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History of the SPH method

m 1977: Monaghan, Gingold, Lucy - particle method for
astrophysics, coined the term SPH: “smoothed particle
hydrodynamics”

m 1994: Monaghan - SPH for free-surface hydrodynamics

1998: Vila - SPH formulation using Riemann problems

recent & ongoing work:

m multi-fluid SPH
m variable mesh
m viscous terms
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L Gene oduction to th
LCore of the SPH method

m O cut-off function

m Cy normalization constant

properties of this kernel:

bell-shaped even function
of class C* / W(r,h) dr =1
R

compact support K

=4 , J—
bell parameters: /R W'(r,h) dr =0

r (position) and h (width)



roduction to the SPH method

|—Core of the SPH method

The particle approximation

m f(z) = (f*d)(x), with f: R+ R and § the Dirac distribution
= /Rf(y)5(x—y> dy

m IIM(f /f W(x —y,h) dy



er model

L-General introduction to the §

LCore of the SPH method

The particle approximation

Accuracy of the continuous approximation

second-order accuracy requires properties 4 and 5
(Mas-Gallic - Raviart, 1987; Monaghan, 1992):

- /W(r, h) dr =1,ie T"(1) =1
R

. /W’(r, h) dr =0, ie. I"(1) =0
R



La oduction

LCore of the SPH method

Different kernels

1.4

cut-off for the cubic spline

1.2

kernel (Monaghan, 1998): s !
4-62+34 if0<g<1 5
0(q) =4 (2—-9)?° if1<g<2
0 Otherwise 072 15 -1 05 0 05 1 15 2
q
cut-off for the Wendland kernel v
(Wendland, 1995): L2

1
0.8
0.6

g(q):{(2—q)4(1+2q) if0<qg<?2

Wendland

0 otherwise 0o

2 -15 -1 05 0 05 1 15 2
q
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L General introduction to the SPH method

I—Discretization of the SPH equations

Discrete SPH equations

ture formula

/Rf(y) dy ~ Zw(xj)f(xj) = ijfj , Where:

jez jez

x; are the quadrature points, or particles

w; = w(x;) are their volumes
fj denotes f(z;)

Wij = W(xi —xj,h)

m P: set of interacting particles x; close enough to particle x;
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I—Discretization of the SPH equations

Discrete SPH equations

Approximation of a function

m(f)(x) = / F@)W(z -y, h) dy
K
> wi Wi =~ fi

JEP

becomes II"(f);

Approximation of its derivative

() (z) = / F@W (@ — 1, B) dy
K
> wifiWi; =~ f]

JjEP

becomes II"(f");
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I—Discretization of the SPH equations

in discrete form!

the discrete analogues of 4 and 5 are generally not true:

ijWij 75 1 and ZLUJWZI] 75 0

JEP JEP

~ loss of the consistency

aim of the SPH methods: numerical resolution of PDE’s
— we need a suitable derivation operator
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I—Discretization of the SPH equations

Main issue: consistency

ak formulat

reinforce the derivation operator:

Dp(f)i = TM(f"); — fIIM(1);
— ij(fj—fz‘)wi/j’i :

JEP

~» Dy (f); is exactly 0 for constant f

yet another issue: this formulation is not conservative!



A conser e we ) ybrid SPH scheme for allo ater model
L General introduction to the SPH method

I—Dlscretlzatlon of the SPH equations

the formulation Dy, (f); will be conservative iff

Z WiDh(f)i = 0

i€z

S wiDn(f)i = D> wiw;(f; — f)Wi;, with W odd

icZ 1€Z jEZ

= 722 wszZw]W/ #0

i€z jeZ



er model

I—Discretization of the SPH equations

Main issue: consistency

Strong formulation

Dy, adjoint of Dy, with respect to (f,g);, = Zwifigi:
i€Z
» such that V(f,g), (Dr(f),9) = — (f, D;(9))},

~ Di(9)i = > wi(gi + 9:)Wi; ~ g
JEP

this strong formulation is conservative!
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L General introduction to the SPH method

I—Application to shallow-water equations

SPH Finite Volumes
N
LN
’ | N
, I
SO
S } Z;
<\\ X FTHiH’j X
N |
|
|
|
o
NIRS

E:Zw‘j(ﬂ_’_Fj)Wi’j Z sjFij
i€y (@)
(Fj;: any conservative FV flux)




A conser e we nced hybrid SPH scheme for t allo ater model
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I—Application to shallow-water equations

Summary

ion of a PDE

consider a general PDE of the form 0,9 + 0,F(®) = S(®)
SPH approximation of 0, F(®): Z 2w; Fii Wi
JjEP

m Fj;: any conservative F'V flux from particle ¢ to particle j
m choice to make to discretize 0;® and S(P)

m conservative flux discretization
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roduction to the SPH method

|—Appllcatlon to shallow-water equations

The shallow-water equations with topography

8th =+ (%;(hu) = 0
O(hu) + 0y <hu2 + %giﬂ) —gh0,Z

where
m h > 0: water height
m u € R: water velocity in the x direction
m g > 0: gravity constant
m Z: smooth topography

they can be rewritten as 0,9 + 0, F(®) = S(®), with

v (th> = (W T%gfﬂ) = (—gf?@zz>
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o the SPH method

goal: discretize 0;® + 0, F(®) = S(P)

