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The shallow water equations with topography
∂th+ ∂xq = 0,

∂tq+ ∂x

(
q2

h +
1
2gh

2
)

= −gh∂xZ(x)

The equations are written under the form ∂tW + ∂xF(W) = S(W).

x

u(x, t)

Z(x)

h(x, t)

• h(x, t): water height
• u(x, t): water velocity
• q = hu: water discharge
• Z(x): known topography
• g: gravity constant

We pay particular attention to solutions of prime importance:

the steady solutions.
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Shallow water with topography: steady solutions

Taking ∂tW = 0 in the shallow water system yields
∂xq = 0,

∂x

(
q2

h +
1
2gh

2
)

= −gh∂xZ,
smooth
=⇒

solution


q = cst = q0,

∂x

(
q20
2h2 + g(h+ Z)

)
= 0.

We summarize the second relation by introducing a function B such
that, for a steady solution, B(h,q0, Z) = B0.

Two cases are distinguished:

• q0 = 0 lake at rest
we get B(h,q0, Z) = h+ Z = cst: linear equation in h

• q0 6= 0 moving steady solution

we get B(h,q0, Z) =
q20
2h2 + g(h+ Z) = B0: nonlinear equation in h!
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Finite volume scheme

Recall the compact form of the shallow water equations:

∂tW + ∂xF(W) = S(W).

We take a generic finite volume numerical scheme approximating
the shallow water equations:

Wn+1
i −Wn

i
∆t +

1
∆x

[
F
(
Wn
i ,W

n
i+1
)
− F

(
Wn
i−1,W

n
i
)]

= S
(
Wn
i−1,W

n
i ,W

n
i+1
)
,

with F a consistent numerical flux, i.e. F(W,W) = F(W), and S a
consistent numerical source term.

xW(x, t) xWn
i−1 Wn

i Wn
i+1

×
xi−1

×
xi

×
xi+1xi− 1

2
xi+ 1

2
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Finite volume scheme

Recall the compact form of the shallow water equations:

∂tW + ∂xF(W) = S(W).

We take a generic finite volume numerical scheme approximating
the shallow water equations:

Wn+1
i −Wn

i
∆t +

1
∆x

[
F
(
Wn
i ,W

n
i+1
)
− F

(
Wn
i−1,W

n
i
)]

= S
(
Wn
i−1,W

n
i ,W

n
i+1
)
,

with F a consistent numerical flux, i.e. F(W,W) = F(W), and S a
consistent numerical source term.

Definition: well-balanced scheme
A numerical method approximating the solution of a balance law
is called well-balanced if it exactly preserves the steady solutions.

Question: can we make this generic finite volume scheme
well-balanced without changing the numerical flux? 3/23



An answer for the lake at rest: the hydrostatic reconstruction

The hydrostatic reconstruction was introduced in E. Audusse et al.,
SIAM J. Sci. Comput. (2004), as a way to make it possible for any
finite volume scheme to capture the lake at rest steady solution.

It relies on:

1. providing a relevant expression for S,
2. evaluating the numerical flux at a specific reconstruction of W.

Wn+1
i −Wn

i
∆t +

1
∆x

[
F
(
Wn
i , Wn

i+1
)
− F

(
Wn
i−1 , Wn

i
)]

= Sni

xi+ 1
2

Zi
Zi+1

hi
hi+1

xi+ 1
2

Zi
Zi+1

hi+ 1
2 ,−

hi+ 1
2 ,+

Zi+ 1
2
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Objectives

Main goal of this work: Provide a linear reconstruction able to
capture the steady solutions with q0 = 0 or q0 6= 0.

The objectives of our hydrodynamic reconstruction include:
• making sure that the resulting scheme is consistent,
• ensuring the capture of steady solutions with q0 = 0 or q0 6= 0,
• handling dry areas and transitions between wet and dry areas
(not presented in this talk),

• a linear and well-balanced high-order extension.
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Expression of the hydrodynamic reconstruction

Away from dry areas, the hydrostatic reconstruction reads:

hni+ 1
2 ,−

= hni +
(
Zi − Zi+ 1

2

)
,

hni+ 1
2 ,+

= hni+1 +
(
Zi+1 − Zi+ 1

2

)
.
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Expression of the hydrodynamic reconstruction

