Janced scheme for the shallow-water equations with to aphy and Mann

A well-balanced scheme for the shallow-water
equations with topography and Manning friction

C. Berthon', S. Clain?, F. Foucher"3, V. Michel-Dansac'

Laboratoire de Mathématiques Jean Leray, Université de Nantes
2Centre of Mathematics, Minho University
3Ecole Centrale de Nantes

Monday, May 23rd, 2016

L1

UNIVERSITE DE NANTES



A well-balanced scheme for the shallow-water equations with topography and Manning friction

Contents

Introduction

A well-balanced scheme

1D numerical experiments
Two-dimensional and high-order extensions
2D numerical experiments

Conclusion and perspectives



A well-balanced scheme for the shallow-water equations with topc phy and Manning f

L Introduction

H Introduction



LID

I—The shallow-water equations

The shallow-water equations and their source terms

8th aF 6x(hu) =0

1
Or(hu) + 0, (hu2 i 5ghQ) = e — kalg| (with ¢ = hu)

B

we can rewrite the equations as ;W + 0, F (W) = S(W)

water surface

_

u(a, t)

Z(x)

h(x,t)

channel bottom

m 7= 7/3 and g is the
gravitational constant

m k£ > 0 is the so-called

Manning coefficient: a

higher k leads to a stronger

Manning friction

33



W is a steady state solution iff ;W = 0, i.e. 0, F(W) = S(W)

taking ;W = 0 in the shallow-water equations leads to
0:q=0

21 k

h h"
the steady state solutions are therefore given by

q=cst =qo

2
@ 1 9\ _ _ kaolgol
6x<h+2gh> ghdnZ — =,

N
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me for the

|—Objec‘cives

Objectives

derive a scheme that:
m is well-balanced for the shallow-water equations with
friction and/or topography, i.e.:

m preservation of all steady states with k = 0 and Z # cst
m preservation of all steady states with k£ # 0 and Z = cst
m preservation of steady states with k& # 0 and Z # cst

m preserves the non-negativity of the water height

m is able to deal with wet/dry transitions

provide two-dimensional and high-order extensions of this
scheme, while keeping the above properties
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L Structure of the scheme

The HLL scheme

to approximate solutions of AL AR
W + 0, F(W) = 0, we choose

the HLL scheme (Harten, Lax, WrLL

van Leer (1983)), which uses
the approximate Riemann
solver W to the right:

the consistency condition (as per Harten and Lax) holds if:

L[ ’Wv(i;WL,WR)dx L /Am WR(i;WL,WR)dx

Az [ pgpp \At Ar | s At

hich gi W = —
Whichh glves HLL )\R_)\L )\R_)\L qHLL

note that hgrr > 0 for |Ar| and |Ag| large enough

ArWg =AW, F(Wg) — F(Wp) _ <hHLL>



L Structure of the scheme

Modification of the HLL scheme

to approximate solutions of AL 0 AR
OW + 0, F(W) = S(W), we wil Wi,

use the following approximate

Riemann solver (assuming Wi Wr
AL <0< AR):

* * )

. h h*
~~ 3 unknowns to determine: W} = (qL) and W}, = < R>-
Harten-Lax consistency gives us

| )\Rh}} — )\Lh* = (>\R - )\L)hHLL

x _
m ¢ =qyLr + m (with S = S(Wp, Wg) approximating

the mean of S(W), to be determined)

5/33
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ne

|—The full scheme for a general source term

Determination of h; and hj,

assume that Wy, and Wg define a steady state, i.e. satisfy the
following discrete version of 0, F (W) = S(W):

1 _
@ [5] +2[n?) = 5Aa

AL 0 AR 0

Wr, Wr - Wi Wr

for the steady state to be preserved, we need
Wi =W and Wg, = Wg, i.e. hy = hp, h, = hr and ¢* = qo

as soon as Wy, and Wg define a steady state
6 /33
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|—The full scheme for a general source term

