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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Introduction and motivations

Several kinds of destructive geophysical flows

Dam failure (Malpasset, France, 1959) Tsunami (Tōhoku, Japan, 2011)

Flood (La Faute sur Mer, France, 2010) Mudslide (Madeira, Portugal, 2010)
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Introduction and motivations

The shallow-water equations and their source terms




∂th+ ∂x(hu) = 0

∂t(hu) + ∂x

(
hu2 +

1

2
gh2

)
= −gh∂xZ −

kq|q|
h

7�3
(with q = hu)

We can rewrite the equations as ∂tW + ∂xF (W ) = S(W ), with W =

(
h
q

)
.

x

h(x, t)

water surface

channel bottom

u(x, t)

Z(x)

Z(x) is the known
topography
k is the Manning
coefficient
g is the gravitational
constant
we label the water
discharge q := hu
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Introduction and motivations

Steady state solutions

Definition: Steady state solutions

W is a steady state solution iff ∂tW = 0, i.e. ∂xF (W ) = S(W ).

Taking ∂tW = 0 in the shallow-water equations leads to




∂xq = 0

∂x

(
q2

h
+

1

2
gh2

)
= −gh∂xZ −

kq|q|
h

7�3
.

The steady state solutions are therefore given by




q = cst = q0

∂x

(
q2

0

h
+

1

2
gh2

)
= −gh∂xZ −

kq0|q0|
h

7�3
.
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Introduction and motivations

Topography steady state not captured in 1D

The initial condition is at rest; water is injected through the left
boundary.
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Introduction and motivations

Topography steady state not captured in 1D

The classical HLL numerical scheme converges towards a numerical
steady state which does not correspond to the physical one.
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Introduction and motivations

A real-life simulation:
the 2011 Tōhoku
tsunami. The water is
close to a steady state
at rest far from the
tsunami.
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Introduction and motivations

Objectives
Our goal is to derive a numerical method for the shallow-water
model with topography and Manning friction that exactly preserves
its stationary solutions on every mesh.

To that end, we seek a numerical scheme that:

1 is well-balanced for the shallow-water equations with
topography and friction, i.e. it exactly preserves and captures
the steady states without having to solve the governing
nonlinear differential equation;

2 preserves the non-negativity of the water height;

3 can be easily extended for other source terms of the
shallow-water equations (e.g. breadth).
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Introduction and motivations
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Brief introduction to Godunov-type schemes

Setting

Objective: Approximate the solution W (x, t) of the system
∂tW + ∂xF (W ) = S(W ), with suitable initial and boundary
conditions.

We partition [a, b] in cells, of volume ∆x and of evenly spaced
centers xi, and we define:

xi− 1
2
and xi+ 1

2
, the boundaries of the cell i;

Wn
i , an approximation of W (x, t), constant in the cell i and

at time tn, which is defined as Wn
i =

1

∆x

∫ ∆x/2

∆x/2
W (x, tn)dx.

xi

W (x, t)

xi− 1
2

xi+ 1
2

Wn
i

x x
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Brief introduction to Godunov-type schemes

Using an approximate Riemann solver
As a consequence, at time tn, we have a succession of Riemann
problems (Cauchy problems with discontinuous initial data) at the
interfaces between cells:





∂tW + ∂xF (W ) = S(W )

W (x, tn) =

{
Wn
i if x < xi+ 1

2

Wn
i+1 if x > xi+ 1

2

xi xi+1xi+1
2

W n
i W n

i+1

For S(W ) 6= 0, the exact solution to these Riemann problems is
unknown or costly to compute  we require an approximation.
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Brief introduction to Godunov-type schemes

Using an approximate Riemann solver
We choose to use an approximate Riemann solver, as follows.

Wn
i Wn

i+1

Wn
i+ 1

2

λL
i+ 1

2
λR
i+ 1

2

xi+ 1
2

Wn
i+ 1

2

is an approximation of the interaction between Wn
i and

Wn
i+1 (i.e. of the solution to the Riemann problem), possibly

made of several constant states separated by discontinuities.

λL
i+ 1

2

and λR
i+ 1

2

are approximations of the largest wave speeds

of the system.

