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0 General context: multi-scale models and principle of AP schemes
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Multiscale model M, depending on a parameter € | = |
In the (space-time) domain, € can ] ;
@ be of same order as the reference scale; f I

@ be small compared to the reference scale;

@ take intermediate values.
When ¢ is small: My = lim M asympt. model (
£—0

Difficulties:

@ Classical explicit schemes for M: they are stable and consistent if
the mesh resolves all the scales of €. = very costly when € — 0

@ Schemes for My = the mesh is independent of €

But: = My is not valid everywhere, it needs € < 1
w the interface may be moving: how to locate it?
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A possible solution: Asymptotic Preserving (AP) schemes

@ Use the multi-scale model M, even for small €.
@ Discretize Mg with a scheme preserving the limit € — 0.

w The mesh is independent of €: Asymptotic stability.

w Recovery of an approximate solution of My when € — 0:
Asymptotic consistency.

w Asymptotically stable and consistent scheme
— Asymptotic preserving scheme (AP).
([Jin, *99] kinetic — hydro)
@ The AP scheme may be used only to reconnect M; and M.

Mo
M. class. scheme

class. scheme

M,
AP scheme
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e An order 1 AP scheme for the Euler system in the low Mach limit



The multi-scale model and its asymptotic limit sz

w |sentropic Euler system in scaled variables: x € Q CRY, t >0

{atP+V‘(PU):0 (1)e

d(pu)+V-(puxu)+ le(p) 0 (2)e (with p(p) = p")

Parameter: ¢ = M? = |4|?/(yp(P)/P), M = Mach number
Boundary and initial conditions:
p(x,0) = po +&po(x)
u-n=00n0dY and
u(x,0) = up(x) +€ip(x), withV-up=0
The formal low Mach number limit € — 0:
(2)e = Vp(p)=0 = p(x,t)=p(t)

(1)e = |Q|P’(t)+p(t)/aQu'n=0 = p(t)=p(0)=py = V-u=0



The multi-scale model and its asymptotic limit 4z
The asymptotic model: Rigorous limit [Klainerman & Majda, ’81]:

pP= cst = Po,

(Mo) p0V'U:0, (1)0

Podiu+poV-(U®U)+VIy =0, (2)o
where .1
m = lim (p(p) —p(po))-
Expliciteq. for iz 9(1)0—V-(2)0 = —Am =poV?:(u®u)
The pressure wave equation from M;:

WM~V (2)e = dup— 3 App)=V?:(pucu) (3)c

From a numerical point of view

@ Explicit treatment of (3) = conditional stability At < \/€ Ax
@ Implicit treatment of (3) == uniform stability with respect to €
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Time semi-discretization: [Degond, Deluzet, Sangam & Vignal, ’09],
[Degond & Tang, ’11], [Chalons, Girardin & Kokh, '15]

If p” and u” are known at time t":

n+1 __ ~n
%_FV.(pU)nJH:O’ (1) )
n+1 _ n 1
(pu) . (pu) +V-(pu )+ Vp(p" ) =0.  (2) wo

ee—0 gives Vp(p"t')=0 = consistency at the limit
@ implicit treatment of the pressure wave eq. = uniform stability in €

n+1 _ n n—1
D Iap(pm) = V2 (pus U

At2 €

V- (2) inserted into (1): gives an uncoupled formulation
pn—i—1 o pn

Al +V~(pu)”—%A/o(p”“)—m‘v2 (pu®u)"=0
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The scheme proposed in [Dimarco, Loubére & Vignal, ’17]:
w Framework of IMEX (IMplicit-EXplicit) schemes:

P\ ovf O Vo (PU)_
a’(OU) w (PU®U> w (@/d) -
—— ——— ~—

w Fe(W) Fi(W)

m The CFL condition comes from the explicit flux Fo(W): in 1D, we have

AP < % = A—);, (recall Aeass: < nAX—\/E)
;2] uf + /v

where A" are the eigenvalues of the explicit Jacobian matrix DFg(W").

w A linear stability analysis yields: if the implicit part is
e centered = L2 stability;

e upwind = TVD and L™ stability.
SSP Strong Stability Preserving, [Gottlieb, Shu & Tadmor, 01]



Importance of the upwind implicit viscosity 7126

To highlight the relevance of upwinding the implicit viscosity, we display
the density p in the vicinity of a shock wave and a rarefaction wave
(€ =10.99, 45 cells in the left panel, 150 cells in the right panel).