Determination of h; and hj,
two unknowns ~~» we need two equations

m we have )\Rh}k% — )\Lhz = ()\R — )\L)hHLL
m we choose a(hl, — h}) = SAx
-2

+ g(hL + hg), with ¢ to be determined

where o = i T2

~» using both relations, we obtain
ArSAz
BE = hppp — ——B227
EEIEE T a0k = Ap)

. AL SAx
g =hurr aOs = A1)
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heme

|—The full scheme for a general source term

Correction to ensure non-negative hy and hj

however, these expressions of h} and h} do not guarantee that
the intermediate heights are non-negative: instead, we use (see
Audusse, Chalons, Ung (2014))

. )\RS Al’ >\R
* pu— — 1 -
h7, = min ( (hHLL o — ) ) K ( v > hHLL)

(v R G W O

note that this cutoff does not interfere with:
m the consistency condition Agh}, — ALh] = (Ar — AL)hHLL

m the well-balance property, since it is not activated when W7,
and Wpg define a steady state



LA w

|—The full scheme for a general source term

Summary

using a two-state approximate Riemann solver with
: . hy Iy .
intermediate states W} = <q£> and Wp = (qff) given by

;

N SAx
¢ =4quLL +

AR — AL

hy = mln((hHLL T aln =) )\L)>+, (1 )\L>hHLL)

AS Az A AL
f (( ar—-20) )\ g
yields a scheme that is consistent, non-negativity-preserving and

well-balanced; we now need to find S and « (i.e. ¢) according to
the source term definition

9
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phy and Manr

|—The cases of the topography and friction source terms

The topography source term

we now consider S(W) = SYW) = —ghd, Z:
discrete smooth steady states are governed by

1 ,
a M + 217 = S'Ac

2
|1
= |—= Z| =
Z[hQ}-l-g[h—i- ]=0

we can exhibit an expression of g3 and thus obtain

gt _ 2hphr [Z] g [n°

T N s hp Az 2Azhy + hg

but when Z;, = Zg, we have S # O(Axz) ~ loss of consistency
with S (see for instance Berthon, Chalons (2015))

10 /33
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heme

I—The cases of the topography and friction source terms

The topography source term

instead, we set, for some constant C,

[ 2hphr (Z) | g [h))
hy, +hr Ax  2Ax hp + hg

" _{hR—hL if |hg —hp| < C Az
sgn(hp — hr) C Az otherwise.

Theorem: Well-balance for the topography source term

If Wi, and Wg define a steady state, i.e. verify

2
Q|1 _
5 [hQ} +glh+ Z] =0,

then we have W} = Wy, and Wp = Wg.

this result holds for any ¢: we choose ¢ = ¢*
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heme

|—The cases of the topography and friction source terms

The friction source term
we consider, in this case, S(W) = S/(W) = —kq|q|h™"
the average of S/ we choose is S¥ = —kq|G|h—", with

m ¢ the harmonic mean of ¢z, and g (note that ¢ = qo at the
equilibrium), and

m /7 a well-chosen discretization of h~", depending on hy,
and hg, and ensuring the well-balance property

we determine /7 using the same technique (with uo = sgn(qo)):

1 N
a [5] + 2[h?) = —kuogih A
Y L N L I
W1 92 T kpogyAx



me for the shallow-water equations with topc hy and Manning friction

heme

I—The cases of the topography and friction source terms

The friction source term
the expression for qg we obtained is now used to get:

o ([1] [Pl p2 ([T
h kA;({h}—i— 5 [h77+2]<77—1 _kMOAJ,))u

which gives S/ = —kq|G|h—" (h=7 is consistent with h~7)

Theorem: Well-balance for the friction source term

If Wi, and Wg define a steady state, i.e. verify

7 .
+g " = —kqo|qo| Az,

2 [
90 n—1

then we have W} = Wy, and Wy = Wg.

this result holds for any §: we choose ¢ = ¢*



phy and Manr

|—The cases of the topography and friction source terms

Friction and topography source terms

with both source terms, the scheme preserves the following
discretization of the steady relation 0,F (W) = S(W):