9 / 39



A well-balanced scheme for the shallow-water equations with topography and Manning friction

Brief introduction to Godunov-type schemes

Godunov-type scheme (approximate Riemann solver)

x

t

tn+1

tn
xixi− 1

2
xi+ 1

2

Wn
i

Wn
i− 1

2
Wn

i+ 1
2

λR
i− 1

2

λL
i+ 1

2

︷ ︸︸ ︷W∆(x, tn+1)

Wn
i−1 Wn

i+1

We define the time update as follows:

Wn+1
i :=

1

∆x

∫ x
i+1

2

x
i− 1

2

W∆(x, tn+1)dx.

Since Wn
i− 1

2

and Wn
i+ 1

2

are made of constant states, the above

integral is easy to compute.
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a generic first-order well-balanced scheme

The HLL approximate Riemann solver

To approximate solutions of
∂tW + ∂xF (W ) = 0, the HLL approximate
Riemann solver (Harten, Lax, van Leer
(1983)) may be chosen; it is denoted by
W∆ and displayed on the right.

WHLL

WL WR

λL

x

t

λR

0−∆x/2 ∆x/2

The consistency condition (as per Harten and Lax) holds if:

1

∆x

∫ ∆x/2

−∆x/2
W∆(∆t, x;WL,WR)dx =

1

∆x

∫ ∆x/2

−∆x/2
WR(∆t, x;WL,WR)dx,

which gives WHLL =
λRWR − λLWL

λR − λL
− F (WR)− F (WL)

λR − λL
=

(
hHLL
qHLL

)
.

Note that, if hL > 0 and hR > 0, then hHLL > 0 for |λL| and |λR| large enough.
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a generic first-order well-balanced scheme

Modification of the HLL approximate Riemann solver
The shallow-water equations with the topography and friction
source terms read as follows:




∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+

1

2
gh2

)
+ gh∂xZ + k

q|q|
h

7�3
= 0.
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a generic first-order well-balanced scheme

Modification of the HLL approximate Riemann solver
With Y (t, x) := x, we can add the equations ∂tZ = 0 and
∂tY = 0, which correspond to the fixed geometry of the problem:




∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+

1

2
gh2

)
+ gh∂xZ + k

q|q|
h

7�3
∂xY = 0,

∂tZ = 0,

∂tY = 0.
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a generic first-order well-balanced scheme

Modification of the HLL approximate Riemann solver
With Y (t, x) := x, we can add the equations ∂tZ = 0 and
∂tY = 0, which correspond to the fixed geometry of the problem:




∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+

1

2
gh2

)
+ gh∂xZ + k

q|q|
h

7�3
∂xY = 0,

∂tZ = 0,

∂tY = 0.

The equations ∂tY = 0 and ∂tZ = 0 induce stationary waves
associated to the source term (of which q is a Riemann invariant).

To approximate solutions of
∂tW + ∂xF (W ) = S(W ), we thus use
the approximate Riemann solver
displayed on the right
(assuming λL < 0 < λR).

WL WR

λL λR0

W ∗
L W ∗

R

12 / 39



A well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a generic first-order well-balanced scheme

Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: W ∗L =

(
h∗L
q∗L

)
and W ∗R =

(
h∗R
q∗R

)
.

WL WR

λL λR0

W ∗
L W ∗

R

q is a 0-Riemann invariant  we take q∗L = q∗R = q∗ (relation 1)

The Harten-Lax consistency gives us the following two
relations:

λRh
∗
R − λLh∗L = (λR − λL)hHLL (relation 2),

q∗ = qHLL +
S∆x

λR − λL
(relation 3),

where S ' 1

∆x

1

∆t

∫ ∆x/2

−∆x/2

∫ ∆t

0

S(WR(x, t)) dt dx.

next step: obtain a fourth relation
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a generic first-order well-balanced scheme

Obtaining an additional relation
Assume that WL and WR define a steady state, i.e. that they
satisfy the following discrete version of the steady relation
∂xF (W ) = S(W ) (where [X] = XR −XL):

1

∆x

(
q2

0

[
1

h

]
+
g

2

[
h2
])

= S.

For the steady state to be preserved, it
is sufficient to have h∗L = hL, h∗R = hR
and q∗ = q0.

0

WL WR

Assuming a steady state, we show that q∗ = q0, as follows:

q∗ = qHLL +
S∆x

λR − λL
= q0 −

1

λR − λL

(
q2

0

[
1

h

]
+
g

2

[
h2
]
− S∆x

)
= q0.
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a generic first-order well-balanced scheme

Obtaining an additional relation

In order to determine an additional relation, we consider the discrete
steady relation, satisfied when WL and WR define a steady state:

q2
0

(
1

hR
− 1

hL

)
+
g

2

(
(hR)2 − (hL)2

)
= S∆x.

