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Tsunami simulation: initial condition

Tsunami initialization
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Tsunami simulation: naive numerical method

Starting the simulation with a naive numerical method
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Tsunami simulation: failure

 The simulation is not usable!

Indeed, the ocean at rest, far from the tsunami, started
spontaneously producing waves.

This comes from the non-preservation of stationary solutions,
hence the need to develop numerical methods that preserve
stationary solutions: so-called well-balanced methods.
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Objectives

The goal of this work is to provide a numerical method which:

• is able to deal with generic hyperbolic systems of balance laws,
• can provide a very good approximation of families of steady
solutions,

• is as accurate as classical methods on unsteady solutions,
• with provable convergence and error estimates.
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Finite volume method, visualized
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W(x) dx + O(∆x)
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Discontinuous Galerkin, visualized
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Discontinuous Galerkin, visualized
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Discontinuous Galerkin: an example

On the previous slide, the data W is represented by

• a polynomial of degree 2 in each cell (Galerkin approximation),
• which is Discontinuous at interfaces between cells.

Therefore, in each cell Ωi, W is approximated by

W
∣∣
Ωi

' WDG
i := α0 + α1x + α2x2 =

2∑
j=0

αjxj,

where the polynomial coefficients α0, α1 and α2 are determined to
ensure fitness between the continuous data and its polynomial
approximation.

Any polynomial of degree two can be exactly represented this way.
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Discontinuous Galerkin: polynomial basis

More generally, we define a polynomial basis ϕ0, . . . , ϕN on each
cell Ωi and approximate the solution in this basis.

A usual example is the following so-called modal basis:

∀j ∈ {0, . . . ,N}, ϕj(x) = xj.

Main takeaway: The DG scheme is exact on every function that can
be exactly represented by the basis.
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Main idea

Main idea
Enhance the DG basis by using the steady solution!

 If the basis contains the steady solution, then the enhanced DG
scheme will be exact on this steady solution: it will be
well-balanced.

In practice, the basis will contain an approximation of the steady
solution, making the scheme approximately well-balanced.
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Enhanced DG bases

Assume that you know a prior W on the steady solution.

The goal is now to enhance the modal basis V using W:

V = {1, x, x2, . . . , xN}.

First possibility: multiply the whole basis by W

V∗ = {W, x W, x2W, . . . , xNW}.

Second possibility: replace the first element with W

V+ = {W, x, x2, . . . , xN}.
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Convergence and error estimate

Denoting by

• P∗ the projector onto basis V∗,
• q the order of the DG scheme,
• ∆x the step size,

we prove the following result for a scalar problem:

‖W − P∗(W)‖L2(Ω) .

∣∣∣∣WW
∣∣∣∣
Hq+1(Ω)

∆xq+1
∥∥W∥∥

L∞(Ω)
.

Namely, we prove that the prior W needs to provide a good
approximation of the derivatives of the steady solution (in addition
to the steady solution itself).

 A Physics-Informed Neural Network (PINN) is the ideal candidate!
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Parametric PINNs

A parametric PDE is nothing but the following problem, with D a
differential operator:

find W such that D(W, x;µ) = 0 for all x ∈ Ω and µ ∈ P ⊂ Rm.

The parametric PINN Wθ(x;µ) should approximately satisfy the
above PDE, and the problem becomes:

find θopt such that D(Wθopt , x;µ) ' 0 for all x ∈ Ω and µ ∈ P ⊂ Rm.

The minimization problem for parametric PINNs is the following:

θopt = argmin
θ

∫
P

∫
Ω

‖D(Wθ, x;µ)‖22 dxdµ.
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Perturbation of a shallow water steady solution
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initial condition:
steady solution with perturbation

PINN trained on a para-
metric steady solution,
driven by the topography

Z(x;µ) = Γ exp
(
α(r20 − ‖x‖2)

)
,

with physical parameters

µ ∈ P ⇐⇒
α ∈ [0.25, 0.75],
Γ ∈ [0.1, 0.4],
r0 ∈ [0.5, 1.25].
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Perturbation of a shallow water steady solution
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Perturbation of a shallow water steady solution
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Conclusion and perspectives

We have obtained:

• an approximately well-balanced DG scheme,
• for parameterized families of steady solutions,
• which works for arbitrary hyperbolic balance laws.

Perspectives include:

• using a space-time DG method and time-dependent priors,
• replacing PINNs with neural operators for added flexibility,
• coding the method in the SciMBA framework.

Related preprint: E. Franck, V. Michel-Dansac and L. Navoret.
“Approximately WB DG methods using bases enriched with PINNs.”
git repository: https://github.com/Victor-MichelDansac/DG-PINNs

We often have open positions (Master theses, PhD students or
postdocs). Please do not hesitate to contact us!
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Thank you for your attention!



Ingredients required for a numerical simulation

Fourth step: Verification of the numerical results



Simulation of the 2011 Japan tsunami

Water depth at sensors:
• #1: 5700 m;

• #2: 6100 m;

• #3: 4400 m.

Plots of the time variation
of the water depth (in meters).
data in black, simulation in orange
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The shallow water equations

The shallow water equations are governed by the following PDE:
∂th+ ∂xq = 0,

∂tq+ ∂x

(
q2

h +
1
2gh

2
)

= −gh∂xZ(x).

x

u(x, t)

Z(x)

h(x, t)

• h(x, t): water depth
• u(x, t): water velocity
• q = hu: water discharge
• Z(x): known topography
• g: gravity constant



The shallow water equations: steady solutions

The steady solutions of the shallow water equations are governed
by the following ODEs:

∂xq = 0,

∂x

(
q2

h +
1
2gh

2
)

= −gh∂xZ(x).

x

Z(x)

h(x)

For the shallow water equations,
if the velocity vanishes, we obtain
the lake at rest steady solution:

h+ Z = cst.



PINNs

Remark: Neural networks are smooth functions of the inputs
(provided smooth activation functions are used!).

Since their derivatives are easily computable by automatic
differentiation, they are therefore natural objects to approximate
solutions to PDEs or ODEs.

Definition: PINN
A PINN is a neural network with input x and trainable weights θ,
approximating the solution to a PDE or ODE, and denoted by Wθ(x).

Hence, the PINN Wθ will approximate the solution to the PDE

D(W, x) = 0,

with D a differential operator.
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PINNs: loss function

Omitting boundary conditions, the problem becomes

find W such that D(W, x) = 0 for all x ∈ Ω ⊂ Rd.

Based on this observation, the PINN Wθ should approximately
satisfy the above PDE, and the problem becomes:

find θopt such that D(Wθopt , x) ' 0 for all x ∈ Ω ⊂ Rd.

The idea behind PINNs training is to find the optimal weights θopt by
minimizing a loss function built from the ODE residual:

θopt = argmin
θ

∫
Ω

‖D(Wθ, x)‖22 dx.

The Monte-Carlo method is used for the integrals, which makes the
whole approach mesh-less and able to deal with parametric PDEs.
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PINNs: advantages and drawbacks

Once trained, PINNs with Monte-Carlo integration are able to

• quickly provide an approximation to the steady solution,
• in a mesh-less fashion,
• independently of the dimension.

However, PINNs

• have trouble generalizing to x /∈ Ω;
• are not competitive with classical numerical methods for com-
putational fluid dynamics: to reach a given error (if possible),
training takes longer than using a classical numerical method.

The most interesting use of PINNs, in our case, is to deal with
parametric ODEs and PDEs, where dimension-insensitivity is
paramount.
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