we require the **following two properties** on the bounded function \mathcal{H} :

- 1. $\mathcal{H}(h_L, h_R, \bar{q}, \Delta Z) \underset{\Delta Z \to 0}{=} \mathcal{O}(\Delta Z)$,
- 2. $\Delta Z = -(h_R h_L)(1 \operatorname{Fr}^2(h_L, h_R, \bar{q})) \implies \mathcal{H}(h_L, h_R, \bar{q}, \Delta Z) = \frac{h_R h_L}{2}.$

In addition, the whole scheme will also be consistent and well-balanced if the following **numerical source term** is used:

$$\Delta x(\mathcal{S}_q)_i^n = -g \frac{2h_{i-\frac{1}{2},+}^n h_{i+\frac{1}{2},-}^n}{h_{i-\frac{1}{2},+}^n + h_{i+\frac{1}{2},-}^n} \left(Z_{i+\frac{1}{2}} - Z_{i-\frac{1}{2}} \right) + \frac{4g}{h_{i-\frac{1}{2},+}^n + h_{i+\frac{1}{2},-}^n} \mathfrak{R} \left(h_{i-\frac{1}{2},+}^n , h_{i+\frac{1}{2},-}^n , q_i, Z_{i+\frac{1}{2}} - Z_{i-\frac{1}{2}} \right)^3.$$

The proof results from algebraic manipulations (not detailed here).

Next step: obtain a suitable expression of \mathcal{H} .

Problem statemen

The hydrodynamic reconstruction

Suitable expression of $\ensuremath{\mathcal{H}}$

Linear high-order extension

Numerical experiments

Conclusion

Satisfying the well-balanced property

Recall that we need

$$\mathcal{H}(h_L, h_R, \bar{q}, \Delta Z) = \frac{h_R - h_L}{2}$$

as soon as a steady solution is under consideration.

To obtain an expression of \mathcal{H} satisfying this property, we need to understand how $h_R - h_L$ behaves for discrete steady solutions.

Satisfying the well-balanced property

Recall that we need

$$\mathcal{H}(h_L, h_R, \bar{q}, \Delta Z) = \frac{h_R - h_L}{2}$$

as soon as a steady solution is under consideration.

To obtain an expression of \mathcal{H} satisfying this property, we need to understand how $h_R - h_L$ behaves for discrete steady solutions.

We now seek a relation to characterize **the jump of** h **at the interface**, i.e. an expression of $h_R - h_L$ for steady solutions.

We assume that the solution is steady, and introduce notation

$$\bar{h} = \frac{h_L + h_R}{2}$$
 and $\mathfrak{H} = \frac{h_R - h_L}{2}$,

so that h_L and h_R satisfy

$$h_L = \bar{h} - \mathcal{H}$$
 and $h_R = \bar{h} + \mathcal{H}$.

The goal is now to rewrite the steady relation in terms of \bar{h} and \mathcal{H} .

A local relation to characterize steady solutions

Recall that the steady solutions are governed by

$$B(h, q_0, Z) = \frac{q_0^2}{2h^2} + g(h + Z) = B_0.$$

That is to say, at the interface between states W_L and W_R , the solution is locally steady as soon as $q_L = q_R = \bar{q}$ and

$$B(h_L, \bar{q}, Z_L) = B(h_R, \bar{q}, Z_R) \iff \frac{\bar{q}^2}{2h_L^2} + g(h_L + Z_L) = \frac{\bar{q}^2}{2h_R^2} + g(h_R + Z_R).$$

We set out to rewrite the above relation using \bar{h} and \mathcal{H} instead of h_L and h_R .