To ensure that h∗L = hL and h∗R = hR, we impose that h∗L and h∗R
satisfy the above relation, as follows:

q2
0

(
1

h∗R
− 1

h∗L

)
+
g

2

(
(h∗R)2 − (h∗L)2

)
= S∆x.
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a generic first-order well-balanced scheme

Determination of h∗L and h∗R
The intermediate water heights satisfy the following relation:

−q2
0

(
h∗R − h∗L
h∗Lh

∗
R

)
+
g

2
(h∗L + h∗R)(h∗R − h∗L) = S∆x.

Recall that q∗ is known and is equal to q0 for a steady state.
Instead of the above relation, we choose the following linearization:

−(q∗)2

hLhR
(h∗R − h∗L) +

g

2
(hL + hR)(h∗R − h∗L) = S∆x,

which can be rewritten as follows:
(−(q∗)2

hLhR
+
g

2
(hL + hR)

)

︸ ︷︷ ︸
α

(h∗R − h∗L) = S∆x.
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a generic first-order well-balanced scheme

Determination of h∗L and h∗R

With the consistency relation between h∗L and h∗R, the intermediate
water heights satisfy the following linear system:

{
α(h∗R − h∗L) = S∆x,

λRh
∗
R − λLh∗L = (λR − λL)hHLL.

Using both relations linking h∗L and h∗R, we obtain




h∗L = hHLL −
λRS∆x

α(λR − λL)
,

h∗R = hHLL −
λLS∆x

α(λR − λL)
,

where α =

(−(q∗)2

hLhR
+
g

2
(hL + hR)

)
with q∗ = qHLL +

S∆x

λR − λL
.
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a generic first-order well-balanced scheme

Correction to ensure non-negative h∗L and h∗R
However, these expressions of h∗L and h∗R do not guarantee that the
intermediate heights are non-negative: instead, we use the following
cutoff (see Audusse, Chalons, Ung (2014)):





h∗L = min

((
hHLL −

λRS∆x

α(λR − λL)

)

+

,

(
1− λR

λL

)
hHLL

)
,

h∗R = min

((
hHLL −

λLS∆x

α(λR − λL)

)

+

,

(
1− λL

λR

)
hHLL

)
.

Note that this cutoff does not interfere with:
the consistency condition λRh∗R − λLh∗L = (λR − λL)hHLL;

the well-balance property, since it is not activated when WL and
WR define a steady state.
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a generic first-order well-balanced scheme

Summary
The two-state approximate Riemann solver with intermediate states

W ∗L =

(
h∗L
q∗

)
and W ∗R =

(
h∗R
q∗

)
given by





q∗ = qHLL +
S∆x

λR − λL
,

h∗L = min

((
hHLL −

λRS∆x

α(λR − λL)

)

+

,

(
1− λR

λL

)
hHLL

)
,

h∗R = min

((
hHLL −

λLS∆x

α(λR − λL)

)

+

,

(
1− λL

λR

)
hHLL

)
,

is consistent, non-negativity-preserving and well-balanced.

next step: determination of S according to the source term
definition (topography or friction).
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a generic first-order well-balanced scheme

The topography source term

We now consider S(W ) = St(W ) = −gh∂xZ:
the smooth steady states are governed by

∂x

(
q2

0

h

)
+
g

2
∂x
(
h2
)

= −gh∂xZ,

q2
0

2
∂x

(
1

h2

)
+ g∂x(h+ Z) = 0,




−−−−−−−→
discretization





q2
0

[
1

h

]
+
g

2

[
h2
]

= St∆x,

q2
0

2

[
1

h2

]
+ g[h+ Z] = 0.

We can exhibit an expression of q2
0 and thus obtain

St = −g 2hLhR
hL + hR

[Z]

∆x
+

g

2∆x

[h]3

hL + hR
.

However, when ZL = ZR, we have St 6= O(∆x), i.e. a loss of
consistency with St (see for instance Berthon, Chalons (2016)).

20 / 39



A well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a generic first-order well-balanced scheme

The topography source term
Instead, we set, for some constant C > 0,





St = −g 2hLhR
hL + hR

[Z]

∆x
+

g

2∆x

[h]3c
hL + hR

,

[h]c =

{
hR − hL if |hR − hL| ≤ C∆x,

sgn(hR − hL)C∆x otherwise.

