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General introduction to the SPH method

Brief history

History of the SPH method

1977: Monaghan, Gingold, Lucy - particle method for
astrophysics, coined the term SPH: “smoothed particle
hydrodynamics”

1994: Monaghan - SPH for free-surface hydrodynamics

1998: Vila - SPH formulation using Riemann problems

recent & ongoing work:

multi-fluid SPH
variable mesh
viscous terms
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General introduction to the SPH method

Core of the SPH method

The regularizing kernel

General kernel expression

W (r, h) =
Cθ
h
θ

( |r|
h

)
, with

θ cut-off function

Cθ normalization constant

properties of this kernel:

1 bell-shaped even function
of class C∞

2 compact support K

3 bell parameters:
r (position) and h (width)

4

∫
R
W (r, h) dr = 1

5

∫
R
W ′(r, h) dr = 0
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General introduction to the SPH method

Core of the SPH method

The particle approximation

f(x) = (f ∗ δ)(x), with f : R 7→ R and δ the Dirac distribution

=

∫
R
f(y)δ(x− y) dy

Πh(f)(x) = (f ∗W )(x)

=

∫
K

f(y)W (x− y, h) dy ' f(x)

Πh(f ′)(x) =

∫
K

f ′(y)W (x− y, h) dy

= [f(y)W (x− y, h)]∂K −
∫
K

f(y)(W (x− y, h))′ dy

=

∫
K

f(y)W ′(x− y, h) dy ' f ′(x)
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General introduction to the SPH method

Core of the SPH method

The particle approximation

Accuracy of the continuous approximation

second-order accuracy requires properties 4 and 5
(Mas-Gallic - Raviart, 1987; Monaghan, 1992):∫

R
W (r, h) dr = 1, i.e. Πh(1) = 1∫

R
W ′(r, h) dr = 0, i.e. Πh(1′) = 0
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General introduction to the SPH method

Core of the SPH method

Different kernels

cut-off for the cubic spline
kernel (Monaghan, 1998):

θ(q) =


4− 6q2 + 3q3 if 0 ≤ q < 1
(2− q)3 if 1 ≤ q < 2
0 otherwise

cut-off for the Wendland kernel
(Wendland, 1995):

θ(q) =

{
(2− q)4(1 + 2q) if 0 ≤ q < 2
0 otherwise
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General introduction to the SPH method

Discretization of the SPH equations

The “mesh”
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General introduction to the SPH method

Discretization of the SPH equations

Discrete SPH equations

A quadrature formula∫
R
f(y) dy '

∑
j∈Z

ω(xj)f(xj) =
∑
j∈Z

ωjfj , where:

xj are the quadrature points, or particles

ωj = ω(xj) are their volumes

fj denotes f(xj)

Wij = W (xi − xj , h)

P: set of interacting particles xj close enough to particle xi
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General introduction to the SPH method

Discretization of the SPH equations

Discrete SPH equations

Approximation of a function

Πh(f)(x) =

∫
K
f(y)W (x− y, h) dy

becomes Πh(f)i =
∑
j∈P

ωjfjWij ' fi

Approximation of its derivative

Πh(f ′)(x) =

∫
K
f(y)W ′(x− y, h) dy

becomes Πh(f ′)i =
∑
j∈P

ωjfjW
′
ij ' f ′i



A conservative well-balanced hybrid SPH scheme for the shallow-water model

General introduction to the SPH method

Discretization of the SPH equations

Main issue: consistency

Properties not verified in discrete form!

the discrete analogues of 4 and 5 are generally not true:

∑
j∈P

ωjWij 6= 1 and
∑
j∈P

ωjW
′
ij 6= 0

 loss of the consistency

aim of the SPH methods: numerical resolution of PDE’s
−→ we need a suitable derivation operator
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General introduction to the SPH method

Discretization of the SPH equations

Main issue: consistency

Weak formulation

reinforce the derivation operator:

Dh(f)i = Πh(f ′)i − fiΠh(1′)i

=
∑
j∈P

ωj(fj − fi)W ′ij ' f ′i

 Dh(f)i is exactly 0 for constant f

yet another issue: this formulation is not conservative!