©
>
2%
=iy
P8

x : centered implicit discretization = L2 stability and less diffusive

m : upwind implicit discretization = L* stability but more diffusive



AP but diffusive results, 1D test case

€ =0.99, 300 cells

273 loops
CPU time 0.07
AP: 510 loops

CPU time 1.46

Class:

Time steps

st --- 1st-order AP

§x107

—Class. scheme

8/26

—Class. scheme
— 1st-order AP

]

0.01 0.02 0.03 0.04 0.05 0.06
Time

e =10"%, 300 cells

4036 loops
CPU time 0.82
AP: 57 loops

CPU time 0.14

Class:

Time steps

107

—Class. scheme
---1st-order AP

—Class. scheme
---1st-order AP
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AP but diffusive results, 1D test case 9126
! —Class. scheme 1 tggssi'hse?::me
---AP scheme
e=10"* 2 g
% 10 8
Underlying of £
the viscosity [
0% 001 002 003 Tir‘#g 005  0.06 09999 0.2 0.4 . 06 0.8 1

It is necessary to use high order schemes

But they must respect the AP properties
we also wish to retain the L™ stability



0 General context: multi-scale models and principle of AP schemes
e An order 1 AP scheme for the Euler system in the low Mach limit
e Second-order schemes in time

e Second-order schemes in space and application to Euler

e Work in progress and perspectives
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Bibliography for stiff source terms or ODE problems: Ascher,
Boscarino, Cafflish, Dimarco, Filbet, Gottlieb, Happenhofer, Higueras, Jin,
Koch, Kupka, LeFloch, Pareschi, Russo, Ruuth, Shu, Spiteri, Tadmor...

IMEX division: oW+ V- Fo(W)+ V- Fi(W)=0.

General principle:  Step n: W" is known

@ Quadrature formula with intermediate values:
tn+1 t"+1
W™ = w(t") — At V- Fo(W(t))dt — At V.- Fi(W(t))dt

tn tn
o ~~ >

-~

s .
Wl =w"  — At ZBjV-Fe(W”’f) — Zb,V Fi(w")
j=1 =1
Quadratures exact on the constants: Y7 1b, Yiib=1

e Intermediate values at times ™/ = t"+ ¢; At:

‘ ' tn,j ci
W ~ (™) = W(t”)+/ QW(1) ot = wn+m/ "W (" + s At)
tn 0
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@ Quadrature formula for intermediate values: i=1,---,s
W = W"— AtY 3, V- Fo(W™F) —AtZaMV-F,-(W”*"),

k<j

Quadratures exact on the constants: Z ajx =

s k<) s

=g, Z ajk =

k=1
o WM =w"— Ath, V. Fo(W™) Athj V- F(W™)
j=1 j=1
Butcher tableaux:
Explicit part Implicit part

0 0 0 cee 0 C1 | a1 0 s 0

Co 5271 0 ... 0 Co| @1 aop . 0
Cs | as1 ... és,s—1 0 Cs | ds,1 dss—1 ds;s

B‘] “ee c e BS b‘] “ o cee bs

Conditions for 2nd order: Y bjc; =) b5 =) bg=Y bg=1/2
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ARS discretization [Ascher, Ruuth & Spiteri, *97]:
“only one” intermediate step

ol o 0 o0 0jlo 0 0
Bl B 0 o0 Blo B o g1
1|B—1 2—-B 0 110 1-B B N
B—1 2—-B 0 0o 1—-B P
Wn71:Wn
= W= W"— AtBV-Fo(W") — AtV - Fi(W)
W™ = W™ = W — AHB— 1)V Fo(W™) — At(2 — B)V - Fo(W*)