A nonlinear relation for the interface jump

$$\begin{split} \frac{\bar{q}^2}{2h_L^2} + g(h_L + Z_L) &= \frac{\bar{q}^2}{2h_R^2} + g(h_R + Z_R) \\ \iff \\ \frac{\bar{q}^2}{2(\bar{h} - \mathfrak{R})^2} + g(\bar{h} - \mathfrak{R} + Z_L) &= \frac{\bar{q}^2}{2(\bar{h} + \mathfrak{R})^2} + g(\bar{h} + \mathfrak{R} + Z_R) \\ \iff \\ \cdots \\ \iff \\ 2\mathfrak{R} \Big(g(\bar{h}^2 - \mathfrak{R}^2)^2 - \bar{q}^2 \bar{h} \Big) &= -g(Z_R - Z_L) \big(\bar{h}^2 - \mathfrak{R}^2\big)^2. \end{split}$$

A nonlinear relation for the interface jump: properties

$$2\mathcal{H}\left(g\left(\bar{h}^2-\mathcal{H}^2\right)^2-\bar{q}^2\bar{h}\right)=-g\Delta Z\left(\bar{h}^2-\mathcal{H}^2\right)^2 \tag{*}$$

Can \mathcal{H} , implicitly given by the above expression, satisfy the required consistency and well-balanced properties?

A nonlinear relation for the interface jump: properties

$$2\mathcal{H}\left(g\big(\bar{h}^2-\mathcal{H}^2\big)^2-\bar{q}^2\bar{h}\right)=-g\Delta Z\big(\bar{h}^2-\mathcal{H}^2\big)^2 \tag{*}$$

Can \mathcal{H} , implicitly given by the above expression, satisfy the required consistency and well-balanced properties?

1. For the consistency, we need $\mathcal{H}(h_L,h_R,\bar{q},\Delta Z) = \mathcal{O}(\Delta Z)$: at least one solution to (*) satisfies this property.

A nonlinear relation for the interface jump: properties

$$2\mathcal{H}\Big(g\big(\bar{h}^2-\mathcal{H}^2\big)^2-\bar{q}^2\bar{h}\Big)=-g\Delta Z\big(\bar{h}^2-\mathcal{H}^2\big)^2 \tag{*}$$

Can \mathcal{H} , implicitly given by the above expression, satisfy the required consistency and well-balanced properties?

- 1. For the consistency, we need $\mathcal{H}(h_L, h_R, \bar{q}, \Delta Z) = \mathcal{O}(\Delta Z)$: at least one solution to (*) satisfies this property.
- 2. For the well-balanced property, we need

$$\Delta Z = -(h_R - h_L)(1 - \operatorname{Fr}^2(h_L, h_R, \bar{q})) \implies \mathcal{H}(h_L, h_R, \bar{q}, \Delta Z) = \frac{h_R - h_L}{2}.$$

This property holds since (*) has been derived so that $2\mathcal{H} = h_R - h_L$ is a solution as soon as the flow is steady.

"Quadratized" relation

$$2\mathcal{H}\left(g\left(\bar{h}^2-\mathcal{H}^2\right)^2-\bar{q}^2\bar{h}\right)=-g\Delta Z\left(\bar{h}^2-\mathcal{H}^2\right)^2 \tag{*}$$

Equation (*) is nonlinear, and using it would incur considerable computational cost. To avoid this issue, we proceed with linearization-like simplification: for $\Re \neq \bar{h}$, we get

(*)
$$\iff$$
 $2\mathcal{H}\left(1-\frac{\bar{q}^2\bar{h}}{g(\bar{h}^2-\mathcal{H}^2)^2}\right)=-\Delta Z.$

We choose a "quadratization" of this expression around $\mathcal{H} = \Delta h/2$:

$$2\mathcal{H}\left(1-\underbrace{\frac{\bar{q}^2(h_L+h_R)}{2gh_L^2h_R^2}}_{\text{Fr}^2}+4\text{sgn}(\Delta Z)\sqrt{\frac{|\Delta Z|}{|\Delta h|^3}}(\Delta h-2\mathcal{H})\right)=-\Delta Z.$$

Final expression of ${\mathcal H}$

We are left with ${\mathcal H}$ satisfying a quadratic relation.