A conservative well-balanced hybrid SPH scheme for the shallow-water model

General introduction to the SPH method

Discretization of the SPH equations

Main issue: consistency

Conservativity

the formulation Dh(f)i will be conservative iff∑
i∈Z

ωiDh(f)i = 0

∑
i∈Z

ωiDh(f)i =
∑
i∈Z

∑
j∈Z

ωiωj(fj − fi)W ′ij , with W ′ odd

= −2
∑
i∈Z

ωifi∑
j∈Z

ωjW
′
ij

 6= 0
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General introduction to the SPH method

Discretization of the SPH equations

Main issue: consistency

Strong formulation

D∗h, adjoint of Dh with respect to 〈f, g〉h =
∑
i∈Z

ωifigi:

D∗h such that ∀(f, g), 〈Dh(f), g〉 = −〈f,D∗h(g)〉h

 D∗h(g)i =
∑
j∈P

ωj(gi + gj)W
′
ij ' g′i

this strong formulation is conservative!
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General introduction to the SPH method

Application to shallow-water equations

Hybridization SPH - Finite Volumes

SPH

←→× ×
xi xj

Fi + Fj

∂xFi '
∑
j∈P

ωj(Fi + Fj)W
′
ij

Finite Volumes

−→× ×
i j

Fij

sj

∂xFi '
∑
j∈γ(i)

sjFij

(Fij : any conservative FV flux)

Hybrid formulation FV-SPH

∂xFi '
∑
j∈P

ωj2FijW
′
ij
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General introduction to the SPH method

Application to shallow-water equations

Summary

SPH-FV approximation of a PDE

consider a general PDE of the form ∂tΦ + ∂xF (Φ) = S(Φ)

SPH approximation of ∂xF (Φ):
∑
j∈P

2ωjFijW
′
ij

Fij : any conservative FV flux from particle i to particle j

choice to make to discretize ∂tΦ and S(Φ)

conservative flux discretization
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General introduction to the SPH method

Application to shallow-water equations

The shallow-water equations with topography ∂th+ ∂x(hu) = 0

∂t(hu) + ∂x

(
hu2 +

1

2
gh2

)
= −gh∂xZ

where

h ≥ 0: water height

u ∈ R: water velocity in the x direction

g > 0: gravity constant

Z: smooth topography

they can be rewritten as ∂tΦ + ∂xF (Φ) = S(Φ), with

Φ =

(
h
hu

)
, F (Φ) =

(
hu

hu2 + 1
2gh

2

)
, S(Φ) =

(
0

−gh∂xZ

)
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General introduction to the SPH method

Application to shallow-water equations

Discretization

goal: discretize ∂tΦ + ∂xF (Φ) = S(Φ)

(x, t) ∈ R× R+ −→ (xi, t
n), with (i, n) ∈ Z× N and steps ∆x and ∆t

Φ(x, t) −→ Φn
i

∂tΦ −→ Φn+1
i − Φn

i

∆t
(explicit Euler)

∂xF (Φ) −→
∑
j∈P

2ωjFijW
′
ij (SPH discretization)

S(Φ) −→ Si (any discretization)
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General introduction to the SPH method

Application to shallow-water equations

Discretized shallow-water equations

Hybrid scheme applied to the shallow-water equations

hn+1
i − hni

∆t
+
∑
j∈P

2ωj(hu)ijW
′
ij = 0

hn+1
i un+1

i − hni uni
∆t

+
∑
j∈P

2ωj

(
hu2 +

1

2
gh2

)
ij

W ′ij = si

si: discretization of −gh∂xZ

F∆x(Φn
i ,Φ

n
j ): numerical flux, such that

F∆x(Φn
i ,Φ

n
j ) =

(
(hu)ij(

hu2 + 1
2gh

2
)
ij

)
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A well-balanced scheme

Goals

The lake at rest steady state

Steady states

a solution Φ of a PDE will be a steady state iff

∂tΦ = 0

for the shallow-water equations:{
∂th = 0
∂t(hu) = 0

⇒
{
∂x(hu) = 0
∂x
(
hu2 + 1

2gh
2
)

= −gh∂xZ

Lake at rest steady state

{
u = 0 (lake at rest)
h+ Z = cst



A conservative well-balanced hybrid SPH scheme for the shallow-water model

A well-balanced scheme

Goals

Well-balanced schemes

Well-balancedness

the scheme will be well-balanced for a steady state iff

for Φn verifying the steady state, ∀i ∈ Z, Φn+1
i = Φn

i

Properties to be verified by the desired hybrid scheme

well-balancedness (preservation of the lake at rest steady
state)

conservativity

based on SPH approximations
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A well-balanced scheme

A change of variables

Variables H and X

consider the following variables (Berthon-Foucher, 2012):

H = h+ Z: the free surface

X =
h

H
: the water volume fraction

from now on, V =

(
H
Hu

)
is a new set of variables

Case of the lake at rest

for the lake at rest steady state, V is constant throughout the
domain: indeed,

u = 0
H = h+ Z = cst

}
⇒ V =

(
H
0

)
= cst
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A well-balanced scheme

A change of variables

Variables H and X

rewrite the shallow-water equations for weak solutions:
∂th+ ∂x(X(Hu)) = 0,

∂t(hu) + ∂x

(
X(Hu2 +

1

2
gH2)