Theorem: Well-balance for the topography source term

If WL and WR define a smooth steady state, i.e. if they satisfy

q2
0

2

[
1

h2

]
+ g[h+ Z] = 0,

then we have W ∗L = WL and W ∗R = WR and the approximate
Riemann solver is well-balanced. By construction, the Godunov-type
scheme using this approximate Riemann solver is consistent, fully
well-balanced and positivity-preserving.
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a generic first-order well-balanced scheme

The friction source term
We consider, in this case, S(W ) = Sf (W ) = −kq|q|h−η, where we
have set η = 7�3.

The average of Sf we choose is Sf = −kq̄|q̄|h−η, with
q̄ the harmonic mean of qL and qR (note that q̄ = q0 at the
equilibrium);

h−η a well-chosen discretization of h−η, depending on hL and
hR, and ensuring the well-balance property.

We determine h−η using the same technique (with µ0 = sgn(q0)):

∂x

(
q2
0

h

)
+
g

2
∂x
(
h2
)

= −kq0|q0|h−η,

q2
0

∂xh
η−1

η − 1
− g ∂xh

η+2

η + 2
= kq0|q0|,




−−−−−−−→
discretization





q2
0

[
1

h

]
+
g

2

[
h2
]

= −kµ0q
2
0h
−η∆x,

q2
0

[
hη−1

]

η − 1
− g

[
hη+2

]

η + 2
= kµ0q

2
0∆x.
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A well-balanced scheme for the shallow-water equations with topography and Manning friction

Derivation of a generic first-order well-balanced scheme

The friction source term
The expression for q2

0 we obtained is now used to get:

h−η =
[h2]

2

η + 2

[hη+2]
− µ0

k∆x

([
1

h

]
+

[h2]

2

[hη−1]

η − 1

η + 2

[hη+2]

)
,

which gives Sf = −kq̄|q̄|h−η (h−η is consistent with h−η if a cutoff
is applied to the second term of h−η).

Theorem: Well-balance for the friction source term

If WL and WR define a smooth steady state, i.e. verify

q2
0

[
hη−1

]

η − 1
+ g

[
hη+2

]

η + 2
= −kq0|q0|∆x,

then we have W ∗L = WL and W ∗R = WR and the approximate
Riemann solver is well-balanced. By construction, the Godunov-type
scheme using this approximate Riemann solver is consistent, fully
well-balanced and positivity-preserving.
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Derivation of a generic first-order well-balanced scheme

Friction and topography source terms

With both source terms, the scheme preserves the following
discretization of the steady relation ∂xF (W ) = S(W ):

q2
0

[
1

h

]
+
g

2

[
h2
]

= St∆x+ Sf∆x.

The intermediate states are therefore given by:




q∗ = qHLL +
(St + Sf )∆x

λR − λL
;

h∗L = min

((
hHLL −

λR(St + Sf )∆x

α(λR − λL)

)

+

,

(
1− λR

λL

)
hHLL

)
;

h∗R = min

((
hHLL −

λL(St + Sf )∆x

α(λR − λL)

)

+

,

(
1− λL

λR

)
hHLL

)
.
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Derivation of a generic first-order well-balanced scheme

The full Godunov-type scheme

x

t

tn+1

tn
xixi− 1

2
xi+ 1

2

Wn
i

WR
i− 1

2
WL

i+ 1
2

λR
i− 1

2

λL
i+ 1

2

︷ ︸︸ ︷
W∆(x, tn+1)

We recall Wn+1
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

W∆(x, tn+1)dx: then

Wn+1
i = Wn

i −
∆t

∆x

[
λL
i+ 1

2

(
WL
i+ 1

2

−Wn
i

)
− λR

i− 1
2

(
WR
i− 1

2

−Wn
i

)]
,

which can be rewritten, after straightforward computations,

Wn+1
i = Wn

i −
∆t

∆x

(
Fn

i+ 1
2
−Fn

i− 1
2

)
+ ∆t

 0
(St)n

i− 1
2
+(St)n

i+ 1
2

2

+

 0

(Sf )n
i− 1

2
+(Sf )n

i+ 1
2

2

.
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Derivation of a generic first-order well-balanced scheme

Summary

We have presented a scheme that:

is consistent with the shallow-water equations with friction and
topography;

is well-balanced for friction and topography steady states;

preserves the non-negativity of the water height;

is not able to correctly approximate wet/dry interfaces due to the
stiffness of the friction: the friction term should be treated
implicitly.

next step: introduction of this semi-implicit scheme
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Derivation of a generic first-order well-balanced scheme

Semi-implicit finite volume scheme
We use a splitting method with an explicit treatment of the flux
and the topography and an implicit treatment of the friction.