Solving this quadratic equation for ${\mathcal H}$ leads to

$$\begin{split} \mathcal{H} &= \frac{1}{4} \Biggl(E - \text{sgn}(1 - \text{Fr}^2) \text{sgn}(\Delta Z) \sqrt{E^2 + \sqrt{|\Delta Z| |\Delta h|^3}} \Biggr), \\ \text{with } E &= \Delta h + \frac{1 - \text{Fr}^2}{4} \text{sgn}(\Delta Z) \sqrt{\frac{|\Delta h|^3}{|\Delta Z|}}. \end{split}$$

We show that, if ΔZ and $1 - Fr^2$ do not simultaneously vanish:

- 1. this expression of $\mathcal H$ is consistent, despite the divisions by ΔZ ;
- 2. this expression of $\mathcal H$ is well-balanced.

Well-balanced property

To show the well-balanced property, we take $\Delta Z = -(1 - Fr^2)\Delta h$, to get

$$E=\Delta h+\frac{1-\mathrm{Fr}^2}{4}\mathrm{sgn}(-(1-\mathrm{Fr}^2)\Delta h)\sqrt{\frac{|\Delta h|^3}{|1-\mathrm{Fr}^2||\Delta h|}}=\Delta h\bigg(1-\frac{1}{4}\sqrt{|1-\mathrm{Fr}^2|}\bigg),$$

$$E^{2} + \sqrt{|\Delta Z||\Delta h|^{3}} = (\Delta h)^{2} \left(1 + \frac{1}{4}\sqrt{|1 - Fr^{2}|}\right)^{2}.$$

Well-balanced property

To show the well-balanced property, we take $\Delta Z = -(1 - Fr^2)\Delta h$, to get

$$\begin{split} E &= \Delta h + \frac{1 - Fr^2}{4} \text{sgn}(-(1 - Fr^2)\Delta h) \sqrt{\frac{|\Delta h|^3}{|1 - Fr^2||\Delta h|}} = \Delta h \left(1 - \frac{1}{4} \sqrt{|1 - Fr^2|}\right), \\ E^2 &+ \sqrt{|\Delta Z||\Delta h|^3} = (\Delta h)^2 \left(1 + \frac{1}{4} \sqrt{|1 - Fr^2|}\right)^2. \end{split}$$

Plugging this in \mathcal{H} , we obtain

$$\begin{split} \mathfrak{H} &= \frac{1}{4} \left(\Delta h \left(1 - \frac{1}{4} \sqrt{|1 - \mathsf{Fr}^2|} \right) + \mathsf{sgn}(\Delta h) \sqrt{(\Delta h)^2 \left(1 + \frac{1}{4} \sqrt{|1 - \mathsf{Fr}^2|} \right)^2} \right) \\ &= \frac{\Delta h}{4} \left(1 - \frac{1}{4} \sqrt{|1 - \mathsf{Fr}^2|} + 1 + \frac{1}{4} \sqrt{|1 - \mathsf{Fr}^2|} \right) = \frac{\Delta h}{2}, \end{split}$$

which proves the well-balanced property.

Well-balanced property

To show the well-balanced property, we take $\Delta Z = -(1 - Fr^2)\Delta h$, to get

$$E = \Delta h + \frac{1 - Fr^2}{4} \operatorname{sgn}(-(1 - Fr^2)\Delta h) \sqrt{\frac{|\Delta h|^3}{|1 - Fr^2||\Delta h|}} = \Delta h \left(1 - \frac{1}{4}\sqrt{|1 - Fr^2|}\right),$$

$$E^2 + \sqrt{|\Delta Z||\Delta h|^3} = (\Delta h)^2 \left(1 + \frac{1}{4}\sqrt{|1 - Fr^2|}\right)^2.$$

Plugging this in \mathcal{H} , we obtain

$$\begin{split} \mathfrak{H} &= \frac{1}{4} \left(\Delta h \left(1 - \frac{1}{4} \sqrt{|1 - \mathsf{Fr}^2|} \right) + \mathsf{sgn}(\Delta h) \sqrt{(\Delta h)^2 \left(1 + \frac{1}{4} \sqrt{|1 - \mathsf{Fr}^2|} \right)^2} \right) \\ &= \frac{\Delta h}{4} \left(1 - \frac{1}{4} \sqrt{|1 - \mathsf{Fr}^2|} + 1 + \frac{1}{4} \sqrt{|1 - \mathsf{Fr}^2|} \right) = \frac{\Delta h}{2}, \end{split}$$

which proves the well-balanced property.

