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A well-balanced scheme for the shallow-water equations with topography and Manning friction

L Introduction and motivations

Several kinds of destructive geophysical flows

. =

: > N |
(Malpasset, France, 1959) Tsunami (Tohoku, Japan, 2011)

Flood (La Faute sur Mer, France, 2010) Mudslide (Madeira, Portugal, 2010)
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

L Introduction and motivations

The shallow-water equations and their source terms

1 kqlq| | .
A (h O | hu? + =gh? | = —ghd,Z — =2 (with ¢ = h
) + 0 (? + J1?) = ~gn0,2 "4 ih g = )

We can rewrite the equations as O, + 0, F(W) = S(IW), with W' = <Z>

m Z(x) is the known

water surface topography
7 coefficient
Z( ) channel bottom . . .
- m g is the gravitational

constant

“ m we label the water
discharge ¢ := hu
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

L Introduction and motivations

Steady state solutions

Definition: Steady state solutions

W is a steady state solution iff ;)W =0, i.e. 0, F(W) = S(W).

Taking 0;W = 0 in the shallow-water equations leads to
0q=0

2

e 1 5 kqlq|
O =+ =gh?) = —ghd,Z — )
””(h 29 ) ghoa s

The steady state solutions are therefore given by

kqo|qo
¥

q
q% 1 5
| = + =gh® ) = —gh0,Z —
8(h+2g > g
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

L Introduction and motivations

Topography steady state not captured in 1D

0.5

o ‘ [—Initial Free Surface|

5 10 15 20 25

The initial condition is at rest; water is injected through the left
boundary.
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L Introduction and motivations

Topography steady state not captured in 1D

2 Y
V
1.5
1
0.5
—Exact Free Surface
0 - Approximate Free Surface

5 10 15 20 25

The classical HLL numerical scheme converges towards a numerical

steady state which does not correspond to the physical one.
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L Introduction and motivations

Topography steady state not captured in 1D

T

1.95

—Exact Free Surface
1.9 - Approximate Free Surface
5 10 15 20 25

The classical HLL numerical scheme converges towards a numerical

steady state which does not correspond to the physical one.
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L Introduction and motivations

A real-life simulation:
the 2011 Tohoku
tsunami. The water is
close to a steady state
at rest far from the
tsunami.
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L Introduction and motivations

Objectives

Our goal is to derive a numerical method for the shallow-water
model with topography and Manning friction that exactly preserves
its stationary solutions on every mesh.

To that end, we seek a numerical scheme that:

is well-balanced for the shallow-water equations with
topography and friction, i.e. it exactly preserves and captures
the steady states without having to solve the governing
nonlinear differential equation;

preserves the non-negativity of the water height;

can be easily extended for other source terms of the
shallow-water equations (e.g. breadth).
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L Introduction and motivations
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L Brief introduction to Godunov-type schemes

Setting

Objective: Approximate the solution W (x,t) of the system
oW + 0, F (W) = S(W), with suitable initial and boundary
conditions.

We partition [a, b] in cells, of volume Az and of evenly spaced
centers z;, and we define:

mz, 1 and T, the boundaries of the cell 7;
2 2

m W, an approximation of W (z,t), constant in the cell ¢ and

1 Ax/2
at time ", which is defined as W" = / W(z,t")dx.
Az Ax/2

— | |
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L Brief introduction to Godunov-type schemes

Using an approximate Riemann solver

As a consequence, at time t™, we have a succession of Riemann
problems (Cauchy problems with discontinuous initial data) at the
interfaces between cells:

W + 0, F(W) =S(W)
Wrifx < T
2

2

W(z,t") =
L
Wi if © > JU,H_%
n n
Wi i+1
Z; T, 1 Tit1

1+5

For S(W) # 0, the exact solution to these Riemann problems is

unknown or costly to compute ~» we require an approximation.
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L Brief introduction to Godunov-type schemes

Using an approximate Riemann solver
We choose to use an approximate Riemann solver, as follows.

