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Problem statement



The shallow water equations with topography

0th + 04,g = 0,
q2

1
atq + ax<h ar zgh2> = *ghaXZ(X)

The equations are written under the form 0:W + 0,F (W) = S(W).

* h(x,t): water height

- u(x,t): water velocity

+ g = hu: water discharge
+ Z(x): known topography

+ g: gravity constant

X

We pay particular attention to solutions of prime importance:

the
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Shallow water with topography: steady solutions

Taking 9:W = 0 in the shallow water system yields

0xq =0, q = cst = qo,
smooth
Q> 1, —
Oy h + 5gh = _ghaxz) solution | 9, = 0.

We summarize the second relation by introducing a function B such
that, for a steady solution,
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Shallow water with topography: steady solutions

Taking 9:W = 0 in the shallow water system yields

0xq =0, q = cst = qo,
smooth
Q> 1, —
Oy h + 5gh = _ghaxz) solution | 9, = 0.

We summarize the second relation by introducing a function B such
that, for a steady solution,

Two cases are distinguished:

* o = 0 ~ lake at rest
we get B(h, go,Z) = h +Z = cst: linear equation in h

* (o # 0 ~ moving steady solution

we get : nonlinear equation in h!
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Finite volume scheme

Recall the compact form of the shallow water equations:
0tW + 0F(W) = S(W).

We take a generic finite volume numerical scheme approximating
the shallow water equations:

Wi —wy

n oyyn
TG

i+1

) = F(W, W) | = S(WPy, WP, W),

with ,and S a
consistent numerical source term.

W(x, t) Wi, oW Wi,

i—1 X X1 Xig
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Finite volume scheme

Recall the compact form of the shallow water equations:
0tW + 0F(W) = S(W).

We take a generic finite volume numerical scheme approximating
the shallow water equations:

ikl Y (WP WE) — T (WP, WP) | = (W0, Wi, W),
At AX 1+1 -1 -1 1+1

with ,and S a
consistent numerical source term.

Definition: well-balanced scheme

A numerical method approximating the solution of a balance law
is called well-balanced if it exactly preserves the steady solutions.

Question: can we make this generic finite volume scheme
well-balanced without changing the numerical flux? 3/23




An answer for the lake at rest: the hydrostatic reconstruction

The hydrostatic reconstruction was introduced in E. Audusse et al.,
SIAM J. Sci. Comput. (2004), as a way to make it possible for any
finite volume scheme to capture the lake at rest steady solution.

It relies on:

1. providing a relevant expression for §,
2. evaluating the numerical flux at a of W.

w1 1
:Tur&[s( wre, Wi, ) —F(wr, o wr )}zgn
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An answer for the lake at rest: the hydrostatic reconstruction

The hydrostatic reconstruction was introduced in E. Audusse et al.,
SIAM J. Sci. Comput. (2004), as a way to make it possible for any
finite volume scheme to capture the lake at rest steady solution.

It relies on:

1. providing a relevant expression for §,

2. evaluating the numerical flux at a of W.
I A I
h; 1 :
‘ hi+4 7 e
—
Z ‘ [ Z ‘
! Zijn \ Ziy
7§ g {
e g Xi+1
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Objectives

Main goal of this work: Provide a linear reconstruction able to
capture the steady solutions with go = 0 or gy # 0.

The objectives of our hydrodynamic reconstruction include:
- making sure that the resulting scheme is consistent,
- ensuring the capture of steady solutions with go = 0 or go # 0,

- handling dry areas and transitions between wet and dry areas
(not presented in this talk),

- a linear and well-balanced high-order extension.
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The hydrodynamic reconstruction



Expression of the hydrodynamic reconstruction

Away from dry areas, the hydrostatic reconstruction reads:
hi :h?+<zi_zi+%)a

i+3,—

h?+%,+ = hi, + <Zi+1 *Zi+%)'
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Expression of the hydrodynamic reconstruction

Away from dry areas, the reads:

hips_=h+ (Zi —Z,»+%>
+
hin+%,+ = hin+1 + (Zi+1 *Zi+%>
+
with 3 a function of h, hg, G and AZ .= Z — Z;, and with

g*(h. + hg)

Fr’(he, hg, Q) =
2gh?h?
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Expression of the hydrodynamic reconstruction

Away from dry areas, the reads:

hips_=h+ (Zi —Z,~+%>
+
hin+%,+ = h,f’ﬂ + (Zi+1 *Zi+%>
+
with 3 a function of h, hg, G and AZ .= Z — Z;, and with

g*(h. + hg)

Fr’(he, hg, Q) =
2gh?h?