Next step: provide a well-balanced high-order extension.

Problem statemen

The hydrodynamic reconstruction

Suitable expression of H

Linear high-order extension

Numerical experiments

Conclusion

High-order scheme

A high-order (non-well-balanced) finite volume scheme reads:

$$W_i^{n+1} = W_i^n - \frac{\Delta t}{\Delta x} \Big(\mathcal{F}(\widehat{W}_{i,+}^n, \widehat{W}_{i+1,-}^n) - \mathcal{F}(\widehat{W}_{i-1,+}^n, \widehat{W}_{i,-}^n) \Big) + \Delta t \widehat{\mathcal{S}}_i^n.$$

In each cell, we reconstruct a polynomial of degree d, under the form

$$\widehat{W}_i^n(x) = W_i^n + \sum_{\alpha=1}^d R_i^{\alpha} (x - x_i)^{\alpha},$$

where the coefficients R_i^{α} depend on the neighboring cells.

The evaluations at the interfaces $x_{i\pm\frac{1}{3}}$ are then given by:

$$\widehat{W}_{i,-}^n = W_i^n + \sum_{\alpha=1}^d R_i^\alpha \left(-\frac{\Delta x}{2} \right)^\alpha \qquad \text{and} \qquad \widehat{W}_{i,+}^n = W_i^n + \sum_{\alpha=1}^d R_i^\alpha \left(\frac{\Delta x}{2} \right)^\alpha,$$

and the high-order source term is the following approximation:

$$\widehat{\mathbb{S}}_{i}^{n} = \frac{1}{\Delta x} \int_{x_{i-1}}^{x_{i+\frac{1}{2}}} \mathsf{S}(\widehat{W}_{i}^{n}(x)) \, dx + \mathcal{O}(\Delta x^{d+1}).$$

Linear well-balanced correction of the high-order scheme

We introduce a convex combination with parameter $\theta_{i\pm\frac{1}{2}}$ to provide a well-balanced correction to the high-order scheme, such that:

- if $\theta_{i\pm\frac{1}{2}}=0$, the scheme is well-balanced;
- if $\theta_{i\pm\frac{1}{2}}=$ 1, the scheme is high-order accurate.

The new evaluations at the interfaces $x_{i\pm\frac{1}{2}}$ are given by:

$$\widetilde{W}_{i,-}^{n} = W_{i}^{n} + \theta_{i-\frac{1}{2}} \sum_{\alpha=1}^{a} R_{i}^{\alpha} \left(-\frac{\Delta x}{2}\right)^{\alpha} \quad \text{and} \quad \widetilde{W}_{i,+}^{n} = W_{i}^{n} + \theta_{i+\frac{1}{2}} \sum_{\alpha=1}^{a} R_{i}^{\alpha} \left(\frac{\Delta x}{2}\right)^{\alpha},$$

and the new high-order well-balanced source term reads:

$$\widetilde{S}_{i}^{n} = \left(1 - \frac{\theta_{i-\frac{1}{2}}^{n} + \theta_{i+\frac{1}{2}}^{n}}{2}\right) S_{i}^{n} + \frac{\theta_{i-\frac{1}{2}}^{n} + \theta_{i+\frac{1}{2}}^{n}}{2} \widehat{S}_{i}^{n}.$$

Next step: Provide a suitable choice of the convex combination parameter $\theta_{i\pm\frac{1}{2}}$. We follow the general strategy from [C. Berthon, S. Bulteau, F. Foucher, M. M'Baye and V. M.-D., *SIAM SISC*, 2022].

Steady solution detector

The convex combination parameter $\theta_{i+1/2}^n$ must satisfy the following properties:

- vanish when (W_i^n, W_{i+1}^n) are at equilibrium;
- be an approximation of 1 up to $\mathcal{O}(\Delta x^{d+1})$ otherwise.

Steady solution detector

The convex combination parameter $\theta_{i+1/2}^n$ must satisfy the following properties:

- vanish when (W_i^n, W_{i+1}^n) are at equilibrium;
- be an approximation of 1 up to $\mathcal{O}(\Delta x^{d+1})$ otherwise.