L R
Ads ! A1 1
wr
H—%
n
Wi Wi i+1

[ Wiil is an approximation of the interaction between W/ and

/1 (i.e. of the solution to the Riemann problem), possibly

made of several constant states separated by discontinuities.

n )\L+1 and )\R 1 are approximations of the largest wave speeds
2 2

of the system.
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L Brief introduction to Godunov-type schemes

Godunov-type scheme (approximate Riemann solver)
t

tn—‘,—l

t’VL

We define the time update as follows:

wntl .= ! /xH% WA (2, ") dae
7 * Aﬂ'; . ) .
-2

Since W, and W , are made of constant states, the above
2 2
integral is easy to compute.
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L Derivation of a generic first-order well-balanced scheme

The HLL approximate Riemann solver

To approximate solutions of

W + 0, F (W) = 0, the HLL approximate
Riemann solver (Harten, Lax, van Leer
(1983)) may be chosen; it is denoted by

W2 and displayed on the right. -

The consistency condition (as per Harten and Lax) holds if:

1 Ax/2 1 Azx/2
/ WA(At, z; W, Wg)dx / Wr(At, z; Wi, Wg)dz,

Az J_pgp2 T Ar ) oaup
Wthh giVGS WHLL = )\RWR — )\LWL _ F(WR) — F(WL) _ (hHLL> .
AR — AL AR — AL qHLL

Note that, if hy, > 0 and hg > 0, then hyyrr > 0 for |Ar| and |Ag| large enough.
11/39



A well-balanced scheme for the shallow-water equations with topography and Manning friction

L Derivation of a generic first-order well-balanced scheme

Modification of the HLL approximate Riemann solver

The shallow-water equations with the topography and friction
source terms read as follows:

8tq+0< T gh2)+ghaz+kq’q‘ 0.
s
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L Derivation of a generic first-order well-balanced scheme

Modification of the HLL approximate Riemann solver

With Y'(¢,z) := x, we can add the equations 0;Z = 0 and
0:Y = 0, which correspond to the fixed geometry of the problem:

8th+aquo7
2 1
atq+az<qh + 29h2> ghd, Z+k2‘q’a Y =0,

87 =
By =
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L Derivation of a generic first-order well-balanced scheme

Modification of the HLL approximate Riemann solver
With Y'(¢,z) := x, we can add the equations 0;Z = 0 and
0:Y = 0, which correspond to the fixed geometry of the problem:

8th+aquo7
2 1
atq+az<qh + 29h2> ghd, Z+k2‘q’a Y =0,

87 =
By =

The equations ;Y = 0 and 9;Z = 0 induce stationary waves
associated to the source term (of which ¢ is a Riemann invariant).

To approximate solutions of AL 0 AR
OW + 0, F(W) = S(W), we thus use Wi Wg

the approximate Riemann solver
displayed on the right
(assuming A\, < 0 < AR).

WL WR
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L Derivation of a generic first-order well-balanced scheme

Modification of the HLL approximate Riemann solver
We have 4 unknowns to determine: W; = (Zf) and W}, = (hf).
L

dr

AL 0 AR

WL WR
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L Derivation of a generic first-order well-balanced scheme

Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: W} = <h*L> and W}, = <h§>.
qr, 4r

m ¢ is a 0-Riemann invariant ~» we take ¢j = ¢ = ¢* (relation 1)
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L Derivation of a generic first-order well-balanced scheme

Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: W} = <h*L> and W}, = <h§>.
qr, 4r

m ¢ is a 0-Riemann invariant ~» we take ¢j = ¢ = ¢* (relation 1)

m The Harten-Lax consistency gives us the following two relations:

m A\phj, — Aph] = (Ar — Ap)hmrr (relation 2),

SAz .
m ¢ =qprr + ——— (relation 3),
AR — AL

here S ~ — — S(Wx(x,t))dtdx.
where Az AL /Am/2 /0 (Wg(z,t)) dt da
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L Derivation of a generic first-order well-balanced scheme

Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: W} = <h*L> and W}, = <h§>.
qr, 4r

m ¢ is a 0-Riemann invariant ~» we take ¢j = ¢ = ¢* (relation 1)

m The Harten-Lax consistency gives us the following two relations:

m A\phj, — Aph] = (Ar — Ap)hmrr (relation 2),

B¢ =qyrr + )\L (relation 3),
Ax/2 At
h ~ L Vi (z, L.
where S ~ Az AL /Ar/2 /0 S(Wg(x,t))dt da

m next step: obtain a fourth relation
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L Derivation of a generic first-order well-balanced scheme

Obtaining an additional relation

Assume that W, and W define a steady state, i.e. that they
satisfy the following discrete version of the steady relation
O, F(W)=S5(W) (where [X] = Xr — X1):

(e 4e) o

For the steady state to be preserved, it
is sufficient to have i} = hr, h}, = hr W, Wg
and ¢* = qo.