1 explicitly solve ∂tW + ∂xF (W ) = St(W ) as follows:

W
n+ 1

2
i = Wn

i −
∆t

∆x

(
Fn
i+ 1

2

−Fn
i− 1

2

)
+ ∆t

(
0

1

2

(
(St)n

i− 1
2

+ (St)n
i+ 1

2

)
)

2 implicitly solve ∂tW = Sf (W ) as follows:




hn+1
i = h

n+ 1
2

i

IVP:

{
∂tq = −kq|q|(hn+1

i )−η

q(xi, t
n) = q

n+ 1
2

i

 qn+1
i
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Derivation of a generic first-order well-balanced scheme

Semi-implicit finite volume scheme
Solving the IVP yields:

qn+1
i =

(hn+1
i )ηq

n+ 1
2

i

(hn+1
i )η + k∆t

∣∣qn+ 1
2

i

∣∣
.

We use the following approximation of (hn+1
i )η, which provides us

with an expression of qn+1
i that is equal to q0 at the equilibrium:

(hη)n+1
i =

2µ
n+ 1

2
i µni(

h−η
)n+1

i− 1
2

+
(
h−η

)n+1

i+ 1
2

+ k∆t µ
n+ 1

2
i qni .

semi-implicit treatment of the friction source term
 scheme able to model wet/dry transitions
scheme still well-balanced and non-negativity-preserving
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Second-order extension

Second-order extension

xi−1 xi+1xi

V n
i+1

V n
i−1

V n
i

x

xi+ 1
2

xi− 1
2
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Second-order extension

Second-order extension

xi−1 xi+1xi

V n
i+1

V n
i−1

V n
i

V̂ n
i (x)

V n
i,−

V n
i,+

x

xi+ 1
2

xi− 1
2
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Second-order extension

Second-order extension
For the second-order MUSCL procedure, we introduce the vector

V = t(h, q, h+ Z)

of reconstructed variables. Then, with σni a limited slope, a linear
reconstruction of the constant state V n

i in each cell i is given by:

V n
i,± = V̂ n

i

(
xi ±

∆x

2

)
= V n

i ±
∆x

2
σni .

Two remarks follow from this definition:
1 If q = 0 and h+ Z is constant in the cells i− 1, i and i+ 1,

they remain constant after the reconstruction: the lake at rest
steady state is naturally preserved.

2 We have V n
i =

V n
i,− + V n

i,+

2
.
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Second-order extension

Second-order extension

xi−1 xi+1xi

V n
i+1

V n
i−1

V n
i

V̂ n
i (x)

V n
i,−

V n
i,+

x

xi+ 1
2

xi− 1
2

31 / 39



A well-balanced scheme for the shallow-water equations with topography and Manning friction

Second-order extension

Second-order extension

xi−1 xi+1xi

V n
i+1

V n
i−1

V n
i

V̂ n
i (x)

V n
i,−

V n
i,+

x

xi+ 1
2

xi− 1
2

V n
i+1,−

V n
i−1,−
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Second-order extension

Second-order extension

xi−1 xi+1xi

V n
i,−

V n
i,+

x

V n
i−1,+

V n
i+1,−

xi− 1
2

xi+ 1
2

31 / 39



A well-balanced scheme for the shallow-water equations with topography and Manning friction

Second-order extension

Second-order extension

xi−1 xi+1xi

Wn
i,−

Wn
i,+

x

Wn
i−1,+

Wn
i+1,−

xi− 1
2

xi+ 1
2

For simplicity, we rewrite the first-order scheme:

Wn+1
i = H(Wn

i−1,W
n
i ,W

n
i+1).

The MUSCL update, in the subcells (xi− 1
2
, xi) and (xi, xi+ 1

2
), reads:

Wn+1
i,− = H(Wn

i−1,+,W
n
i,−,W

n
i,+) and Wn+1

i,+ = H(Wn
i,−,W

n
i,+,W

n
i+1,−).