Away from dry areas, the hydrodynamic reconstruction reads:

hni+ 1
2 ,−

= hni +
(
Zi − Zi+ 1

2

)
+ 2Fr2

(
hni ,h

n
i+ 1

2
,qni
)
H
(
hni ,h

n
i+ 1

2
,qni , Zi+ 1

2
− Zi

)
,

hni+ 1
2 ,+

= hni+1 +
(
Zi+1 − Zi+ 1

2

)
+ 2Fr2

(
hni+1,h

n
i+ 1

2
,qni+1

)
H
(
hni+1,h

n
i+ 1

2
,qni+1, Zi+ 1

2
− Zi+1

)
,

with H a function of hL, hR, q̄ and ∆Z := ZR − ZL, and with

Fr2(hL,hR, q̄) =
q̄2(hL + hR)
2gh2Lh2R

.
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The hydrodynamic reconstruction relies on deriving a suitable functionH.
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Characterization of interface steady relations

hni+ 1
2 ,−

= hni +
(
Zi − Zi+ 1

2

)
+ 2Fr2

(
hni ,h

n
i+ 1

2
,qni
)
H
(
hni ,h

n
i+ 1

2
,qni , Zi+ 1

2
− Zi

)
Define the interface state by

(hni+ 1
2
, Zi+ 1

2
) =

{
(hni , Zi) if Zi > Zi+1,
(hni+1, Zi+1) otherwise.

The relations hni+ 1
2 ,−

= hni+ 1
2
= hni+ 1

2 ,+
have to hold for steady solutions.

When the solution is steady, setting q̄ = qi = qi+1, we get:
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2 ,−

= hni+ 1
2
= hni+ 1

2 ,+
have to hold for steady solutions.

When the solution is steady, setting q̄ = qi = qi+1, we get:
q̄2

2h2i
+ g(hi + Zi) =

q̄2

2h2i+ 1
2

+ g(hi+ 1
2
+ Zi+ 1

2
) =

q̄2

2h2i+1
+ g(hi+1 + Zi+1).
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Well-balancing requirement onH

Some algebraic manipulations allow us to write

q̄2

2h2i
+ g(hi + Zi) =

q̄2

2h2i+ 1
2

+ g(hi+ 1
2
+ Zi+ 1

2
)

⇐⇒

Zi+ 1
2
− Zi = −

(
hi+ 1

2
− hi

)(
1− Fr2

(
hi,hi+ 1

2
, q̄
))

,

which is nothing but the usual discrete characterization of smooth
steady solutions.

We claim that imposing the following property on H will be enough
to preserve steady solutions:

∆Z = −(hR − hL)(1− Fr2(hL,hR, q̄)) =⇒ H(hL,hR, q̄, ∆Z) =
hR − hL

2 .
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Well-balancing requirement onH

Indeed, assuming that the solution is steady, we obtain the
following sequence of equalities:

hni+ 1
2 ,−

= hni +
(
Zi − Zi+ 1

2

)
+ 2Fr2

(
hni ,h

n
i+ 1

2
,qni
)
H
(
hni ,h

n
i+ 1

2
,qni , Zi+ 1

2
− Zi

)
,

hni+ 1
2 ,−

= hni +
(
Zi − Zi+ 1

2

)
+ Fr2

(
hni ,h

n
i+ 1

2
,qni
)(

hni+ 1
2
− hni

)
,

hni+ 1
2 ,−

= hni +
(
Zi − Zi+ 1

2

)
+
(
Zi+ 1

2
− Zi

)
+
(
hni+ 1

2
− hni

)
,

hni+ 1
2 ,−

= hni+ 1
2
,

which proves that the scheme is well-balanced.
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Summary and source term discretization

To summarize, for the reconstruction to be consistent and
well-balanced, we require the following two properties on the
bounded function H:

1. H(hL,hR, q̄, ∆Z) =
∆Z→0

O(∆Z),

2. ∆Z = −(hR − hL)(1− Fr2(hL,hR, q̄)) =⇒ H(hL,hR, q̄, ∆Z) =
hR − hL

2 .