Assuming a steady state, we show that ¢* = ¢, as follows:

SAx 1 o1 9197 =
* _— = B ————— — — h, — A = .
q qHLL + )\R _ )\L q0 )\R — )\L (qO |:h:| + 9 [ ] S l‘> q0
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L Derivation of a generic first-order well-balanced scheme

Obtaining an additional relation

In order to determine an additional relation, we consider the discrete
steady relation, satisfied when 1/ and Wy define a steady state:

2 1 1 g 9 ) B
i I —(h SAL
% (hR hL) + ) (<hR) (hL) ) SAx

To ensure that h} = hy, and h}; = hg, we impose that h} and hj;
satisfy the above relation, as follows:

1 1 g * * Q
b (= 7 ) + S0 = (b)) = e
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

L Derivation of a generic first-order well-balanced scheme

Determination of h} and h%

The intermediate water heights satisfy the following relation:

Bt — It -
g (RL) + 905 + W) (W — ) = SAa.
AR

Recall that ¢* is known and is equal to ¢y for a steady state.
Instead of the above relation, we choose the following linearization:

—(q")?

(Mg = hy) + (hL+hR)(hR hi) = SAx,
hrhr

which can be rewritten as follows:

—((]*)2 g «  pay_ T

[0
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L Derivation of a generic first-order well-balanced scheme

Determination of h} and h%

With the consistency relation between h} and h}, the intermediate
water heights satisfy the following linear system:

a(hf — h}) = SAw,
ArhG — ALhE = OA\r — Ar)harr.

Using both relations linking A} and h},, we obtain

A}{?Z&%
W = hipy — 28T
EETE T alm = Ay
AlAglﬁl
W = hypy, — —E20T
r=huorr o —A0)’
—(¢)? | g : SAx
h = =(h h th ¢* = .
where « <thR+2(L+ r) | with ¢ CJHLL—i—)\R_)\L
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L Derivation of a generic first-order well-balanced scheme

Correction to ensure non-negative h} and hj

However, these expressions of 2} and h}, do not guarantee that the
intermediate heights are non-negative: instead, we use the following
cutoff (see Audusse, Chalons, Ung (2014)):

. ARSAz AR
(o 2225) ().

. A];E;ZXJ? A];
hy = h - 1——)h .
R mln(( HLL a()\R_)\L)>+,< /\R> HLL)

Note that this cutoff does not interfere with:
m the consistency condition Aghy, — ALh} = (Ar — AL)hurr;

m the well-balance property, since it is not activated when W, and
Wk define a steady state.
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

L Derivation of a generic first-order well-balanced scheme

Summary

The two-state approximate Riemann solver with intermediate states
Wi = <hf> and W§ = <hf> given by
q q
SAx
AR — AL’

. ArSAz ) < )\R> >
hy = h - 1= )h ,
L mln<< HLL a(r — A1) . AL HLL

. ALSA.%‘ )\L
hy = h - 1——1h
R mln(( HLL a()\R_)\L)>+,< /\R> HLL)a

is consistent, non-negativity-preserving and well-balanced.

¢ =quLL +

next step: determination of S according to the source term
definition (topography or friction).
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L Derivation of a generic first-order well-balanced scheme

The topography source term
We now consider S(W) = SYW) = —ghd, Z:
the smooth steady states are governed by
2 1 _
Oy <q}‘;> + an(fﬁ) = —gh0, Z, q?) [h] + g[fﬂ] — S'Ax,

discretization

qDa <1>+g€)(h+Z)—0 QO[th]w[mZ]_o

We can exhibit an expression of g3 and thus obtain

st_ e (2] g WP
= 90, hpAr  2Azhy + hg

However, when Z; = Zr, we have S* # O(Ax), i.e. a loss of
consistency with S (see for instance Berthon, Chalons (2016)).
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L Derivation of a generic first-order well-balanced scheme

The topography source term

Instead, we set, for some constant C > 0,

S g 2hphr (Z) | g [N}
hr +hp Az 2Az hr + hp’

. = {hR—hL if |hg — hi| < CAz,
sgn(hgp — hr) CAx  otherwise.