The hydrodynamic reconstruction relies on deriving a suitable function 7.
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Characterization of interface steady relations

Define the interface state by

(hn ) - (h,nazl) IfZ, > Zi+1a
2’ Zit3 (h?.1,Zix1) otherwise.

The relations h.” =h" ., =h" .,  have to hold for steady solutions.
I+ i+3 I+5,+
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Define the interface state by
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Characterization of interface steady relations

Define the interface state by

(hn ) - (h,nazl) IfZ, > Zi+‘|a
2’ Zit3 (h?.1,Zix1) otherwise.

The relations h,.” =h! , =hl , _have to hold for steady solutions.
2 2>

When the solution is steady, setting ¢ = g; = g;,, we get:

g’ g’ g’
>pz T9hi+2;) = +glhiy s +2i3) = +G(higr +Zipa).
2h? 2h,2+2 2 T T om2 AR
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Well-balancing requirement on

Some algebraic manipulations allow us to write

g’ g’

= +g(h;+Z,~) = — +g(h 1 +Z 1)

2h,2 2h’2+% I+5 I+5
<

Zi+% —Z,' = _(hi+% —h,') (1 = Frz(h;, hi+%»a)>a
which is nothing but the usual discrete characterization of smooth
steady solutions.
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Well-balancing requirement on

Some algebraic manipulations allow us to write

g’ g’

= —i—g(h,-+Z,-) = — +g(h 1 +Z 1)

2h,2 2h’2+% I+5 I+5
<

Zi+% —Z,' = _(hi+% —h,') (1 = Frz(h;, hi+%»a))a
which is nothing but the usual discrete characterization of smooth
steady solutions.

We claim that imposing the following property on 3 will be enough
to preserve steady solutions:

_ _ hr —h
AZ = —(hg — hy) (1~ F(hi, e, 7)) = H(hi, he,§,42) = =——.
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Well-balancing requirement on

Indeed, assuming that the solution is steady, we obtain the
following sequence of equalities:

h" :h,f'+<z,-—z,-+%>

i+3,—

+
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Well-balancing requirement on

Indeed, assuming that the solution is steady, we obtain the
following sequence of equalities:

h?+%’7 = h:q + (Z,—ZI+%>
+

:n+%,f = hi + (Zi _Zi+%)
+

h?+%’7 = h’n + (Z,*ZIJF%)
+

i )

NI

which proves that the scheme is well-balanced.
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Summary and source term discretization

To summarize, for the reconstruction to be consistent and
, we require the following two properties on the
bounded function :

1. 3¢(hi, he,3,02) = 0(A2),
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Summary and source term discretization

To summarize, for the reconstruction to be consistent and
, we require the following two properties on the
bounded function :

1. 3¢(hi, he,3,02) = 0(A2),

2.

In addition, the whole scheme will also be consistent and
well-balanced if the following numerical source term is used:

AX(8)T 2h?—%,+h?+%,— 7 7 4g
R S T PPN R N
, hlnf%,++hin+%,— ’ ’ h?—%,++hin+%,7

H(h,[%‘ hn ,‘qi»Zu;—z,.f%)?’.

+Vi+3,

The proof results from algebraic manipulations (not detailed here).
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Summary and source term discretization

To summarize, for the reconstruction to be consistent and
, we require the following two properties on the
bounded function :

1. 3¢(hi, he,3,02) = 0(A2),

2.

In addition, the whole scheme will also be consistent and

well-balanced if the following numerical source term is used:
2h" , ", 4
i—1,+"i+1,— g
g Z B Ee
h?—*,++hin+%,— ( ) h?f%,++h?+%,f

2

3
AX(8,)" ge(hy oy 2y —Ziy) -
The proof results from algebraic manipulations (not detailed here).

Next step: obtain a suitable expression of J{.
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Suitable expression of H



Satisfying the well-balanced property

Recall that we need

hg — h;
2

when H is applied to a discrete steady solution.

j{(hb hR) C_LAZ) =

To obtain an expression of H satisfying this property, we need to
understand how (hg — h;)/2 behaves for discrete steady solutions.
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Satisfying the well-balanced property

Recall that we need

hg — h;
2

when H is applied to a discrete steady solution.

j{(hL) hR) ‘_%AZ) =

To obtain an expression of H satisfying this property, we need to
understand how (hg — h;)/2 behaves for discrete steady solutions.