)
=
g

2
∂x(hZ)− gh∂xZ

this system can be written as

∂tΦ + ∂x(XF (V )) = S̃(Φ)

with the same flux function F as the original shallow-water
equations
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A well-balanced scheme

A change of variables

Numerical scheme used on for this reformulation

Hybrid scheme applied to the reformulation

hn+1
i − hni

∆t
+
∑
j∈P

2ωjXij(Hu)ijW
′
ij = 0

hn+1
i un+1

i − hni uni
∆t

+
∑
j∈P

2ωjXij

(
Hu2 +

1

2
gH2

)
ij

W ′ij =(g
2
∂x(hZ)− gh∂xZ

)
i

still to be defined:

Xij , an average of Xi and Xj(g
2
∂x(hZ)− gh∂xZ

)
i
, the source term discretization
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A well-balanced scheme

A change of variables

Source term discretization
What is left to do?

ensuring the well-balancedness by finding a suitable discretization of the

source term
g

2
∂x(hZ)− gh∂xZ

noting that h = HX and Z = H(1−X) yields

g

2
∂x(hZ)− gh∂xZ =

g

2
∂x(XH2(1−X))− gXH∂x(H(1−X))

First näıve approach: brutal SPH discretization(g
2
∂x(hZ)− gh∂xZ

)
i

=
g

2

∑
j∈P

2ωj

(
XijHij − 2X̄iH̄i

)
(Hij(1−Xij))W

′
ij

still to determine: the averages Xij , Hij , X̄i, H̄i

however, this discretization leads to a non-conservative scheme!(
i.e.

∑
i∈Z

∑
j∈P

XijF
∆x(V n

i , V n
j ) 6=

∑
i∈Z

(g
2
∂x(hZ)− gh∂xZ

)
i

)



A conservative well-balanced hybrid SPH scheme for the shallow-water model

A well-balanced scheme

Conservative fix

1 General introduction to the SPH method
Brief history
Core of the SPH method
Discretization of the SPH equations
Application to shallow-water equations

2 A well-balanced scheme
Goals
A change of variables
Conservative fix
Main result

3 Numerical results
Inconsistency and non-well-balancedness
Validation of the scheme

4 Conclusion and perspectives



A conservative well-balanced hybrid SPH scheme for the shallow-water model

A well-balanced scheme

Conservative fix

Idea behind the fix

main idea: add a term to make the previous näıve discretization
conservative

we have
∑
j∈P

ωjW
′
ij ' 0

 to add a factor of
∑
j∈P

ωjW
′
ij is to add a representation of zero

Second approach(g
2
∂x(hZ)− gh∂xZ

)
i

=
g

2

∑
j∈P

2ωj

(
XijHij − 2X̄iH̄i

)
(Hij(1−Xij))W

′
ij

+ Yi

∑
j∈P

ωjW
′
ij
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A well-balanced scheme

Conservative fix

The correction term

How to choose Yi?

such that the additional term corrects the non-conservativity
 add what was missing for the näıve approach to be
conservative

Final form of the discretization(g
2
∂x(hZ)− gh∂xZ

)
i

=
g

2

∑
j∈P

2ωj

(
XijHij − 2X̄iH̄i

)
(Hij(1−Xij))W

′
ij

+ g
∑
j∈P

2ωjH̄
2
i X̄i(1− X̃i)W

′
ij

averages X̄i, H̄i, X̃i, Xij and Hij still to be determined
 whatever the averages, the scheme will be conservative!
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A well-balanced scheme

Main result

The theorem

Well-balancedness of the scheme

Assume both free surface averages to satisfy:

Hij = H̄i = H, as soon as Hi = Hj = H.

Assume X̄i is defined by

X̄i =
1

2

∑
j ωjX

2
ijW

′
ij∑

j ωj (Xij − 1)W ′ij + (X̃i − 1)
∑

j ωjW
′
ij

.

Then the scheme defined by the SPH hybridization and source
term discretization preserves the lake at rest.
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A well-balanced scheme

Main result

Outline of the proof

What to prove? Preservation of the lake at rest

assume Φn at rest, i.e. ∀i ∈ Z,

{
hni + Zi = H ≥ 0
uni = 0

 prove that ∀i ∈ Z, Φn+1
i = Φn

i

An important property of numerical fluxes

recall F∆x(Φn
i ,Φ

n
j ) =

(
(hu)ij(

hu2 + 1
2gh

2
)
ij

)

∀Φ, F∆x(Φ,Φ) = F (Φ) (consistency)
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A well-balanced scheme