(x,t) eRx Ry — (x;,t"), with (z,n) € Z x N and steps Az and At
O(z,t) — @7
0 — (I)?+1A; it (explicit Euler)
0. F(®) — Z 2w; Fi;W; (SPH discretization)
JjeP

=
C
l

S; (any discretization)



m s;: discretization of —ghd,Z

m FA7(Pn, ®”): numerical flux, such that

Az (Fn HN) — (hu)U
P ) = (s ), )
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A well-balanced scheme
m Goals
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The lake at rest steady state

Steady states

a solution ® of a PDE will be a steady state ift

0P =0

for the shallow-water equations:

Oy (hu2—|—%gh2) = —gh0,Z

u =0 (lake at rest)
h+Z2Z = cst
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Well-balanced schemes

Well-balancedness

the scheme will be well-balanced for a steady state iff

for ®" verifying the steady state, Vi € Z, ®7't = &7

Properties to be verified by the desired hybrid scheme

m well-balancedness (preservation of the lake at rest steady
state)

m conservativity

m based on SPH approximations
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Variables H and X
consider the following variables (Berthon-Foucher, 2012):

m H = h+ Z: the free surface

h
m X = ﬁ: the water volume fraction

from now on, V = ( > is a new set of variables

Hu

Case of the lake at rest

for the lake at rest steady state, V' is constant throughout the
domain: indeed,

u=20 H
H=h+7Z=cst }:>V_<0)_68t



La anc ne

|—A change of variables

Variables H and X

rewrite the shallow-water equations for weak solutions:
Oth + 0, (X (Hu)) =0,

@M@4%%(X@hﬂ+%¢ﬂ0::%%Mqum&Z

this system can be written as
H® 4+ 0,(XF(V)) = S(d)

with the same flux function F as the original shallow-water
equations
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I—A change of variables

Numerical scheme used on for this reformulation

Hybrid scheme applied to the reformulation

( WPt =7
zT a4 Z 2&1] ij (HU)Z]WI =0
JEP
hn+1 n+1

hn n 1 9 ,
A +Z2w] i | Hu? +2gH ”Wij =
JjEP v

(gax(hZ) . gh@xZ) |
(2

still to be defined:

m X;;, an average of X; and X

(] <g@x(hZ) - gh@xZ) , the source term discretization
1
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I—A change of variables

Source term discretization

What is left to do?

ensuring the well-balancedness by finding a suitable discretization of the
source term %(% (hZ) — ghd. Z

noting that h = HX and Z = H(1 — X) yields
gax(hZ) — ghd,Z = gax(xmu — X)) — gXHO,(H(1 — X))

First naive approach: brutal SPH discretization

(%E)z(hZ) — ghaa;Z) = % Z 2wj (Xinij — QX»L.HZ) (Hij(l - X”)) Wi,j
‘ jEP
still to determine: the averages X;;, H;j, Xi, H;

however, this discretization leads to a non-conservative scheme!

<1e SO X FA V) £ (£0:(h2) - gho, Z))

i€Z jJEP 1€EZ
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LA well-balanced scheme

L Conservative fix

Idea behind the fix

main idea: add a term to make the previous naive discretization
conservative

/ ~
we have Z%‘sz ~0
JjeEP

~ to add a factor of Z iji’j is to add a representation of zero
JEP

Second approach

g g > &
(Eaz(hz) - gthZ)i = j%;%j (XijHiy — 2X:Hi) (Hij (1 = Xi5)) Wi
+Yi ) wiWi
JEP
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L Conservative fix

The correction term

How to choose Y;?

such that the additional term corrects the non-conservativity
~ add what was missing for the naive approach to be
conservative

Final form of the discretization

(%Bm(hZ) — gh@zZ)Z = g]%;ij (Xinij — 2Xi 7

i) (Hii (1 — Xi5)) Wi
+9g Z 2ng¢2)_(i(1 - Xi)wi/j
JEP

averages X;, H;, X}-, X;; and H;; still to be determined
~ whatever the averages, the scheme will be conservative!
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L Main result

The theorem

11-balancedn

Assume both free surface averages to satisfy:
Hijzﬁi:H, as soon as H; = H;, = H.
Assume X; is defined by

2
%= 25 % Wi _
23w (X — D)W + (X — 1) 30, w,; W,

Then the scheme defined by the SPH hybridization and source
term discretization preserves the lake at rest.
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£ nce: ne
L Main result

Outline of the proof

What to prove? Preservation of the lake at rest

W'+ Zi=H >0

assume P" at rest, i.e. Vi € Z, { "

~» prove that Vi € Z, <I>?Jrl =P

An important property of numerical fluxes

R 3 (hu)ij
recall F27(®7, @) = ((hu2 + %9’12)2)

VO, FAT (D, ) = F(P) (consistency)



ALA

L Main result

Outline of the proof

. . H
use the consistency: we have, Vi € Z, V)" = < )

therefore, V(i, j) € Z2,

PRV, V) = P2 <<€I> ’ (@) - Cg) ) <%~"0Hz)

(), ) = (o)



I— Main result

Outline of the proof

recall the scheme:

h?+1 hn ,
s > 2w Xij (Hu)iW; =0
JEP
hn+1 n+l hn ) ,
Al +22wj ij (Hu + gH)“Wij =
JjeP LY

<§8x(hZ) - ghaxZ)i

m (Hu);j = 0= h"" = b directly
1 1, n+l
= _gH?> = h?+ uttt = hiu?