We then take Wn+1
i = (Wn+1

i,− +Wn+1
i,+ )/2. This update is a

convex combination: we exhibit the same robustness results as the
first-order scheme as soon as the CFL constraint is halved.
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Second-order extension

Second-order extension: well-balance recovery

reconstruction procedure  scheme no longer preserves
steady states with q0 6= 0

Well-balance recovery

We suggest a convex combination between the second-order scheme
WHO and the well-balanced scheme WWB :

Wn+1
i = θni (WHO)n+1

i + (1− θni )(WWB)n+1
i ,

with θni the parameter of the convex combination, such that:

if θni = 0, then the well-balanced scheme is used;

if θni = 1, then the second-order scheme is used.

next step: derive a suitable expression for θni
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Second-order extension

Second-order extension: well-balance recovery
Steady state detector

steady state solution:





qL = qR = q0,

E :=
q2

0

hR
− q2

0

hL
+
g

2

(
h2
R − h2

L

)
− (St + Sf )∆x = 0

steady state detector: ϕni =

∥∥∥∥∥∥


q

n
i − qni−1

[E ]n
i− 1

2



∥∥∥∥∥∥

2

+

∥∥∥∥∥∥


q

n
i+1 − qni
[E ]n

i+ 1
2



∥∥∥∥∥∥

2

ϕni = 0 if there is a steady state
between Wn

i−1, W
n
i and Wn

i+1

 in this case, we take θni = 0

 otherwise, we take 0 < θni ≤ 1
0

1

m∆x M∆x

θni

ϕn
i
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Numerical simulations

Verification of the well-balance: topography

The initial condition is at rest; water is injected through the left
boundary.

35 / 39



A well-balanced scheme for the shallow-water equations with topography and Manning friction

Numerical simulations

Verification of the well-balance: topography

The non-well-balanced HLL scheme converges towards a numerical
steady state which does not correspond to the physical one.
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Numerical simulations

Order of accuracy assessment
To assess the order of accuracy, we take the following exact steady
solution of the 2D shallow-water system, where r = t(x, y):

h = 1 ; q =
r

‖r‖ ; Z =
2k‖r‖ − 1

2g‖r‖2 .

With k = 10, this solution is depicted below on the space domain
[−0.3, 0.3]× [0.4, 1].
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Numerical simulations

Order of accuracy assessment
The errors are collected in the graphs below.

1e3 1e4

1e-2

1e-3

1e-4

1
2

1

L∞ errors on h, order 1
L∞ errors on h, order 2

1e3 1e4

1e-1

1e-2

1e-3

1e-4

1
2

1

L∞ errors on ‖q‖, order 1
L∞ errors on ‖q‖, order 2

We note that the first-order scheme is first-order accurate, while
the second-order scheme is second-order accurate.
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Numerical simulations

2011 Tōhoku tsunami

2D Cartesian scheme obtained from using the 1D scheme at each interface.
Tsunami simulation on a Cartesian mesh: 13 million cells, Fortran

code parallelized with OpenMP, run on 48 cores.
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Numerical simulations

2011 Tōhoku tsunami

0 500 1,000 1,500 2,000 2,500

−8

−6

−4

−2

0

Russia
(Vladivostok)

Sea of Japan

Japan (Hokkaidō
island)

Kuril trench

Pacific Ocean

1D slice of the topography (unit: kilometers).
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Numerical simulations

2011 Tōhoku tsunami
physical time of the simulation: 1 hour

first-order scheme
CPU time: ∼ 1.1 hour

second-order scheme
CPU time: ∼ 2.7 hours
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Numerical simulations

2011 Tōhoku tsunami
Water depth at the sensors:

#1: 5700 m ;

#2: 6100 m ;

#3: 4400 m.
Graphs of the time variation
of the water height (in meters).
data in black, order 1 in blue, order 2 in red
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Conclusion and perspectives

Conclusion
We have presented a well-balanced and non-negativity-preserving
numerical scheme for the shallow-water equations with
topography and Manning friction, able to be applied to other
source terms or combinations of source terms.
We have also displayed results from a 2D well-balanced numerical
method, coded in Fortran and parallelized with OpenMP.