— At(1 —B)V - F(W*) — AtBV - F(w™)
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Density p for the ARS time discretization: (1st order in space)
e=10" e=10"2

1.01

1.005

1.0001

1.0005 1.00005

1L I I I 1 C I I I =1
0O 02 0406 08 1 0 02 04 06 0.8 1
e=10"3 e=10"*

---- exact —— 1storder — 2nd order




Better understand the oscillations 14726
Consider the scalar hyperbolic equation d;w + dxf(w) = 0.

@ Oscillations measured by the Total Variation and the L™ norm:

VW) =Y Wi —w|  and W[l = max|w/].
- J
J
@ TVD (Total Variation Diminishing) property and L™ stability:

{ TV(w™T) < TV(w") <= no oscillations

™ oo < [[W"]]oo
First idea: Find an AP order 2 scheme which satisfies these properties.
Impossible

Theorem (Gottlieb, Shu & Tadmor, ’01): There are no implicit Runge-Kutta
schemes of order higher than one which preserves the TVD property.
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Another idea: use a limited scheme.
WI’I+1 — e Wn+1,02 + (1 o 9) Wn+1,O1
e W19 = order j AP approximation
@ 0 € [0,1] largest value such that W™ does not oscillate

Toy scalar equation: 0w + CodxW + \/_a xw =10

@ Order 1 AP scheme with upwind space discretizations (cg, ¢; > 0):
n+1,01 _ . n n_.ny_ S n+1,01  n+1,01
Wi = ce(wf —wig) = 2 (W) Wi )

@ Order 2 AP scheme: ARS with the parameter f =1 — 1/\/5.

Theorem (Dimarco, Loubére, M.-D., Vignal):

Under the CFL condition At < Ax/ce,

{ V(W) < TV(w"),
W™ oo < W]
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Limited AP scheme:
Wn—|—17lim —9 Wn+1,02 + (1 . 9) Wn+1,O1 with 6= i

1-B
Problem: More accurate than order 1 but not order 2
Solution: MOOD procedure: see [Clain, Diot & Loubére, '11]

On the toy equation: w"™! MOOD AP scheme, CFL At < Ax/ce

@ Compute the order 2 approximation w102,

@ Detect if the max. principle is satisfied: HW”"H 2|l < [|W|oo ?
@ If not, compute the limited AP approximation w" /™,

0.01

—0.01

| | |
0 02 04 06 08 1 0 02 0.4 06 08 1

---- exact— 1st order — 2nd order — TVD-AP — AP-MOQD
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0 Second-order schemes in space and application to Euler



Error curves for the toy scalar equation 17726

1072
1073
1074
107°
1076

Order 2 in space: MUSCL (with the MC limiter) with explicit slopes
for implicit fluxes.
Error curves on a smooth solution for the toy scalar equation:

E\ T T T 17 % 100 = T T T 17 \\\%
1 102}
, | 1072}
- 1107 =
%8\:\1\\\\1 é 1074 f—E\:\'I\O\_?M ! : ]

103 103

T L

—— first-order 10-3

—=— second-order
—e— TVD-AP 4
—+ AP-MOOD 10

[¢2)
Il
—_
o
A




Second-order scheme for the Euler equations sz

Recall the first-order IMEX scheme for the Euler system:

n+1 __ ~\n

E TV (pu) =0, (1)
u)™ —(pu)" 1 ;

P v (puauy+ Lvp(pr ) =0, (2)

We apply the same convex combination procedure:

B

wntim _ g pynti1,02 + (1 — 9) Wn+1701, with 0 = ] B

~> We use the value of 6 given by the study of the toy scalar equation.