In addition, the whole scheme will also be consistent and
well-balanced if the following numerical source term is used:

∆x(Sq)ni = −g
2hni− 1

2 ,+
hni+ 1

2 ,−

hni− 1
2 ,+

+ hni+ 1
2 ,−

(
Zi+ 1

2
− Zi− 1

2

)
+

4g
hni− 1

2 ,+
+ hni+ 1

2 ,−

H
(
hni− 1

2 ,+
,hni+ 1

2 ,−
,qi, Zi+ 1

2
− Zi− 1

2

)3
.

The proof results from algebraic manipulations (not detailed here).

Next step: obtain a suitable expression ofH.
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Satisfying the well-balanced property

Recall that we need

H(hL,hR, q̄, ∆Z) =
hR − hL

2
when H is applied to a discrete steady solution.

To obtain an expression of H satisfying this property, we need to
understand how (hR − hL)/2 behaves for discrete steady solutions.

We now seek a relation to characterize the jump of h at the
interface, i.e. an expression of (hR − hL)/2 for steady solutions.

We assume that the solution is steady, and introduce notation

h̄ :=
hL + hR

2 and [h] := hR − hL
2 ,

so that hL and hR satisfy

hL = h̄− [h] and hR = h̄+ [h].

The goal is now to rewrite the steady relation in terms of h̄ and [h].
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A local relation to characterize steady solutions

Recall that the steady solutions are governed by

B(h,q0, Z) =
q20
2h2 + g(h+ Z) = B0.

That is to say, at the interface between states WL and WR, the
solution is locally steady if qL = qR = q̄ and

B(hL, q̄, ZL) = B(hR, q̄, ZR) ⇐⇒ q̄2

2h2L
+ g(hL + ZL) =

q̄2

2h2R
+ g(hR + ZR).

We set out to rewrite the above relation using h̄ and [h] instead of hL
and hR.
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A nonlinear relation for the interface jump

q̄2

2h2L
+ g(hL + ZL) =

q̄2

2h2R
+ g(hR + ZR)

⇐⇒
q̄2

2(h̄− [h])2
+ g(h̄− [h] + ZL) =

q̄2

2(h̄+ [h])2
+ g(h̄+ [h] + ZR)

⇐⇒
. . .

⇐⇒

2[h]
(
g
(
h̄2 − [h]2

)2
− q̄2h̄

)
= −g(ZR − ZL)

(
h̄2 − [h]2

)2
.
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“Quadratized” relation

2H
(
g
(
h̄2 −H2)2 − q̄2h̄

)
= −g∆Z

(
h̄2 −H2)2 (∗)

Equation (∗) is nonlinear, and using it would incur considerable
computational cost. To avoid this issue, we proceed with a lin-
earization-like simplification. First, for H 6= h̄, we get

(∗) ⇐⇒ 2H
(
1− q̄2h̄

g
(
h̄2 −H2

)2
)

= −∆Z.

We then choose a “quadratization” of this expression around H = [h]:
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2H
(
1− q̄2(hL + hR)

2gh2Lh2R
Fr2

+ a([h] −H)
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= −∆Z.

In practice, after some testing, we choose

a = sgn(∆Z)

√
|∆Z|
2|[h]|3 . 14/23



Final expression ofH

We are left with H satisfying a quadratic relation.

Solving this quadratic equation for H leads to

H =
1
2

E − sgn(1− Fr2)sgn(∆Z)

√
E2 +

√
1
2 |∆Z||[h]|

3

,

with E = [h] + 1− Fr2

2 sgn(∆Z)

√
|[h]|3
2|∆Z| .

We show that, if ∆Z and 1− Fr2 do not simultaneously vanish:
1. this expression of H is well-balanced;
2. this expression of H is consistent, despite the divisions by ∆Z.

Next step: provide a well-balanced and linear high-order extension.
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Linear high-order extension

We follow the general strategy from [C. Berthon, S. Bulteau, F.
Foucher, M. M’Baye and V. M.-D., SIAM SISC, 2022].

At each interface, we introduce a convex combination of
parameter θi+ 1

2
between the high-order reconstruction WHO

i+ 1
2
and the

hydrodynamic reconstruction WHDR
i+ 1

2
:

Wi+ 1
2 ,±

= θi+ 1
2
WHO
i+ 1

2 ,±
+ (1− θi+ 1

2
)WHDR

i+ 1
2 ,±

.

