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0 General context: multi-scale models and principle of AP schemes
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Multiscale model M, depending on a parameter € | = |
In the (space-time) domain, € can ] ;
@ be of same order as the reference scale; f I

@ be small compared to the reference scale;

@ take intermediate values.
When ¢ is small: My = lim M asympt. model (
£—0

Difficulties:

@ Classical explicit schemes for M: they are stable and consistent if
the mesh resolves all the scales of €. = very costly when € — 0

@ Schemes for My = the mesh is independent of €

But: = My is not valid everywhere, it needs € < 1
w the interface may be moving: how to locate it?
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A possible solution: Asymptotic Preserving (AP) schemes

@ Use the multi-scale model M, even for small €.
@ Discretize Mg with a scheme preserving the limit € — 0.

w The mesh is independent of €: Asymptotic stability.

w Recovery of an approximate solution of My when € — 0:
Asymptotic consistency.

w Asymptotically stable and consistent scheme
= Asymptotic preserving scheme (AP).
([Jin, *99] kinetic — hydro)
@ The AP scheme may be used only to reconnect M; and M.

Mo
M. class. scheme

class. scheme

M,
AP scheme
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e An order 1 AP scheme for the Euler system in the low Mach limit



The multi-scale model and its asymptotic limit  ses

w |sentropic Euler system in scaled variables: x € Q CRY, t >0

{atP+V‘(PU):0 (1)e

di(pu)+V-(pudu)+ le(p) =0 (2) (with p(p) = p)

Parameter: ¢ = M2 = m|[u|?/(yp(P)/P). M = Mach number
Boundary and initial conditions:

p(x,0) = po+&Po(x)
u-n=00nd2 and y

u(x,0) = up(x) +e€tio(x), withV-uyp=0
The formal low Mach number limit € — 0:

(2)e = Vp(p)=0 = p(x,t)=p(t)

(1)e = |Q|P’(t)+p(t)/aQu'n=0 = p()=p(0)=py = V-u=0



The multi-scale model and its asymptotic limit 42
The asymptotic model: Rigorous limit [Klainerman & Majda, ’81]:

p =cst = po,

(Mo) pQV'UZO, (1)0

poa,u+p0V-(u®u)+Vn1 =0, (2)0
where .
m = lim (p(p) —p(po))-
Expliciteq. for ty: ~ 9;(1)o—V-(2)0 = —Amy =poV?:(uRu)
The pressure wave equation from M;:

WM~V (2 = dp— Bp(p)=V2: (pucu) (3)c

From a numerical point of view

@ Explicit treatment of (3), = conditional stability At < /e Ax
@ Implicit treatment of (3)e = uniform stability with respect to €
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Time discretization:
[Degond, Deluzet, Sangam & Vignal, '09], [Degond & Tang, '11],
[Chalons, Girardin & Kokh, ’15]

If p” and u" are known at time t":

n+1 __ ~n

%+V-(pw”+1 =0, (1) w
n+1 _ n 1

i At (b2) +V-(pu )+ Vp(p" ) =0.  (2) wo

@ee—0 gves Vp(p™')=0 = consistency at the limit
@ implicit treatment of the pressure wave eq. = uniform stability in €

V- (2) inserted into (1): gives an uncoupled formulation

n+1__ ~n A
%+V-(M)”—§Ap(p”“)—mvz (pucu)’=0



An order 1 AP scheme in the low Mach limit

The scheme proposed in [Dimarco, Loubére & Vignal, ’17]:
w Framework of IMEX (IMplicit-EXplicit) schemes:

Y. v O o pu
a’(w) w (pU®U) w (@IOJ -
—— —— ~—

w Fe(W) Fi(W)

w The C.F.L. condition comes from the explicit flux Fe(W):

Ax Ax
At < — = ——
- N 2|uf|’

6/23

where A are the eigenvalues of the explicit Jacobian matrix DFe(W/).

w A linear stability analysis yields: if the implicit part is
e centered = L2 stability;
e upwind = TVD and L™ stability.

SSP Strong Stability Preserving, [Gottlieb, Shu & Tadmor, ’01]



AP but diffusive results, 1D test case

€ =0.99, 300 cells

273 loops
CPU time 0.07
AP: 510 loops

CPU time 1.46

Class:

Time steps

st --- 1st-order AP

§x107

—Class. scheme

7/23

—Class. scheme
— 1st-order AP

]

0.01 0.02 0.03 0.04 0.05 0.06
Time

e =10"%, 300 cells

4036 loops
CPU time 0.82
AP: 57 loops

CPU time 0.14

Class:

Time steps

107

—Class. scheme
---1st-order AP

—Class. scheme
---1st-order AP
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Time



AP but diffusive results, 1D test case 8123
! —Class. scheme 1 tggssi'hse?::me
---AP scheme
e=10"* 2 g
% 10 8
Underlying of £
the viscosity [
0% 001 002 003 Tir‘#g 005  0.06 09999 0.2 0.4 . 06 0.8 1

It is necessary to use high order schemes

But they must respect the AP properties
we also wish to retain the L™ stability



0 General context: multi-scale models and principle of AP schemes
e An order 1 AP scheme for the Euler system in the low Mach limit
e Second-order schemes in time

e Second-order schemes in time and space

@ Work in progress and perspectives
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Bibliography for stiff source terms or ODE problems: Ascher,
Boscarino, Cafflish, Dimarco, Filbet, Gottlieb, Happenhofer, Higueras, Jin,
Koch, Kupka, Le Floch, Pareschi, Russo, Ruuth, Shu, Spiteri, Tadmor...