~ But how can we detect oscillations for the MOOD procedure?



Euler equations: MOQOD procedure 19726

The previous detector (L™ criterion on the solution) is irrelevant for the
Euler equations, since p and u do not satisfy a maximum principle.

~» we need another detection criterion

2 10

19p(p). .
y—1\ € dp
Riemann problem, at least one of them satisfies a maximum principle.
[Smoller & Johnson, '69]

We pick the Riemann invariants & = u ¥

On the Euler equations: W' MOOD AP scheme, CFL At < Ax/A

@ Compute the order 2 approximation W02,

@ Detect if both Riemann invariants break the maximum principle at
the same time.

@ If so, compute the limited AP approximation W"*./m.
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Riemann problem: left rarefaction wave, right shock ;
top curves: € = 1 (50 pts) ; bottom curves: € = 10~* (500 pts)

Density p Momentum q = pu
2 ~ ] T T T T T 1.8
1.8 I SR e
1.6 = L {1.4
e L — - P12
1 [ | | | \:l ----- \---' | | \L--*1
0O 02 04 06 08 1 0 02 04 06 08 1
1.0001 - T T T F T T T T 71.009
: A b 11.006
1.00005 [ *==-mmmmmmmmmmas . ! :
; - 1 {1.003
1 [ | | | | : : | | | | :. 1
0 02 04 06 08 1 0 02 04 06 08 1

---- exact
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Riemann problem: left rarefaction wave, right shock ;
top curves: € = 1 (50 pts) ; bottom curves: € = 10~* (500 pts)

Density p Momentum q = pu

— — — —
“ NP ON

1.0001 E 1.009
""""""" 1.006
1.003

1.00005

| | | | | |
0O 02 04 06 08 1 0 02 04 06 0.8 1
---- exact — 1st order
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Riemann problem: left rarefaction wave, right shock ;
top curves: € = 1 (50 pts) ; bottom curves: € = 10~* (500 pts)

Density p Momentum q = pu

— — — —
“ NP ON
I

1.0001 T T T T

11.006
1.00005 | -\-7 ST
! - 11.003

| | | | |-
0O 02 04 06 08 1 0 02 04 06 0.8 1
---- exact — 1storder — 2nd order

11.009
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Riemann problem: left rarefaction wave, right shock ;
top curves: € = 1 (50 pts) ; bottom curves: € = 10~* (500 pts)

Density p Momentum q = pu
2
1.8
1.6
1.4
1.2
1 | | | |
0.2 0.4 0.6 0.8
1.0001 T T T T \ T T T 71.009
- - i {1 {1.006
1.00005 | -A-+F =X ‘ ‘
: Hy . 1.003

1= 1

L L L L -
0 02 0406 08 1 0 0204 06 08 1
---- exact — 1storder — 2nd order —— 2nd order space lim.




Euler equations: 1D Numerical results

Riemann problem: left rarefaction wave, right shock ;
top curves: € = 1 (50 pts) ; bottom curves: € = 10~* (500 pts)

— — — —
“ NP ON

1.0001

1.00005

1

Density p Momentum q = pu
: | | | \I | | | | |
0O 0.2 04 06 0.8 1 0.2 0.4 0.6 0.8
1! T T T T T T T 71009
o IR N\ |1.006
3 - L1 1.003
L I I I | ! : I I | | :_ 1
0O 02 04 06 08 1 0 02 04 06 0.8 1

---- exact — 1storder — 2nd order — TVD-AP

20/26



Euler equations: 1D Numerical results

Riemann problem: left rarefaction wave, right shock ;
top curves: € = 1 (50 pts) ; bottom curves: € = 10~* (500 pts)

— — — —
“ NP ON

1.0001

1.00005

1

1.009
1.006
1.003

Density p Momentum q = pu
: \ | | |
0 0.2 04 0.6 0.8
T T T T \ \ \ \ =
L | | | |t ! | | | L 1
0 020406 08 1 0 02 04 06 0.8 1