This work has been published:
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“A well-balanced scheme for the shallow-water equations with topography”.
Comput. Math. Appl. 72(3):568–593, 2016.
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C. Berthon, R. Loubère, and V. M.-D.
“A second-order well-balanced scheme for the shallow-water equations with
topography”. Accepted in Springer Proc. Math. Stat., 2017.
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Conclusion and perspectives

Perspectives

Work in progress or completed

application to other source terms:

Coriolis force source term (work in progress)
breadth variation source term (work in progress)

high-order extensions (order 6 achieved, application to large-scale
phenomena in progress)

Long-term perspectives

stability of the scheme: values of C, λL and λR to ensure the
entropy preservation

ensure the entropy preservation for the high-order scheme (use of
a MOOD method)
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Thanks!

Thank you for your attention!
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Appendices

Second-order extension
xi−1 xi+1xi

Wn
i,−

Wn
i,+

x

Wn
i−1,+

Wn
i+1,−

xi− 1
2

xi+ 1
2

W
n+ 1

2
i,− = Wn

i,− −
∆t
∆x
2

[
F(Wn

i,−,W
n
i,+)−F(Wn

i−1,+,W
n
i,−)
]

+
∆t

2

[
st(Wn

i−1,+,W
n
i,− + st(Wn

i,−,W
n
i,+)
]

W
n+ 1

2
i,+ = Wn

i,+ −
∆t
∆x
2

[
F(Wn

i,+,W
n
i+1,−)−F(Wn

i,−,W
n
i,+)
]

+
∆t

2

[
st(Wn

i,−,W
n
i,+ + st(Wn

i,+,W
n
i+1,−)

]

W
n+ 1

2
i =

W
n+ 1

2
i,− +W

n+ 1
2

i,+

2

W
n+ 1

2
i = Wn

i −
∆t

∆x

[
F(Wn

i,−,W
n
i,+)−F(Wn

i−1,+,W
n
i,−)
]

+
∆t

4

[
st(Wn

i−1,+,W
n
i,−) + 2 st(Wn

i,−,W
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Appendices

Two-dimensional extension
2D shallow-water model: ∂tW + ∇ · F (W ) = St(W ) + Sf (W )





∂th+ ∇ · q = 0

∂tq + ∇ ·
(
q ⊗ q

h
+

1

2
gh2I2

)
= −gh∇Z − kq‖q‖

hη

to the right: simulation
of the 2011 Japan
tsunami
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Appendices

Two-dimensional extension

space discretization: Cartesian mesh xi

ci

eij

cj

nij

With Fnij = F(Wn
i ,W

n
j ;nij), the scheme reads:

W
n+ 1

2
i = Wn

i −∆t
∑

j∈νi

|eij |
|ci|
Fnij +

∆t

2

∑

j∈νi
(St)nij .

Wn+1
i is obtained from W

n+ 1
2

i with a splitting strategy:

{
∂th = 0

∂tq = −k q‖q‖h−η  





hn+1
i = h

n+ 1
2

i

qn+1
i =

(hη)n+1
i q

n+ 1
2

i

(hη)n+1
i + k∆t

∥∥qn+ 1
2

i

∥∥
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Appendices

Two-dimensional extension

The 2D scheme is:

non-negativity-preserving for the water height:
∀i ∈ Z, hni ≥ 0 =⇒ ∀i ∈ Z, hn+1

i ≥ 0;

able to deal with wet/dry transitions thanks to the
semi-implicitation with the splitting method;

well-balanced by direction for the shallow-water equations with
friction and/or topography, i.e.:

it preserves all steady states at rest,
it preserves friction and/or topography steady states in the
x-direction and the y-direction,
it does not preserve the fully 2D steady states.
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Appendices

Verification of the well-balance: topography
transcritical flow test case (see Goutal, Maurel (1997))

left panel: initial free surface at rest; water is injected from the left boundary

right panel: free surface for the steady state solution, after a transient state

Φ =
u2

2
+ g(h+ Z)

L1 L2 L∞

errors on q 1.47e-14 1.58e-14 2.04e-14
errors on Φ 1.67e-14 2.13e-14 4.26e-14



A well-balanced scheme for the shallow-water equations with topography and Manning friction

Appendices

Riemann problems between two wet areas

left: k = 0 left: k = 10

both Riemann problems have initial data WL =

(
6

0

)
and

WR =

(
1

0

)
, on [0, 5], with 200 points, and final time 0.2s
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Appendices

Riemann problems with a wet/dry transition

left: k = 0 left: k = 10

both Riemann problems have initial data WL =

(
6

0

)
and

WR =

(
0

0

)
, on [0, 5], with 200 points, and final time 0.15s
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Appendices

Double dry dam-break on a sinusoidal bottom
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