1 ~ _
% [5] + g[hz] =S5'Az+ 5/ Ax

the intermediate states are therefore given by:

(. +(S't+5'f)Ax

q =d4HLL —)\R “AL
. )\R(St+5f)A$> ( )\R> )

Iy =min| | h - A1 - 0h

L (( HLL aOr =) . L HLL

X AL(St+§f)A$ AL

h = h - 1—-—=)h

\ R mln(( HLL aOr — L) +, Y HLL
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|—The cases of the topography and friction source terms

The full Godunov-type scheme

t

wA (m’ tn+l)

thrl : - :

LW L |

! i—3 Wi+% |

I I

A \E

: i—3 it+3 :

| Wzn |
i I I "

Ti—1 Ty Tiyl

1 Tivl
define W't = —/ " WA (z,t" 1) dz: then

Ax )
-2
Wit =y [ (k- we) A ()

which can be rewritten, after straightforward computations,

At 0 0
n+l __ n__ =Y T T
Wi =W K (fm fi—é) +At<((st),’j) N ((Sf):'>)1s 33



A well-t C cheme for the sha

LA well-balanced scheme

|—The cases of the topography and friction source terms

Summary

we have presented a scheme that:

m is consistent with the shallow-water equations with friction
and topography

m is well-balanced for friction and topography steady states

m preserves the non-negativity of the water height

m is not able to correctly approximate wet /dry interfaces: we
need a semi-implicitation of the friction source term

~» how to introduce this semi-implicitation?

16 /33
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me

L Source terms contribution to the finite volume scheme

Semi-implicit finite volume scheme

we use a splitting method: explicit treatment of the flux and the
topography; implicit treatment of the friction

explicitly solve W + 9, F (W) = SY (W) to get
"+ n g n __ Tn 0
Wit = Ax(f - F )+At((8t):,>
implicitly solve 9, = S (W) to get

n+
h?“ = h;

Oug = —kalq| (7)™ .
IVP: 1 gt
q(zit") =¢q; °*



for the shallow-water equations with to

ne

L Source terms contribution to the finite volume scheme

Semi-implicit finite volume scheme
solving the IVP yields:

1y, "+
n+l _ (R )q;
qz - n_"_%‘

(h T+ k At |q

7

we use the following approximation of (h?“)”: this provides us
with an expression of q;”rl that is equal to ¢g at the equilibrium

41
_ 2Mn Z/ﬁ nti
(h )i_l + (h )z’+l
2 2

m semi-implicit treatment of the friction source term
~+ scheme able to model wet /dry transitions

m scheme still well-balanced and non-negativity-preserving



A well-balanced scheme for the shallow-water equations with topogr

LlD numerical experiments

1D numerical experiments



he shallow-water equations with to aphy and Mann

S

Verification of the well-balance: topography

we show the so-called transcritical flow test case (see Goutal,
Maurel (1997)): here, we assume k = 0

1

4141
08 3.20-14]
06 \ 2.4e-141

04 1.6e-144
0.2 8e-151
O(J 5 10 15 20 25 00

left panel: initial free surface and free surface for the steady
state solution, obtained after a transient state

right panel: errors to the steady state (solid: h, dashed: q)
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experiments

Verification of the well-balance: friction

0.91
'I,
0.8 09
0.87
0.7
0.71
0.6
0.6
0.5 " " ; " 0.5 . ; . . ,
0 02 0.4 0.6 0.8 1 770 02 0.4 0.6 0.8 1

left panel: water height for the steady state solution
right panel: water height for the perturbed steady state solution



0.9 9e-16
0.8
6e-161
0.7
3e-16{:
0.6
[~ ' ' ' ' | |
055 02 0.4 0.6 0.8 i %

left panel: convergence to the unperturbed steady state

right panel: errors to the steady state (solid: h, dashed: q)
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L Two-dimensional extension