1
Hu? + —gH?
- ( v )ij 2 '
(after a few easy steps)

~~ the scheme is well-balanced!
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I— Main result

An important remark: consistency of the average

_ 1 > WinZjWilj
recall that X; = 52 wi (X — D)W+ (Xi =1 w,; W/
j ' ij ’L] K2 j J 'L]

is X, consistent with X?

> w]X2 W, is consistent with 9, X?
m > w;i (Xij — 1) W; is consistent with 9, (X — 1)
> w]W/ is consistent with 0

0. X?

1
~~ therefore X; is consistent with - ————— = X

20:(X = 1)
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I— Main result

Definitions of the other averages

the well-balancedness is independent from the definitions of the
4 other averages: some usual expressions can be used

m Hi=H'=h'+2Z;

- h

X =X"=_—*
| 1 i h?‘i‘Zz

H!if (H
" if (Hu)yy >0 (upwind expression)
H otherwise

X " otherwise

{ X7 if (Hu)gj > 0



>d hybrid SPH scheme for the shallow-water model

Numerical results



ve well-balanced hybrid SPH scheme for the shallow-water model

L Numerical results

|—Inconsis‘nency and non-well-balancedness

Numerical results
m Inconsistency and non-well-balancedness



ve well-balanced hybrid SPH scheme for the shallow-water model

L Numerical results

|—Inconsis‘nency and non-well-balancedness

Inconsistency of the SPH method

consider the dam-break defined by ® = ¢, if z < 0.5, i otherwise

v = (e ) = (5) maon= (o ) = (o)

== SPHHeight
et Height

005 01 015 02 0 03 0% 04 0dS 055 06 085 0

05
x coordinate
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L Numerical results

|—Inconsis‘nency and non-well-balancedness

Inconsistency of the SPH method

YR
JjeP JEP

renormalization: Dy, ,.(f); = B;* Z w;i(fi—fi)W;;, with B; = ij(xj—aci)Wi’-

—— SPHHeight
= =ExactHeight

005 01 015 U2 U2 03 0% 04 0d Us5 U6 08y O

i)
x coordinate
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L Numerical results

|—Inconsis‘nency and non-well-balancedness

Non-well-balancedness in 2D

S
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L vValidation of the scheme

Steady test cases

Three steady test cases (Goutal - Maurel, 1997)

m computational domain: x € [0, 25]

0.2 —0.05(z — 10)? if8 <z <12,
= topography: Z(z) = { 0 ( ) otherwise

boundary conditions: h(0,t)u(0,t) = qr, and h(25,t) = hg
m initial conditions: A(x,0)u(z,0) =0 and h(z,0) + Z(z) = hg
m individual values:

m transcritical flow without shock (TF): ¢z, = 1.53; hg = 0.66
m transcritical flow with shock: (TFS) g = 0.18; hg = 0.33
m subcritical flow (SF): g, = 4.42; hgp =2

steady test cases: a steady state (i.e. constant discharge) is obtained
after a transition period
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L vValidation of the scheme

[ Sy N N T T T
0a U full line: topography
",.' dashed line: free surface
. : results shown after 600s
or] top left: TF; bottom left: TFS;
) right: SF
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L vValidation of the scheme

Steady test cases: discharge error

Test case Hydrostatic upwind SPH scheme
L? error L™ error L% error L™ error
TF 5.98E-2 1.87E-2 5.67E-2  1.85E-2
TFS 4.68E-2 2.85E-2 5.50E-2  4.02E-2
SF 9.78E-2 2.70E-2 9.83E-2  2.74E-2

comparison between the hydrostatic upwind scheme (Berthon -
Foucher, 2012) and the SPH scheme (both well-balanced)
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Lake at rest without well-balanced SPH scheme

x cooldlmle

..-.. E]..
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L Numerical results
L vValidation of the scheme

Lake at rest with well-balanced SPH scheme

— Velocity

Be-16
be-16
de-16

2e-16

-2e-16

-de-16

be-16

Velocity

-Be-16

-le-156

-1.2e-15

~l.de-15

-lée-156

-18e-15

“2e-15

x coon:llnme

..-.. E]..
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L Conclusion and perspectives

Conclusion

SPH hybrid scheme for a reformulation of the
shallow-water equations

suitable discretization of the topography source term

m scheme still conservative

well-balancedness confirmed



L Conclusion and perspectives

Perspectives

m multiple dimensions: easy (replace W}, with VIV;;)

m well-balanced SPH scheme for Euler equations with gravity



Thanks for your attention!
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