We now seek a relation to characterize the jump of h at the
interface, i.e. an expression of (hg — h;)/2 for steady solutions.

We assume that the solution is steady, and introduce notation

hi + hg o hgr — h,
5 and [h] = 5

h=
so that h; and hp satisfy
h,=h—1[h] and hg=h+I[h].

The goal is now to rewrite the steady relation in terms of h and [h].
11/23




A local relation to characterize steady solutions

Recall that the are governed by

Bh, 40,2) = 5+ g(h +2) = B

That is to say, at the interface between states W, and Wk, the
solution is locally steady if g, = gr = g and

B(hba)ZL) = B(hqu)ZR) —

We set out to rewrite using h and [h] instead of h,
and hg.
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A nonlinear relation for the interface jump

q’ q
ZTI%‘FQ(hL-FZL) ﬁ+9(hR+ZR)
<~
& gh—th+2) = 0+ gl 1 +20)
2(h —h])? 2(h + [h])?
—
=
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“Quadratized” relation

2%(9(52 —g2)’ - azﬁ) — —gAZ(R? — 3%)° (+)
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“Quadratized” relation

23¢(g(R? - 3%)" — gh) = —gAZ(R* — 3¢%)° (+)

Equation () is nonlinear, and using it would incur considerable
computational cost. To avoid this issue, we proceed with a
-like simplification. First, for 3 # h, we get

(¥) — 23{(1—‘%) =—AZ.
9( )

h? — 3¢2)?
We then choose a “ " of this expression around H = [h]:
A2
2gc(1— FWthe) a0 = —az
2g(h? — [h}?)
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“Quadratized” relation

23¢(g(R? - 3%)" — gh) = —gAZ(R* — 3¢%)° (+)

Equation () is nonlinear, and using it would incur considerable
computational cost. To avoid this issue, we proceed with a
-like simplification. First, for 3 # h, we get

(¥) — 29{(1 —‘_ﬁ’)> = —AZ.

g(h? — 302 2
We then choose a “ " of this expression around H = [h]:
A2
25¢(1— Tt 50 = —az.
2gh?h?
~—

Fr?

In practice, after some testing, we choose

|AZ|

= sgn(aZ) 2[h]3" 14123




Final expression of J{

We are left with J satisfying a quadratic relation.

Solving this quadratic equation for H leads to

K = % (E —sgn(1— Frz)sgn(AZ)\/E2 + ;AZ[hP) :

1—Fr? [h]
5 sgn(AZ) A7’

with E = [h] +

We show that, if AZ and 1— Fr? do not simultaneously vanish:
1. this expression of H is :
2. this expression of J{ is consistent, despite the divisions by AZ.
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Final expression of J{

We are left with J satisfying a quadratic relation.

Solving this quadratic equation for H leads to

K = % (E —sgn(1— Frz)sgn(AZ)\/E2 + ;AZ[hP) :

1—Fr? [h]
5 sgn(AZ) A7’

with E = [h] +

We show that, if AZ and 1— Fr? do not simultaneously vanish:
1. this expression of H is :
2. this expression of J{ is consistent, despite the divisions by AZ.

Next step: provide a well-balanced and linear high-order extension.
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Linear high-order extension



Linear high-order extension

We follow the general strategy from [C. Berthon, S. Bulteau, F.
Foucher, M. M'Baye and V. M.-D., SIAM SISC, 2022].

At each interface, we introduce a
between the high-order reconstruction WHO1 and the
hydrodynamic reconstruction WHDR

_ HO HDR
VV/**%,ﬂ: - VV:+— T VV/+—2,:t

The coefficient 6, , is based on the error to the steady solution, and
. if G,H = 0, the solution is steady, the scheme is well-balanced;

. if 6,~+% = 1, the solution is unsteady, the scheme is high-order
accurate.
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Numerical experiments



We provide several numerical tests with a finite volume scheme
using the HLL flux:

- an order of convergence test,
- three tests of the well-balanced property,

« a dam-break on a dry slope.

These tests are performed with the hydrostatic reconstruction (HSR)
and the hydrodynamic reconstruction (HDR).