Two-dimensional extension
2D shallow-water model: 9, + V - F(W) = SY(W) + S/ (W)

8th+V~q:0
qoq 1 ., kqllqll
22 L R ) = — 7
0,q+V < N +2gh 2> ghV %
- /.

to the right:
simulation of the 2011
Japan tsunami

33
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L Two-dimensional extension

Two-dimensional extension

C; Cj

the space discretization is a Cartesian mesh: & [T
|

eij

with % = F (wr, Wi n;j), the scheme reads:

n—i—l |€i'
WE =W ALY

! ci

'f;'} + ALY (SHY
JEV; JEV;

1
W is obtained from WZHQ with a splitting strategy:

2

n+
hzn—i-l —h 2

8th =0 ' T ntl n+l
o =—kalglh | gt - — P4
(MM + kAt ||q

1
]
(2

N
N

33



L Two-dimensional extension

Two-dimensional extension

the 2D scheme is:

m non-negativity-preserving for the water height:
Vi€ Z,h? > 0= Vi€ Z,hM" >0

m able to deal with wet/dry transitions thanks to the
semi-implicitation with the splitting method

m well-balanced by direction for the shallow-water equations
with friction and/or topography, i.e.:
m it preserves all steady states at rest
m it preserves friction and/or topography steady states in the
z-direction and the y-direction
m it does not preserve the fully 2D steady states

~» high-order extension?



L High-order extension

High-order extension: the polynomial reconstruction
polynomial reconstruction (Diot, Clain, Loubére (2012)):

N d
W) =W+ Y af[(@—a)* - M|,

=t

R L k
m we have M = Tl (x —x;)"dx
Cil Je;

m the polynomial coefficients af are chosen to minimize the least
squares error between the reconstruction and W]”, for all 7 in
the stencil Szd

1 —
m the conservation property is verified: Tl / Wi (z)de = W}
C; ¢



I—ngh order extension

High-order extension: the scheme

High-order space accuracy

Wn+1 Wn Atz |€“|Z€T U7+Atznq< St e (Sf);i])
q=0

JEV;

| | fg}},’, = f(Win(O-r)7 an(a-T); 'n’l])

m (S, =S (Wp(zy))  and  (ST)2, = ST (WP (ay))

where we have set:
m (&, 0,), quadrature on the edge e;;
m (1q,2q)q quadrature on the cell ¢;

time accuracy: SSPRK methods (Gottlieb, Shu (1998))

25 /33
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L Two-dimensional and high-order extensions

I—High—order extension

MOOD method

high-order schemes induce oscillations ~» MOOD method to get
rid of the oscillations and restore the non-negativity-preservation

MOOD loop

compute a candidate solution with the high-order scheme
test if the candidate solution satisfies several criteria:

m PAD, to recover the non-negativity-preservation
m DMP, to eliminate oscillations
m u2, to detect smooth extrema

where necessary, decrease the degree of the reconstruction

compute a new candidate solution
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L Two-dimensional and high-order exten:

I—High—order extension
Well-balance recovery (1D)

reconstruction procedure ~» scheme no longer well-balanced

Well-balance recov

we suggest a convex combination between the high-order scheme
Wio and the well-balanced scheme Wy p:

Wit =6 (Wro)it' + (1= 0) (Wwp)i

0" € [0,1] parameter of the convex combination:
m 0' = 0: the well-balanced scheme is used

m 0' = 1: the high-order scheme is used

goal: derive a suitable expression for '

N
~

33



2 2
on
@' = 0 if there is a steady state P D
between W/ |, W and W[,
~- in this case, we take 0" =0
~ otherwise, we take 0;' > 0 0 o

mAx MAx 28 /33
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2D numerical experiments



A well-ba
L2D nur

“heme for the shallow-water equations with top

Xperiments

Perturbed 1D topography and friction

>hy and Manning friction

steady state

h | lall
L L? L= | L? L>
Py | 1.22e-15 1.71le-15 6.27e-15 | 2.34e-15 3.02e-15 9.10e-15
Ps | 5.01e-05 1.47e-04 1.16e-03 | 2.32e-04 2.63e-04 1.18¢-03
PYB | 8.50e-14 1.05e-13 3.35e-13 | 2.82e-13  3.37e-13  6.76e-13
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2D numerical experiments