IMEX division: oW+ V- Fo(W)+ V- Fi(W)=0.

General principle:  Step n: W" is known

@ Quadrature formula with intermediate values:
tn+1 t"+1
W™ = w(t") — At V- Fo(W(t))dt — At V.- Fi(W(t))dt

tn tn
o ~~ >

s e ]
Wt =w"  — At ) bV Fe(W™) — Zb,V Fi(w™)
j=1 =1
Quadratures exact on the constants: Y7 1b, Yiib=1

e Intermediate values at times ™/ = t"+ ¢; At:

) thid Cj
RS W(t”)+/ o W(t) dt = W”+At/ 0 W(t" + sAt)ds
0

tn
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@ Quadrature formula for intermediate values: i=1,---,s
W = W"— AtY 3, V- Fo(W™F) —AtZaMV-F,-(W”*"),

k<j

Quadratures exact on the constants: Z ajx =

s k<) s

=g, Z ajk =

k=1
o WM =w"— Ath, V. Fo(W™) Athj V- F(W™)
j=1 j=1
Butcher tableaux:
Explicit part Implicit part

0 0 0 cee 0 C1 | a1 0 s 0

Co 5271 0 ... 0 Co| @1 aop . 0
Cs | as1 ... és,s—1 0 Cs | ds,1 dss—1 ds;s

B‘] “ee c e BS b‘] “ o cee bs

Conditions for 2nd order: Y bjc; =) b5 =) bg=Y bg=1/2
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ARS scheme [Ascher, Ruuth & Spiteri, '97]:
“only one” intermediate step

ol o 0 o0 0jlo 0 0
Bl B 0 o0 Blo B o g1
1|B—1 2—-B 0 110 1-B B N
B—1 2—-B 0 0o 1—-B P
Wn71:Wn
= W= W"— AtBV-Fo(W") — AtV - Fi(W)
W™ = W™ = W — AHB— 1)V Fo(W™) — At(2 — B)V - Fo(W*)

— At(1 —B)V - F(W*) — AtBV - F(w™)
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Density p for the ARS time discretization:
e=10"

1.01

1.005

1.0001

1.0005 1.00005

1L I I I 1~ C I I I =1
0O 02 0406 08 1 0 02 04 06 0.8 1
e=10"3 e=10"*

---- exact —— 1storder — 2nd order
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Consider the scalar hyperbolic equation d;w + dxf(w) = 0.

@ Oscillations measured by the Total Variation and the L™ norm:

VW) =Y Wi —w|  and W[l = max|w/].
- J
J
@ TVD (Total Variation Diminishing) property and L™ stability:

{ TV(w™T) < TV(w") <= no oscillations

™ oo < [[W"]]oo
First idea: Find an AP order 2 scheme which satisfies these properties.
Impossible

Theorem (Gottlieb, Shu & Tadmor, ’01): There are no implicit Runge-Kutta
schemes of order higher than one which preserves the TVD property.
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Another idea: use a limited scheme.
WI’I+1 — e Wn+1,02 _|_ (1 o 9) Wn+1,O1

e W19 = order j AP approximation
@ 0 € [0,1] largest value such that W”Jr1 does not oscillate

Toy scalar equation: J¢w + CodxW + — L oW =0

\/_
@ Order 1 AP scheme with upwind space discretizations (cg, ¢; > 0):
+1,01 Ci +1,01 +1,01
Wi = g (! —wilg) = (W - wT .
@ Order 2 AP scheme: ARS with the parameter f =1 — 1/\/5.

Lemma (Dimarco, Loubére, M.-D., Vignal):
Under the CFL condition At < Ax/ce,

V(W) < TV(w"),

=" ~041 =
1 { W™ oo < [[W"|co.