Theorem: Well-balance for the topography source term

If Wi, and Wg define a smooth steady state, i.e. if they satisfy

2
‘0 1 h 7
20 | = =0,
8| | +otn+ 2
then we have W; = Wy, and W, = Wg and the approximate
Riemann solver is well-balanced. By construction, the Godunov-type
scheme using this approximate Riemann solver is consistent, fully

well-balanced and positivity-preserving.
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L Derivation of a generic first-order well-balanced scheme

The friction source term

We consider, in this case, S(TW) = S/(W) = —kq|q|h™", where we
have set nn = 7.

The average of S/ we choose is S/ = —kq|g|h ", with

m ¢ the harmonic mean of q;, and ggr (note that ¢ = qp at the
equilibrium);

m 1" a well-chosen discretization of A", depending on hy, and
hgr, and ensuring the well-balance property.

We determine /" using the same technique (with 1o = sgn(qo)):

2 1 o
0. () + §04(0) = ~baolaolh ™. 1] + 4107 = ~buoigi s
9. hn—1 o, pnt2 discretization [hn_l] [hn+2]
2 Uz T 2 2
— = k — == k A .
W1 9,10 qolqol, W01 "9, toqo Az
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L Derivation of a generic first-order well-balanced scheme

The friction source term
The expression for g2 we obtained is now used to get:

ﬁ—@n—f—Qf 10 1 +@[h””} n+2
2 [t kAz 2 n—1 w2 )

h
which gives S/ = —kq|glh " (h~" is consistent with h™" if a cutoff
is applied to the second term of h=").

Theorem: Well-balance for the friction source term

If Wi, and Wk define a smooth steady state, i.e. verify

] | [

+
qon—l g77+2

= —kqo|qo| Az,

then we have W; = Wy, and W, = Wg and the approximate
Riemann solver is well-balanced. By construction, the Godunov-type
scheme using this approximate Riemann solver is consistent, fully

well-balanced and positivity-preserving.
23/39



A well-balanced scheme for the shallow-water equations with topography and Manning friction

L Derivation of a generic first-order well-balanced scheme

Friction and topography source terms

With both source terms, the scheme preserves the following
discretization of the steady relation 0, F(W) = S(W):

1 _ .
% M - g[hQ] = S'Az + S/ Ax.

The intermediate states are therefore given by:

(S"+ SN Ax
Ar—Ap

. Ar(S"+ 5 Az AR .
hL—m1n<<hHLL ol =) +, 1 Iy hurr );

. AL(S"+ SHAx AL
hR—mln(<hHLL— Oé()\R—)\L) +, 1_E hHLL .

24 /39
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L Derivation of a generic first-order well-balanced scheme

The full Godunov-type scheme

t

WA (I, tn+1)

g+l f T

I WER L I

[ i-3 Wi+% [

I I

L

I /\ﬁ; /\H— 1 I

| 2 |

| wr |
t" T

Ti-1 T Titrl

1 Tirl
We recall W/t = A/ T2 WA (@, ) da: then
z x

1
i-g

R {/\fﬂ (Wi —w) =R (Wi —wr) .

which can be rewritten, after straightforward computations,

0 0
n t\n t\n fin fyn
<f1+l — fi*%) + At (S ),_%+(8 )7_’,% + (S )1_%+(S )H_l
2 2 2 39

At

Wit =w -
2 7 Al
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L Derivation of a generic first-order well-balanced scheme

Summary

We have presented a scheme that:

m is consistent with the shallow-water equations with friction and
topography;

m is well-balanced for friction and topography steady states;

m preserves the non-negativity of the water height;

m is not able to correctly approximate wet/dry interfaces due to the
stiffness of the friction: the friction term should be treated
implicitly.

next step: introduction of this semi-implicit scheme

26 /39
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L Derivation of a generic first-order well-balanced scheme

Semi-implicit finite volume scheme

We use a splitting method with an explicit treatment of the flux
and the topography and an implicit treatment of the friction.