---- exact — 1storder — 2nd order — AP-MOOD

20/26



Euler equations: 1D Numerical results

Error curves in L norm, smooth 1D solution

1071
1072
1073
1074

21/26

e=1 £=10"2

10—3*\0\.\“\‘
i i 105§\-\_\-

i e e E 1076%\1 [

102 102 10°

e=10"*

1075§ T T T T T T T E
—e— first-order 10—6; \ ,
—=— second-order ot ]
—e— TVD-AP 10770 B
—— AP-MOOD 1078} 4
10_9: — =

—_
o
N
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Error curves in L™ norm, smooth 2D traveling vortex (Cartesian mesh)

g=1 e=10"2
E“‘!”\‘_&l\‘ 3 1073 ?\Hw T T T TTT T
1072} 110
10—3% & é 1075% & ]
10_4% | Lol é 10_6%\\\\\1 Lol L \F
108 104 103 104
e=10"*
: T T T T T TTITT T T \\:
—— first-order 1075 % E
—=— second-order B :
—e TVD-AP jo-8| == ]
—— AP-MOOD i ]
1077; I Ll [EE |

108 104



200 x 200 cells

Euler equations: 2D Numerical results { ;5% 23/26

1st-order AP 2nd-order AP

reference solution
obtained solving
the vorticity formulation
0i0+U-Vo=0,
with ® = dyv —dyu

reference
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e An order 1 AP scheme for the Euler system in the low Mach limit
e Second-order schemes in time

e Second-order schemes in space and application to Euler

e Work in progress and perspectives



Work in progress and perspectives: the system  auz

Extension to the full Euler system:

1 : plUJ?
at(pU)+V-(pU®U)+ng:0, with  p=(y—1) E—ST .
IHE+V-(U(E+p)) =0,

In 1D, to get an AP scheme ensuring that both the explicit and the
implicit parts are hyperbolic, we take:

Wn+1 —wn
At

The scheme no longer takes the conservative IMEX form

+Ag7n+1ax Wn+A?,n+1aX Wn—|—1 — 0.

Wn+1 —wn



Work in progress and perspectives: IMEX 25/26

@ Study a local value of 6, depending on the presence of oscilla-
tions in a given cell: how to reconcile the locality of 6 with the non-
locality of the implicitation?

| | | | | | . | | | | | |
I I I I I I I I I I I 1

. : cell with oscillation =— 0 < 1

D : cell without oscillation =— 6 =10r0 < 1?

© Compute optimal values of 0 for other IMEX discretizations:
o SSPRK explicit part?
e custom-made second-order IMEX discretization to ensure 0
as close to 1 as possible?
e higher-order discretizations?



Work in progress and perspectives: DD 26/26

Domain decomposition with respect to €:

, .
Compressible Euler (M) %ﬁ m— Incompressible Euler (Mp)
e=0(1) intermediate e<1
zone

exp. scheme for M, AP scheme for Mg discretization of M

@ How to define the boundaries of the intermediate zones?
@ How to handle interfaces in 1D with first-order schemes?
@ How to extend to higher dimensions and higher-order schemes?



Thanks for your attention!



Euler equations: 2D Numerical results

To obtain a 2D reference incompressible solution, set ® = dxv —d,u and
consider the vorticity formulation of the incompressible Euler equations:

810)+ U-Vo=0,

U = (0,W,—0oxV),

V.U =0 = dstream function WV such that
—AV = .

To get the time evolution of the vorticity from ®":

@ solve —AV" = " for W" (with periodic BC and assuming that the
average of W vanishes);

@ get U" from U™ =!(9, V", —9, V");

@ solve ;0 + U"- V" =0 to get "',

We get a reference incompressible vorticity ®(x,t), to be compared
to the vorticity of the solution given by the compressible scheme with
small € (we take € = M? = 107°).
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