The coefficient θi+ 1
2
is based on the error to the steady solution, and

• if θi+ 1
2
= 0, the solution is steady, the scheme is well-balanced;

• if θi+ 1
2
= 1, the solution is unsteady, the scheme is high-order

accurate.
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Setup

We provide several numerical tests with a finite volume scheme
using the HLL flux:

• an order of convergence test,
• three tests of the well-balanced property,
• a dam-break on a dry slope.

These tests are performed with the hydrostatic reconstruction (HSR)
and the hydrodynamic reconstruction (HDR).

The schemes of order δ are denoted by HSRδ and HDRδ.
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Order of convergence
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Emerged lake at rest (50 cells)
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Subcritical flow (75 cells)
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Transcritical flow (75 cells)
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Dam-break on a dry slope (50 cells)
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Conclusion

We have developed a linear reconstruction that allows any finite
volume scheme to be fully well-balanced for the shallow water
system.

This reconstruction has the following properties:

• it leads to a consistent scheme,
• the resulting scheme is well-balanced,
• it is able to handle wet/dry transitions,
• it can be extended to high-order accuracy with no nonlinear solver.

This work led to the following preprint:

C. Berthon, V. M.-D., under review, 2023.

23/23



Thank you for your attention!

Finite Volumes for Complex Applications 10 (FVCA10)

October 30, 2023 – November 03, 2023 in Strasbourg, France



A nonlinear relation for the interface jump: properties

2H
(
g
(
h̄2 −H2)2 − q̄2h̄

)
= −g∆Z

(
h̄2 −H2)2 (∗)

Can H, implicitly given by the above expression, satisfy the required
consistency and well-balanced properties?

1. For the consistency, we need H(hL,hR, q̄, ∆Z) =
∆Z→0

O(∆Z): at least
one solution to (∗) satisfies this property.

2. For the well-balanced property, we need

∆Z = −(hR − hL)(1− Fr2(hL,hR, q̄)) =⇒ H(hL,hR, q̄, ∆Z) =
hR − hL

2 .

This property holds since (∗) has been derived so that 2H = hR − hL
is a solution as soon as the flow is steady.
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Well-balanced property

To show the well-balanced property, we take ∆Z = −(1− Fr2)∆h, to get

E = ∆h+
1− Fr2

4 sgn(−(1− Fr2)∆h)

√
|∆h|3

|1− Fr2||∆h|
= ∆h

(
1− 1

4

√
|1− Fr2|

)
,

E2 +
√

|∆Z||∆h|3 = (∆h)2
(
1+ 1

4

√
|1− Fr2|

)2
.

Plugging this in H, we obtain

H =
1
4

∆h
(
1− 1

4

√
|1− Fr2|

)
+ sgn(∆h)

√
(∆h)2

(
1+ 1

4

√
|1− Fr2|

)2
=

∆h
4

(
1− 1

4

√
|1− Fr2|+ 1+ 1

4

√
|1− Fr2|

)
=

∆h
2 ,

which proves the well-balanced property.
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High-order scheme

A high-order (non-well-balanced) finite volume scheme reads:

Wn+1
i = Wn

i −
∆t
∆x

(
F(Ŵn

i,+, Ŵ
n
i+1,−) − F(Ŵn

i−1,+, Ŵ
n
i,−)
)
+ ∆tŜni .

In each cell, we reconstruct a polynomial of degree d, under the form

Ŵn
i (x) = Wn

i +

d∑
α=1

Rαi (x − xi)α,

where the coefficients Rαi depend on the neighboring cells.

The evaluations at the interfaces xi± 1
2
are then given by:

Ŵn
i,− = Wn

i +

d∑
α=1

Rαi
(
−
∆x
2

)α

and Ŵn
i,+ = Wn

i +

d∑
α=1

Rαi
(
∆x
2

)α

,

and the high-order source term is the following approximation:

Ŝni =
1
∆x

∫ xi+ 1
2

xi− 1
2

S(Ŵn
i (x)) dx + O(∆xd+1).



Linear well-balanced correction of the high-order scheme

We introduce a convex combination with parameter θi± 1
2
to provide

a well-balanced correction to the high-order scheme, such that:
• if θi± 1

2
= 0, the scheme is well-balanced;

• if θi± 1
2
= 1, the scheme is high-order accurate.