We propose the following expression:

$$\begin{split} \theta_{i+\frac{1}{2}}^{n} &= \frac{\varepsilon_{i+\frac{1}{2}}^{n}}{\varepsilon_{i+\frac{1}{2}}^{n} + C_{i+\frac{1}{2}}^{n} \Delta x^{d+1}}, \\ \text{with } \varepsilon_{i+\frac{1}{2}}^{n} &= \left\| \begin{pmatrix} q_{i+1}^{n} - q_{i}^{n} \\ B(h_{i+1}^{n}, q_{i+1}^{n}, Z_{i+1}) - B(h, q_{i}^{n}, Z_{i}) \end{pmatrix} \right\|. \end{split}$$

Properties of the steady solution detector

$$\theta_{i+\frac{1}{2}}^{n} = \frac{\varepsilon_{i+\frac{1}{2}}^{n}}{\varepsilon_{i+\frac{1}{2}}^{n} + C_{i+\frac{1}{2}}^{n} \Delta x^{d+1}}, \text{ with } \varepsilon_{i+\frac{1}{2}}^{n} = \left\| \begin{pmatrix} q_{i+1}^{n} - q_{i}^{n} \\ B(h_{i+1}^{n}, q_{i+1}^{n}, Z_{i+1}) - B(h_{i}^{n}, q_{i}^{n}, Z_{i}) \end{pmatrix} \right\|$$

(WB) We easily note that $\varepsilon_{i+\frac{1}{2}}^n$ vanishes (and therefore $\theta_{i+\frac{1}{2}}^n$ does too) as soon as W_i^n and W_{i+1}^n are at equilibrium.

(HO) If $\varepsilon_{i+\frac{1}{2}}^n \neq 0$, then

$$\theta_{i+\frac{1}{2}}^{n} = \frac{1}{1 + \Delta x^{d+1} \frac{C_{i+\frac{1}{2}}^{n}}{\varepsilon_{i+\frac{1}{2}}^{n}}} = 1 + \mathcal{O}(\Delta x^{d+1}).$$

 \leadsto The expression of $\theta^n_{i\pm\frac{1}{2}}$ satisfies the required properties.

Next step: perform numerical tests to validate the method.

Problem statemen

The hydrodynamic reconstruction

Suitable expression of H

Linear high-order extension

Numerical experiments

Conclusion

Setup

We provide several numerical tests with a finite volume scheme using the HLL flux:

- · an order of convergence test,
- · three tests of the well-balanced property,
- a dry dam-break.

These tests are performed with the **h**ydro**s**tatic **r**econstruction (HSR) and the **h**ydro**d**ynamic **r**econstruction (HDR).

The schemes of order δ are denoted by HSR δ and HDR δ .

Order of convergence

Emerged lake at rest

	HSR, \mathbb{P}_0	HDR, \mathbb{P}_0	HDR, \mathbb{P}_1	HDR, \mathbb{P}_2
L ² error on h	$1.85 \cdot 10^{-17}$	$2.75 \cdot 10^{-17}$	$3.07 \cdot 10^{-17}$	$1.32 \cdot 10^{-17}$
L ² error on q	$1.24 \cdot 10^{-16}$	$5.17 \cdot 10^{-17}$	$1.24 \cdot 10^{-16}$	$3.59 \cdot 10^{-17}$

Subcritical flow

	HSR, \mathbb{P}_0	HDR, \mathbb{P}_0	HDR, \mathbb{P}_1	HDR, \mathbb{P}_2
L ² error on q	$7.73 \cdot 10^{-2}$	$1.06 \cdot 10^{-14}$	$1.31 \cdot 10^{-14}$	1.30 · 10 ⁻¹⁴
L ² error on B	$1.79 \cdot 10^{-1}$	$2.73 \cdot 10^{-14}$	$3.61 \cdot 10^{-14}$	$2.68 \cdot 10^{-14}$