explicitly solve O,W + 8, F (W) = SY(W) as follows:

1 0
Wit —wr - ( n n ) At
eI = i S (CO LIRS
3 it+3

implicitly solve 9;W = S7 (W) as follows:

prtl — hm_é

i =Y

g = —kalg|(h{ ™"
IVP: { : s g1
ntl i

q(zi,t") = q;
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L Derivation of a generic first-order well-balanced scheme

Semi-implicit finite volume scheme
Solving the IVP yields:

1y "3
ntl _ (hy™h)ng; "2
q; =

.
(R 4+ k At ‘q;HQ |

We use the following approximation of (h?“)”, which provides us
with an expression of ¢! that is equal to gy at the equilibrium:

i

242 +1
o SE a1
(i = T kAt
(h )Fl + (h )Hl
2 2

m semi-implicit treatment of the friction source term
~~ scheme able to model wet/dry transitions

m scheme still well-balanced and non-negativity-preserving

28 /39
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L_Second-order extension

Second-order extension

n
‘Qn 1+1
n
Vit
x
Ti—1 X Ti+1
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L_Second-order extension

Second-order extension

n
_ Vis
Vi(x n
S .
v
1—1 n
i
X
Ti—1 X Ti+1
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L_Second-order extension

Second-order extension

For the second-order MUSCL procedure, we introduce the vector
V="Yhqh+2)

of reconstructed variables. Then, with ¢}* a limited slope, a linear
reconstruction of the constant state V;” in each cell i is given by:

—~ Ax Ax
V=T (e ) = v G

Two remarks follow from this definition:

If g =0and h + Z is constant in the cells i — 1, 7 and 7 + 1,
they remain constant after the reconstruction: the lake at rest
steady state is naturally preserved.

Vil + Vil

We have V" = f

30/39
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L_Second-order extension

Second-order extension

n
_ Vis
Vi(x n
S .
v
1—1 n
i
X
Ti—1 X Ti+1
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L_Second-order extension

Second-order extension

Vi(x n
W@ n
1 n
i+1,—
v
i—1,—
\VAC
1—1 n
v

xX

Ti—1 Xy Ti41
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L_Second-order extension

Second-order extension

n
i+1,—

"
V717+

(2

v

Ti—1 Z; Tit1
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L_Second-order extension

Second-order extension
! W,
| In | n I
W, W W,

e A !
I I Iz

Ti—1 X Ti41

For simplicity, we rewrite the first-order scheme:
Wz'nH =H(Wi, Wi, ﬁu)
The MUSCL update, in the subcells (mi_%,xi) and (;I;Z,xH%) reads:
Wi = ROV WL W) and WS = MWL WL W ).

We then take W/""! = (W”Jrl + W;ff)/z This update is a
convex combmatlon we exhibit the same robustness results as the

first-order scheme as soon as the CFL constraint is halved.
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L_Second-order extension

Second-order extension: well-balance recovery

reconstruction procedure ~~ scheme no longer preserves
steady states with ¢o # 0

Well-balance recovery

We suggest a convex combination between the second-order scheme
Wro and the well-balanced scheme Wy 5:

Wit =0} (Wgo)Mt + (1= 01)(Ww )P,

with 0" the parameter of the convex combination, such that:
m if 07" =0, then the well-balanced scheme is used;

m if 07" =1, then the second-order scheme is used.

next step: derive a suitable expression for ¢!
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L_Second-order extension

Second-order extension: well-balance recovery

Steady state detector

qrL = qr = qo,
steady state solution: 2 2
9 49 ., 9.2 2 ot | of
E=———+Z(hp—h1)—(S"+S5)Az =0
he  hy 2( R—hi) —( )
q.n — q.n_ qn — qn
steady state detector: ¢ = o ! + ZHn !
(€17 1 (€17 1
=3 9 +3 9
. . o7
' = 0 if there is a steady state L
between W, Wi* and W}
~> in this case, we take 07" =
~> otherwise, we take 0 < 0" <1 n
0

mAx MAx 34/39
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L Numerical simulations

Verification of the well-balance: topography

0.5

0 ‘ |—Initial Free Surface|

5 10 15 20 25

The initial condition is at rest; water is injected through the left
boundary.
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L Numerical simulations