The schemes of order 4 are denoted by HSRd and HDRG.
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Order of convergence

L? error on h L2 erroron g
1071 A

1072 -
A\
.~ 1073 1
1075
2 2
: §

-7 1
1084 : 1 : N 1Y ! ! 1 :
40 160 640 2560 40 160 640 2560
—m— HSR1 —— HDR1 —e— HDR2 HDR3
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Emerged lake at rest (50 cells)

h+2z q
17 4-1071 |
2-10776 ¢
0.5 | ‘\
0 \j\«
0 ‘ > X —2.107" * i > X
0 0.5 1 0 0.5 1
---------- HSR1 —— HDR1 —— HDR2 HDR3
HSR, Py HDR, PPy HDR, P, HDR, P,
L? error on h 1.85-10""7 275-10°" 3.07-10"7 1.32-107"
L2 errorong 124107  5.17-107"7 1.24-107" 3.59.10""
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Subcritical flow (75 cells)

h+2z q
2
4.48 +
4.46 +
‘] £4
4.4ty +
0 : : : : > X 442 — i ; o X
0 5 0 15 20 25 0 5 0 15 20 25
---------- HSR1 —— HDR1 —— HDR2 HDR3
HSR, Py HDR, PPy HDR, P4 HDR, P,
L2 errorong 7.73-1072 1.06-10~™ 1.31-107™ 1.30-10"™
L2 error on B 1.79-10" 2.73-10~™ 3.61-107™ 2.68-10—™
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Transcritical flow (75 cells)

h+2z q
1 Jer——
1.56
0.5
1.54
0 : ‘ : : > X 1 il 1 1 > X
0 5 0 15 20 25 0 5 0 15 20 25
---------- HSR1 —— HDR1 —— HDR2 HDR3
HSR, Py HDR, Py HDR, P4 HDR, P,
L2 errorong 3.74-1072  473-10~"™ 515.107™ 5.21-10~™
L% error on B 1.45-10"  4.50-10~™ 512.107"™ 5.92.10~™
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Dam-break on a dry slope (50 cells)

h+2Zz q
1 . < 0.6 |
! %3
X 0.4 +
0.5 S

X2 0.2 |

G T X O*
0 0.5 1 0

—— reference - HSR1 —— HDR1 —— HDR2 HDR3
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Conclusion



Conclusion

We have developed a linear reconstruction that allows any finite
volume scheme to be fully well-balanced for the shallow water
system.

This reconstruction has the following properties:

- it leads to a consistent scheme,

- the resulting scheme is well-balanced,

- it is able to handle wet/dry transitions,

« it can be extended to high-order accuracy with no nonlinear solver.

This work led to the following preprint:

C. Berthon, V. M.-D., under review, 2023.
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Thank you for your attention!

Finite Volumes for Complex Applications 10 (FVCA10)
October 30, 2023 - November 03, 2023 in Strasbourg, France
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A nonlinear relation for the interface jump: properties

=71
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Can , implicitly given by the above expression, satisfy the required
consistency and properties?



A nonlinear relation for the interface jump: properties

23¢(g(R? - 3¢%)" — gh) = —gAZ(R* - 3¢%)" (%)

Can , implicitly given by the above expression, satisfy the required
consistency and properties?

1. For the consistency, we need H(h(, hg, g, AZ) O(AZ): at least

one solution to () satisfies this property.

AZ—0



A nonlinear relation for the interface jump: properties

25¢(9(R ~5¢)" - h) = —gaz(ie -3¢ ()

Can , implicitly given by the above expression, satisfy the required
consistency and properties?

1. For the consistency, we need H(h(, hg, g, AZ)
one solution to () satisfies this property.

O(AZ): at least

AZ—0

2. For the , we need

= _ hg —h
AZ = ~(hg = h)(1— Fr(hi, he, @) = H(hi,he, §,42) = .

This property holds since (*) has been derived so that 2J{ = hz — h;
is a solution as soon as the flow is steady.



Well-balanced property

To show the property, we take , to get

1—Fr? |AhP ( 1 )
E=Ah sgn(—(1—Fr2)Ah) | ———— = Ah(1— /1= F?| ),
+ ——sgn(=( )Ah) T FeAh Z V! |
1 2
2 3 _ 2 M _ Er2
E° + \/|AZ||Ah]? = (Ah) <1+4 [1— Fr ) .