—B
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Limited AP scheme:
Wn—|—17lim —9 Wn+1,02 + (1 . 9) Wn+1,O1 with 6= i

1-B
Problem: More accurate than order 1 but not order 2
Solution: MOOD procedure: see [Clain, Diot & Loubére, '11]

On the toy equation: w"+"-#O MOOD AP scheme, CFL At < Ax/ce

@ Compute the order 2 approximation w102,

@ Detect if the max. principle is satisfied: HW”"H 2|l < [|W|oo ?
@ If not, compute the limited AP approximation w" /™,

| | |
0 02 04 06 08 1 0 02 04 06 08 1

---- exact— 1st order — 2nd order — TVD-AP — TVD-AP-MOOD
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0 Second-order schemes in time and space



Error curves for the toy scalar equation 16/23

@ Order 2 in space: MUSCL (with the MC limiter) with explicit slopes
for implicit fluxes.
@ Error curves on a smooth solution for the toy scalar equation:

% T T 1 171 [ % 100 ? T T 1 1 \[ T T \\72
1072} E & ]
107} N E 1071 - y
10_4-\'\\‘\-E 10_2% E
1075 - 1073 ¢
10_6;8\:\1\ [ ; 10*4 f—E\:\'I\O\_?M $ Lot \i

103 103
F [ T L a
—e— first-order 10-3 7 |
—=— second-order E
—e— TVD-AP a4l i
—+ TVD-AP-MOOD 1077
:8 = 1074 | L1 \:

—_
o
w
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Recall the first-order IMEX scheme for the Euler system:

n+1 __ ~\n

E TV (pu) =0, (1)
u)™ —(pu)" 1 ;

P v (puauy+ Lvp(pr ) =0, (2)

We apply the same convex combination procedure:

B

wntim _ g pynti1,02 + (1 — 9) Wn+1701, with 0 = ] B

~> We use the value of 6 given by the study of the toy scalar equation.

~ But how can we detect oscillations for the MOOD procedure?
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The previous detector (L™ criterion on the solution) is irrelevant for the
Euler equations, since p and u do not satisfy a maximum principle.

~~ we need another detection criterion
2 10
- p(p): ina
y—1\ & dp
Riemann problem, at least one of them satisfies a maximum principle.
[Conway & Smoller, *73]

We pick the Riemann invariants & = u¥F

On the Euler equations:
wn+1.HO MOOD AP scheme, CFL At < Ax/A
@ Compute the order 2 approximation W02,
@ Detect if both Riemann invariants break the maximum principle at
the same time.
e If so, compute the limited AP approximation W"+1/m,
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Riemann problem: left rarefaction wave, right shock ;
top curves: € =1 ; bottom curves: € = 1074

Density p Momentum q = pu

—_
—MhoOON

1.0001

1.00005

| | |

| | | ! | - 1
0O 02 04 06 08 1 0 02 04 06 0.8 1
---- exact — 1st order — 2nd order — TVD-AP-MOOD

1
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Error curves in L norm, smooth 1D solution

e —1 £=10"2
10721 10t
1073} : 105‘§>\-\-\-
1 4n-6L i
107477 e e - 10 %\1 [ ]

102 102 103

e=10"*
10755 T T T T T T T E
—— first-order 108 \ .
—=— second-order s ]
—e— TVD-AP 1077 =T
—+— TVD-AP-MOOD 1078} E

10~°

—
o
~
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Error curves in L™ norm, smooth 2D traveling vortex

£=1 €=10"2
E\\‘!w\\—&\‘ 3 1073 E o] T 7T —
1072} 110t
-3 e 1 a5l = ]
1077} 1 107%) 1
10_4%\\\\\1 Lol é 10_6%\\\\\1 Lol L \F
108 10 108 104
e=10"*
F T T T T T T \\:
—— first-order 105} % E
—=— second-order B :
—e TVD-AP jo-8| == i
—— TVD-AP-MOOD i ]
1077; 1 NN T

108 104



200 x 200 cells

Euler equations: 2D Numerical results {2279 2

1st-order AP 2nd-order AP

reference solution
obtained solving
the vorticity formulation
0i0+U-Vo=0,
with ® = dyv —dyu

reference



0 General context: multi-scale models and principle of AP schemes
e An order 1 AP scheme for the Euler system in the low Mach limit
e Second-order schemes in time

e Second-order schemes in time and space

e Work in progress and perspectives
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@ Pick an order > 2 and L2-stable time discretization to get a 0 as
close as possible to 1 for the stability of the limited scheme.

@ Study a local value of 6, depending on the presence of oscillations
in a given cell.

@ Extension to full Euler (order 1 scheme exists).

@ Domain decomposition with respect to €:
Mo
class. scheme

Me
class. scheme | €=°(1)
Me
AP scheme



Thanks!



Euler equations: 2D Numerical results

To obtain a 2D reference incompressible solution, set ® = dxv —d,u and
consider the vorticity formulation of the incompressible Euler equations:

810)+ U-Vo=0,

U = (0,W,—0oxV),

V.U =0 = dstream function WV such that
—AV = .

To get the time evolution of the vorticity from ®":

@ solve —AV" = " for W" (with periodic BC and assuming that the
average of W vanishes);

@ get U" from U™ =!(9, V", —9, V");

@ solve ;0 + U"- V" =0 to get "',

We get a reference incompressible vorticity ®(x,t), to be compared
to the vorticity of the solution given by the compressible scheme with
small € (we take € = M? = 107°).
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