Main result

Outline of the proof

use the consistency: we have, ∀i ∈ Z, V n
i =

(
H
0

)
therefore, ∀(i, j) ∈ Z2,

F∆x(V n
i , V

n
j ) = F∆x

((
H
0

)
,

(
H
0

))
= F

(
H
0

)
=

(
0

1
2gH

2

)
(

(Hu)ij(
Hu2 + 1

2gH
2
)
ij

)
=

(
0

1
2gH

2

)
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A well-balanced scheme

Main result

Outline of the proof

recall the scheme:

hn+1
i − hni

∆t
+
∑
j∈P

2ωjXij(Hu)ijW
′
ij = 0

hn+1
i un+1

i − hni uni
∆t

+
∑
j∈P

2ωjXij

(
Hu2 +

1

2
gH2

)
ij

W ′ij =(g
2
∂x(hZ)− gh∂xZ

)
i

(Hu)ij = 0 =⇒ hn+1
i = hni directly(

Hu2 +
1

2
gH2

)
ij

=
1

2
gH2 =⇒ hn+1

i un+1
i = hni u

n
i

(after a few easy steps)

 the scheme is well-balanced!
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A well-balanced scheme

Main result

An important remark: consistency of the average

recall that X̄i =
1

2

∑
j ωjX

2
ijW

′
ij∑

j ωj (Xij − 1)W ′ij + (X̃i − 1)
∑

j ωjW
′
ij

is X̄i consistent with X?∑
j ωjX

2
ijW

′
ij is consistent with ∂xX

2∑
j ωj (Xij − 1)W ′ij is consistent with ∂x(X − 1)∑
j ωjW

′
ij is consistent with 0

 therefore X̄i is consistent with
1

2

∂xX
2

∂x(X − 1)
= X
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A well-balanced scheme

Main result

Definitions of the other averages

the well-balancedness is independent from the definitions of the
4 other averages: some usual expressions can be used

H̄i = Hn
i = hni + Zi

X̃i = Xn
i =

hni
hni + Zi

Hij =

{
Hn
i if (Hu)ij > 0

Hn
j otherwise

(upwind expression)

Xij =

{
Xn
i if (Hu)ij > 0

Xn
j otherwise
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Numerical results

Inconsistency and non-well-balancedness

Inconsistency of the SPH method

consider the dam-break defined by Φ = ΦL if x < 0.5, ΦR otherwise

ΦL =

(
hL
hLuL

)
=

(
5
0

)
and ΦR =

(
hR
hRuR

)
=

(
1
0

)
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Numerical results

Inconsistency and non-well-balancedness

Inconsistency of the SPH method

renormalization: Dh,r(f)i = B−1i

∑
j∈P

ωj(fj−fi)W ′ij , with Bi =
∑
j∈P

ωj(xj−xi)W ′ij
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Numerical results

Inconsistency and non-well-balancedness

Non-well-balancedness in 2D
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Numerical results

Validation of the scheme

Steady test cases

Three steady test cases (Goutal - Maurel, 1997)

computational domain: x ∈ [0, 25]

topography: Z(x) =

{
0.2− 0.05(x− 10)2 if 8 < x < 12,
0 otherwise

boundary conditions: h(0, t)u(0, t) = qL and h(25, t) = hR

initial conditions: h(x, 0)u(x, 0) = 0 and h(x, 0) + Z(x) = hR

individual values:

transcritical flow without shock (TF): qL = 1.53; hR = 0.66
transcritical flow with shock: (TFS) qL = 0.18; hR = 0.33
subcritical flow (SF): qL = 4.42; hR = 2

steady test cases: a steady state (i.e. constant discharge) is obtained
after a transition period
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Numerical results

Validation of the scheme

Steady test cases

full line: topography
dashed line: free surface
results shown after 600s

top left: TF; bottom left: TFS;
right: SF
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Numerical results

Validation of the scheme

Steady test cases: discharge error

Test case Hydrostatic upwind SPH scheme

L2 error L∞ error L2 error L∞ error

TF 5.98E-2 1.87E-2 5.67E-2 1.85E-2
TFS 4.68E-2 2.85E-2 5.50E-2 4.02E-2
SF 9.78E-2 2.70E-2 9.83E-2 2.74E-2

comparison between the hydrostatic upwind scheme (Berthon -
Foucher, 2012) and the SPH scheme (both well-balanced)
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Numerical results

Validation of the scheme

Lake at rest without well-balanced SPH scheme
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Numerical results

Validation of the scheme

Lake at rest with well-balanced SPH scheme
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Conclusion and perspectives

Conclusion

SPH hybrid scheme for a reformulation of the
shallow-water equations

suitable discretization of the topography source term

scheme still conservative

well-balancedness confirmed
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Conclusion and perspectives

Perspectives

multiple dimensions: easy (replace W ′ij with ∇Wij)

well-balanced SPH scheme for Euler equations with gravity



Thanks for your attention!
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