Verification of the well-balance: topography
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The non-well-balanced HLL scheme converges towards a numerical
steady state which does not correspond to the physical one.
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Order of accuracy assessment

To assess the order of accuracy, we take the following exact steady
solution of the 2D shallow-water system, where r = !(x, y):

2k —1
hotig T g
[l T 2]

With k = 10, this solution is depicted below on the space domain

[—0.3,0.3] x [0.4, 1].
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Order of accuracy assessment
The errors are collected in the graphs below.
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We note that the first-order scheme is first-order accurate, while
the second-order scheme is second-order accurate.
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2011 Tohoku tsunami
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2D Cartesian scheme obtained from using the 1D scheme at each interface.
Tsunami simulation on a Cartesian mesh: 13 million cells, Fortran

code parallelized with OpenMP, run on 48 cores.
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2011 Tohoku tsunami
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1D slice of the topography (unit: kilometers). )50
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2011 Tohoku tsunami

physical time of the simulation: 1 hour
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CPU time: ~ 1.1 hour
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CPU time: ~ 2.7 hours
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2011 Tohoku tsunami

physical time of the simulation: 1 hour
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2011 Tohoku tsunami

Water depth at the sensors:

m #1: 5700 m ; 0.2
m #2: 6100 m ; 0.1
m #3: 4400 m.

Graphs of the time variation 0

of the water height (in meters).
data in black, order 1 in blue, order 2 in red
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Conclusion

m We have presented a well-balanced and non-negativity-preserving
numerical scheme for the shallow-water equations with
topography and Manning friction, able to be applied to other
source terms or combinations of source terms.

m We have also displayed results from a 2D well-balanced numerical
method, coded in Fortran and parallelized with OpenMP.
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Perspectives

Work in progress or completed

m application to other source terms:

m Coriolis force source term (work in progress)
m breadth variation source term (work in progress)

m high-order extensions (order 6 achieved, application to large-scale
phenomena in progress)

Long-term perspectives

m stability of the scheme: values of C', A;, and Ag to ensure the
entropy preservation

m ensure the entropy preservation for the high-order scheme (use of
a MOOD method)
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Two-dimensional extension
2D shallow-water model: 0, + V - F(W) = S(W) + S/ (W)

8th+V-q:0
q®q 2 kqllql|
) - R, | = —ghvz — 211
g + V ( h —+ g ) g v %
v

to the right: simulation
of the 2011 Japan
tsunami
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Two-dimensional extension

C; Cj

space discretization: Cartesian mesh & [ M
)

67;]'

With Fi = F(W]", Wi'in;;), the scheme reads:

|e’LJ|

W =W - At Z Fi+ — Z(St)
Naz JEV;
1
W/t is obtained from Wl—n+2 with a splitting strategy:

hn+1 — hn+2

dih N a1
i =—kqlalh " g e T
(Wt v o lg
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Two-dimensional extension

The 2D scheme is:

m non-negativity-preserving for the water height:
Vi€ Z,h} >0=VYicZh'" >0

m able to deal with wet/dry transitions thanks to the
semi-implicitation with the splitting method,;

m well-balanced by direction for the shallow-water equations with
friction and/or topography, i.e.:
m it preserves all steady states at rest,
m it preserves friction and/or topography steady states in the

x-direction and the y-direction,
m it does not preserve the fully 2D steady states.
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Verification of the well-balance: topography

transcritical flow test case (see Goutal, Maurel (1997))

1 1
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left panel: initial free surface at rest; water is injected from the left boundary

right panel: free surface for the steady state solution, after a transient state
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U2 errors on ¢ 1.47e-14 1.58e-14 2.04e-14
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Riemann problems between two wet areas

° 6’
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left: k=0 left: k=10

both Riemann problems have initial data Wy, = (g) and

Wg = (é) on [0, 5], with 200 points, and final time 0.2s
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Riemann problems with a wet/dry transition

6’ = Approximate Height = =Reference Height
51

4

31

2,

N

0 i 2 3 4 5 4 5

left: k=0 left: k=10

both Riemann problems have initial data Wy, = (g) and

Wgr = (8) on [0, 5], with 200 points, and final time 0.15s
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Double dry dam-break on a sinusoidal bottom
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