Order of accuracy assessment:
we consider only the topography (i.e. k = 0): 2D steady
solution, not preserved by the scheme (well-balance by direction)

Velocity Norm

0.84 0.8
—_— ‘“W Hﬂ””w

0.812
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L‘ZD nu 1 experiments

Order of accuracy assessment: k =0

N | h, L h, L? h, L™
900 | 2.04e-05 — | 5.22-05 — | 7.84e-04 —
3600 | 3.07e-07 6.05 | 6.88¢-07 6.25 | 9.94e-06 6.30

14400 | 3.93e-09 6.29 | 5.82e-09 6.88 | 5.53e-08 7.49
57600 | 5.74e-11 6.10 | 7.27e-11 6.32 | 3.30e-10 7.39

Z

lql, L* lql, L? Iqll, L

900 1.37e-04 — | 3.46e-04 — | 2.90e-03 —
3600 | 1.90e-06 6.17 | 5.27e-06 6.04 | 5.10e-05 5.83
14400 | 2.33e-08 6.35 | 5.33e-08 6.63 | 4.98e-07 6.68
57600 | 3.08e-10 6.24 | 5.76e-10 6.53 | 4.42¢-09 6.82
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L‘ZD numer

Order of accuracy assessment: k #£ 0

1 experiments

d scheme for the shallow-water equations with top

hy and Manning friction

2k||r|| —1 r
Z(xay)zi ’ h(tw%"y):l ) q(tax7y):7
2g||r|? (|
N ‘ h 4z dy
900 2.37e-08 — | 8.00e-08 1.12e-07 —
3600 | 3.77e-10 5.98 | 1.28e-09 5.96 | 1.82e-09 5.94
14400 | 5.89e-12 6.00 | 1.99¢-11 6.01 | 2.91e-11 5.96
57600 | 1.24e-14 8.89 | 2.06e-13 6.60 | 1.20e-13 7.92
N h 4z dy
900 1.04e-07 — | 5.20e-07 5.07e-07 —
3600 1.80e-09 5.86 | 8.15¢-09 6.00 | 1.02e-08 5.77
14400 | 3.38e-11 5.73 | 1.25e-10 6.02 | 1.71e-10 5.89
57600 | 8.33e-13 5.34 | 2.26e-12 5.79 | 2.59¢e-12 6.05
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al experiments

- -Theta
—Topography
—FreeSurface

near the edges, steady state at rest ~» well-balanced scheme
away from the edges, far from steady state ~» high-order scheme

center, dry area ~~ well-balanced scheme
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L Conclusion and perspectives

Jonc

1D scheme: m well-balanced for the shallow-water equations
with friction and topography

m non-negativity preservation for the height

m suitable approximation of wet/dry interfaces

2D scheme: m well-balance by direction, the above properties

m high-order accuracy

Perspectives

m real-world applications
m entropy inequality for the 1D scheme

m order of accuracy of the convex combination
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Thank you for your attention!
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‘

5,

4

3,

2,

0 ] 2 3 4 5
left: k=0 left: &k =10

both Riemann problems have initial data Wy, = (g) and

Wg = <(1)), on [0, 5], with 200 points, and final time 0.2s
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— -Reference Height
— Approximate Height

left: k=0 left: £ =10

both Riemann problems have initial data Wy, = (g) and

Wgr = <8), on [0, 5], with 200 points, and final time 0.15s
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LAppendi

Double dry dam-break on a sinusoidal bottom

2, “1--Order 1
...Order 6
1.8 —Reference
—Topography
1.6 ,
1.4 % i
)_“N "’(‘
1.2 >, 5
.“o
1 RONY 4
08
06
04 > ‘
0.2
0
0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
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