Well-balanced property

To show the property, we take , to get

1—Fr? |AhP ( 1 )
E=Ah sgn(—(1—Fr2)Ah) | ———— = Ah(1— /1= F?| ),
+ 4 sen(—(1 = Fri)an), o LV —F
1 2
2 3 2 _ — Fr?
E- + \/|AZ||Ah] = (Ah) <1+4 [1—Fr ) .
Plugging this in H, we obtain
_1 71 _ Fp? 2 1 — Fr2 ’
= 4(Ah(1 4\/|1 Fr I) +sgn(Ah)\/(Ah) <1+4\/1 Fr |)
_Ah 1 5 1 2\
—4(1—4\/1—Fr|+1+4\/1—Fr|)_ ,

which proves the well-balanced property.




High-order scheme

A reads:

At _ _ _
WO = W — S (O W ) — T, L W) + ALY

In each cell, we reconstruct a polynomial of degree d, under the form

d
WP (x) =W + Y RMx—x)%,
a=1

where the coefficients R depend on the neighboring cells.

The evaluations at the interfaces Xiy1 are then given by:

d d o
~ AX ~ AX
W,—’jW,—”+ZR,—“<2> and W{Z+W}7+ZR,-“<2) ,

a=1

a=1
and the high-order source term is the following approximation:

08

5 1 (3 o ‘ ;
“S?:EL S(WP(x)) dx + O(Ax4H).

i1
=2



Linear well-balanced correction of the high-order scheme

We introduce a to provide
a well-balanced correction to the high-order scheme, such that:

. if e,-i% = 0, the scheme is well-balanced;

. if e,-i% =1, the scheme is high-order accurate.

The new evaluations at the interfaces Xiy1 are given by:

d

- Ax\* - Ax\*
WP =w+ ZR,-‘"<2> and W, =W+ ZR,‘"(Z),

=1

and the new high-order well-balanced source term reads:

8t = 8T+ 8.

1 1 1

Next step: Provide a suitable choice of the
. We follow the general strategy from [C. Berthon, S.
Bulteau, F. Foucher, M. M'Baye and V. M.-D., SIAM SISC, 2022].



Steady solution detector

The convex combination parameter 07, , , must satisfy the following
properties:

- vanish when (W], W/",
- be an approximation of 1 up to O(Ax%*") otherwise.

) are at equilibrium;



Steady solution detector

The convex combination parameter 07, , , must satisfy the following
properties:

- vanish when (W], W/",
- be an approximation of 1 up to O(Ax%*") otherwise.

) are at equilibrium;

We propose the following expression:

on , — ,
I+3 £P71 4 Cir1+1AXd+'l
2 2

g’ . —q’
W|th En 9 = I+1 U .
2 B(h,n,warlrwzin%)*B(h,qlnaz/')




Properties of the steady solution detector

n
€. 4 n
hr 4iq

q;
0. . = , with ef,, = i
aE el , +CM , AxTH '( B(h} 1,71 Zita) — (W»WJ[))'
2 2

(WB) We easily note that e, , vanishes (and therefore 07 , does too)
2

as soon as W/ and W” are at equilibrium.

i1
(HO) If ¢? , # 0, then

1
eln+2 - n =1+ 0(ax*T).
1+Axd+1 ’+2

el
I+§

Next step: perform numerical tests to validate the method.



Limitations of the method

Of course, the method also has a few limitations.

1. Itis dependent on a C, which could be different for each
experiment.

2. Although the scheme is high-order accurate and well-balanced,
there is an .
Consider an initial condition Wy, steady at interface x;_,,, and un-
steady at interface Xx;, 1 ,,; we need the reconstruction V~V,.O to satisfy

= 1 (Xi+d =
W,-O(x,-f%) = L " Wo(x)dx  and WP(XH%) = Wo(x,-+%)+(‘)(Axd”).

2

This leads to two conditions in cell i, for one unknown W,0



An expression of C! | /2

To implement the scheme, we need to give an expression of C = C!
We propose C?° =1,and,forn > 1

i+1/2°
i+1/2

o) (Wil , w1

ey At At

with Co a constant parameter.

Note that . )
n_ 6iJr% - I+2(CI+2) .
i+ = 5 5
’ " AX :+ (Clr'+2) + AX
RN
i+3

we get . Why does this make sense?



An expression of C[ , , - reasoning

1 n . n —
'f£i+g _OorCH% =0

el =0 = steady state solution for the equations

= 0], must vanish to preserve the steady state solution
2

Cf.1 =0 = vanishing discrete time derivative
— steady state solution for the high-order scheme
— not a steady state solution for the equations’
= e,ﬁ% must vanish to perturb the solution

T0therwise, the high-order scheme would be well-balanced.
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