Transcritical flow

	HSR, \mathbb{P}_0	HDR, \mathbb{P}_0	HDR, \mathbb{P}_1	HDR, \mathbb{P}_2
L ² error on q	$3.74 \cdot 10^{-2}$	$4.73 \cdot 10^{-14}$	$5.15 \cdot 10^{-14}$	$5.21 \cdot 10^{-14}$
L ² error on B	$1.45 \cdot 10^{-1}$	$4.50 \cdot 10^{-14}$	$5.12 \cdot 10^{-14}$	$5.92 \cdot 10^{-14}$

Dry dam-break

Problem statemen

The hydrodynamic reconstruction

Suitable expression of H

Linear high-order extension

Numerical experiments

Conclusion

Conclusion

We have developed a linear reconstruction that allows any finite volume scheme to be fully well-balanced for the shallow water system.

This reconstruction has the following properties:

- · it leads to a consistent scheme,
- · the resulting scheme is well-balanced,
- it can be extended to high-order accuracy with a low computational cost,
- · it is able to handle wet/dry transitions,
- · it is easy to implement.

Thank you for your attention!

Finite Volumes for Complex Applications 10 (**FVCA10**), in Strasbourg, 30/10/2023 – 03/11/2023

Limitations of the method

Of course, the method also has a few limitations.

- 1. It is dependent on a parameter *C*, which could be different for each experiment.
- 2. Although the scheme is high-order accurate and well-balanced, there is an issue with high-order well-balanced initialization. Consider an initial condition W_0 , steady at interface $x_{i-1/2}$ and unsteady at interface $x_{i+1/2}$; we need the reconstruction \widetilde{W}_i^0 to satisfy

$$\widetilde{W}_{i}^{0}(x_{i-\frac{1}{2}}) = \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} W_{0}(x) dx \quad \text{and} \quad \widetilde{W}_{i}^{0}(x_{i+\frac{1}{2}}) = W_{0}(x_{i+\frac{1}{2}}) + \mathcal{O}(\Delta x^{d+1}).$$

This leads to two conditions in cell i, for one unknown W_i^0 ...

An expression of $C_{i+1/2}^n$

To implement the scheme, we need to give an expression of $C = C_{i+1/2}^n$. We propose $C_{i+1/2}^0 = 1$, and, for $n \ge 1$:

$$C_{i+\frac{1}{2}}^{n} = C_{\theta} \frac{1}{2} \left(\frac{\left\| W_{i+1}^{n} - W_{i+1}^{n-1} \right\|}{\Delta t} + \frac{\left\| W_{i}^{n} - W_{i}^{n-1} \right\|}{\Delta t} \right),$$

with C_{θ} a constant parameter.

Note that

$$\theta_{i+\frac{1}{2}}^n = \frac{\varepsilon_{i+\frac{1}{2}}^n}{\varepsilon_{i+\frac{1}{2}}^n + \left(\frac{\Delta x}{C_{i+\frac{1}{2}}^n}\right)^{\delta}} = \frac{\varepsilon_{i+\frac{1}{2}}^n (C_{i+\frac{1}{2}}^n)^{\delta}}{\varepsilon_{i+\frac{1}{2}}^n (C_{i+\frac{1}{2}}^n)^{\delta} + \Delta x^{\delta}}:$$

we get $\theta_{i+\frac{1}{2}}^n=0$ if $\epsilon_{i+\frac{1}{2}}^n=0$ or $C_{i+\frac{1}{2}}^n=0$. Why does this make sense?

An expression of $C_{i+1/2}^n$ – reasoning

$$\theta^n_{i+\frac{1}{2}} = 0 \text{ if } \epsilon^n_{i+\frac{1}{2}} = 0 \text{ or } C^n_{i+\frac{1}{2}} = 0$$

$$\epsilon_{i+\frac{1}{2}}^n = 0 \implies \text{ steady state solution for the equations}$$

$$\implies \theta_{i+\frac{1}{2}}^n \text{ must vanish to preserve the steady state solution}$$

$$C_{i+\frac{1}{2}}^n=0 \implies$$
 vanishing discrete time derivative \implies steady state solution for the high-order scheme \implies not a steady state solution for the equations $^3 \implies \theta_{i+\frac{1}{2}}^n$ must vanish to perturb the solution

³Otherwise, the high-order scheme would be well-balanced.