The new evaluations at the interfaces xi± 1
2
are given by:

W̃n
i,− = Wn

i + θi− 1
2

d∑
α=1

Rαi
(
−
∆x
2

)α

and W̃n
i,+ = Wn

i + θi+ 1
2

d∑
α=1

Rαi
(
∆x
2

)α

,

and the new high-order well-balanced source term reads:

S̃ni =

(
1−

θni− 1
2
+ θni+ 1

2

2

)
Sni +

θni− 1
2
+ θni+ 1

2

2 Ŝni .

Next step: Provide a suitable choice of the convex combination
parameter θi± 1

2
. We follow the general strategy from [C. Berthon, S.

Bulteau, F. Foucher, M. M’Baye and V. M.-D., SIAM SISC, 2022].



Steady solution detector

The convex combination parameter θni+1/2 must satisfy the following
properties:

• vanish when (Wn
i ,W

n
i+1) are at equilibrium;

• be an approximation of 1 up to O(∆xd+1) otherwise.

We propose the following expression:

θni+ 1
2
=

εni+ 1
2

εni+ 1
2
+ Cni+ 1

2
∆xd+1

,

with εni+ 1
2
=

∥∥∥∥∥
(

qni+1 − qni
B(hni+1,q

n
i+1, Zi+1) − B(h,qni , Zi)

)∥∥∥∥∥.
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Properties of the steady solution detector

θni+ 1
2
=

εni+ 1
2

εni+ 1
2
+ Cni+ 1

2
∆xd+1

, with εni+ 1
2
=

∥∥∥∥∥
(

qni+1 − qni
B(hni+1,q

n
i+1, Zi+1) − B(hni ,q

n
i , Zi)

)∥∥∥∥∥
(WB) We easily note that εni+ 1

2
vanishes (and therefore θni+ 1

2
does too)

as soon as Wn
i and W

n
i+1 are at equilibrium.

(HO) If εni+ 1
2
6= 0, then

θni+ 1
2
=

1

1+ ∆xd+1
Cni+ 1

2

εni+ 1
2

= 1+ O(∆xd+1).

 The expression of θni± 1
2
satisfies the required properties.

Next step: perform numerical tests to validate the method.



Limitations of the method

Of course, the method also has a few limitations.

1. It is dependent on a parameter C, which could be different for each
experiment.

2. Although the scheme is high-order accurate and well-balanced,
there is an issue with high-order well-balanced initialization.
Consider an initial condition W0, steady at interface xi−1/2 and un-
steady at interface xi+1/2; we need the reconstruction W̃0

i to satisfy

W̃0
i (xi− 1

2
) =

1
∆x

∫ xi+ 1
2

xi− 1
2

W0(x)dx and W̃0
i (xi+ 1

2
) = W0(xi+ 1

2
)+O(∆xd+1).

This leads to two conditions in cell i, for one unknown W0
i …



An expression of Cni+1/2

To implement the scheme, we need to give an expression of C = Cni+1/2.
We propose C0i+1/2 = 1, and, for n > 1:

Cni+ 1
2
= Cθ

1
2

(∥∥Wn
i+1 −Wn−1

i+1
∥∥

∆t +

∥∥Wn
i −Wn−1

i
∥∥

∆t

)
,

with Cθ a constant parameter.

Note that

θni+ 1
2
=

εni+ 1
2

εni+ 1
2
+

(
∆x
Cni+ 1

2

)δ
=

εni+ 1
2
(Cni+ 1

2
)δ

εni+ 1
2
(Cni+ 1

2
)δ + ∆xδ

:

we get θni+ 1
2
= 0 if εni+ 1

2
= 0 or Cni+ 1

2
= 0. Why does this make sense?



An expression of Cni+1/2 – reasoning

θni+ 1
2
= 0 if εni+ 1

2
= 0 or Cni+ 1

2
= 0

εni+ 1
2
= 0 =⇒ steady state solution for the equations

=⇒ θni+ 1
2
must vanish to preserve the steady state solution

Cni+ 1
2
= 0 =⇒ vanishing discrete time derivative

=⇒ steady state solution for the high-order scheme
=⇒ not a steady state solution for the equations1

=⇒ θni+ 1
2
must vanish to perturb the solution

1Otherwise, the high-order scheme would be well-balanced.
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