A fully well-bal “heme for the shallow-water model with topography and bottom friction

A fully well-balanced scheme for the
shallow-water model with topography and
bottom friction

C. Berthon', V. Michel-Dansac'

ILaboratoire de Mathématiques Jean Leray, Université de Nantes

Wednesday, December 10th, 2014

UNIVERSITE DE NANTES



A fully well-b eme for t oW ter model with topogr.

Contents

Introduction
Steady states for the shallow-water model with friction

A fully well-balanced scheme
m Brief introduction to Godunov’s method
m Structure and properties of our scheme
m The full scheme

Numerical experiments

Conclusion and perspectives



A fully well-balanced scheme for the shallow-water model with topography and bottom friction

Introduction

Introduction



A fully well-balanc heme for the shallow-water model with topc hy and bottom friction

L Introduction

The Saint-Venant equations and their source terms

B + 8, (hu) ~ 0

O (hu) + 0y (hu2 + %ghQ) = —gho,Z — k;]b—’nq‘

where:

m h(z,t) > 0 is the water height

m u(x,t) is the water velocity

m ¢(x,t) is the water discharge, equal to hu

m Z(x) is the shape of the water bed

m 1) = 7/3 and g is the gravitational constant

"

k is the so-called Manning coefficient: a higher k leads to a
stronger bottom friction
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A fully well-balanc heme for th ow-water model wit op hy and bottom friction

L Introduction

Steady states

rewrite the shallow-water equations as

OW + 0, F(W) = S(W) , with:

= F = =
W= () FOV) i L) SO0 = (g

Definition: Steady states

W is a steady state iff ;W =0, i.e. O, F (W) = S(W)
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scheme for th llow-water model with topc hy and bottom friction

L Introduction

Steady states

taking 0;W = 0 in the shallow-water equations leads to

O,q = 0
2
¢ 1., kgl
e | — + =gh = —gh0,Z —
2 (h a9 ) hOaZ = =
the steady states are therefore given by
2
o AETAN kqo|qol
g=cst=qy and O, <h + §gh > = —gh0, 7 — X
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A fully well-balanced scheme for the shallow-water model with topography and bottom friction

L Introduction

Objectives

2

% 1 9 kqo|qol
xr e o - - X - T 1
8<h+2gh) gh0, Z X

derive a fully well-balanced scheme for the shallow-water
equations with friction and topography, i.e.:

m preservation of all steady states with friction and Z = cst
m preservation of the lake at rest steady state (¢ = 0)
m preservation of all steady states with £ =0 and ¢ # 0

preservation of some steady states with k £ 0 and Z # cst
(not presented here)
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Steady states for the shallow-water model with friction



A fully g e shallow: op phy and bottom friction
L-Stea

Obtaining the equations

taking a flat bottom in (1), i.e. Z = cst, yields

2
4% 1 9\ _  kqolqol
Bz(h+2gh>— i

which we rewrite as:

1 g kqoqol
2 2
— r— + = 0zh” = ———— 2
for smooth solutions, we have
q% 1 g +2
— O h ™ + ——9,A"* = —k 3
n—1 n+2 4ol (3)
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bottom friction

Finding solutions

integrating (3) between some zy and z yields

2
B (gt gt 9 (g2 g2 ) =

77—1<h ho >+77+2<h hg )+k‘CI0|CI0|(l“ z0) =0
(4)

with A = h(x) and hg = h(zo)

(4) is a nonlinear equation with unknown h for given x; use
Newton’s method to find h for any x, assuming gy < 0
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me for the shallow-water model with topography and bottom friction

allow-water model with friction

Finding solutions

No solution Two solutions Unique solution

T < To To < x < X, T, <X

m zones and variations: analytical study

m solution shape: Newton’s method needed to solve (4) )



A fully well-b

LSteady states for the shallow-water model with friction

Other solutions?

use Rankine-Hugoniot relations to find admissible
discontinuities linking two different increasing solutions,
thus filling R by waves
problem: we cannot fill | — oo, zg]

find admissible discontinuities linking any two different
solutions, thus filling R
same problem: we cannot fill | — oo, zg[

8/36



A fully well-b

LSteady states for the shallow-water model with friction

Other solutions?

find admissible discontinuities linking any two solutions,
without filling R

works well on paper but appears to yield an unstable
equilibrium (confirmed by numerics)
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La fully well-balanced scheme

L Brief introduction to Godunov’s method

Bl A fully well-balanced scheme
m Brief introduction to Godunov’s method
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La fully well-balanced scheme

L Brief introduction to Godunov’s method

Setting

objective: approximate the solution W (x,t) of the general
one-dimensional system O;W + 0, F (W) = 0, with suitable
initial and boundary conditions

we assume:

m OW + 9, F(W) =0 is a hyperbolic system of conservation
laws, with “known” eigenvalues

m (z,t) — W(z,t) is defined from [a,b] x [0,T] to R?
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A fully well-b d eme for the oW ter model with topogr.

La fully well-balanced scheme

L Brief introduction to Godunov’s method

Riemann problems

a Riemann problem is a Cauchy problem with a piecewise
constant initial condition, with one discontinuity at some
zg € R:

W + 0, F(W) =0

. Wi, if x < xo
W(JS,O)—{ Wgif x > xg

m we know the solution to a Riemann problem for some
systems

m usually, it is not analytically known or too complicated ~~
use of an approximate Riemann solver in numerics
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A fully well-b d eme for the oW ter model with topogr.

La fully well-balanced scheme

L Brief introduction to Godunov’s method

Space and time discretization

we partition [a, b] in cells, of volume Az and of evenly spaced
centers x;, and define:

m 7, 1 and Tl the boundaries of the cell ¢
2 2

m W] an approximation of W(z,t), constant in the cell ¢ and
at time t"”, and defined as W' = W (z;,t")

a W (z,t) b a Wy b
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er model with top

L Brief introduction to Godunov’s method

Using an approximate Riemann solver

at time t", we have a succession of (potentially analytically
unsolvable) Riemann problems at the interfaces between cells:

! n
) i+1

Z; .1 Li+1

oW 4+ 0 F(W) =0

W, %) Wi”ifx<xi+%
z,t") = n

Wiyite >,
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A fully well-b or the ter model with topogr.

La fully well-balanced scheme
L Brief introduction to Godunov’s method

Using an approximate Riemann solver

we choose to use an approximate Riemann solver, for instance

the following one-state solver:

L R
Ay M,
WH%
n n
Wi i+1

m W, 1 is an approximation of the interaction between W;
and Wz—l—l (i.e. of the solution to the Riemann problem)

= )\L+1 and )\R , are approximations of the wave speeds
2
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La fully well- anced scheme

L Brief introduction to Godunov’s method

The full Godunov-type scheme

; W (x, )
tn+1 ‘ ‘
Wiy Wit |
| R L |
| /\i—% )‘i-i-% |
|
‘ Wi |
" x
xi_% Z; xi+%
W, 1 ifl‘<l‘i_1 + \E LAt
2 2 )
1 .
Vz € [azi_:l,a:lJr%},W(x,t”Jr): VVH% 1f1’>1:i+%—|-)\iL+%At

wn otherwise
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A fully well-balanced scheme for the shallow-water model with topography and bottom friction

La fully well-balanced scheme
L Brief introduction to Godunov’s method

The full Godunov-type scheme

1 [Tirl —
define Wt = —/ i W (z,t" " )de : then

T Az L
i3
AR At
1 Ty 1A 1 it d
Wit = — > W,_idr+ — 2 W, 1dx
Az . 1 2 A z. 1 +2L At 2
-3 ity il
AL At
1 [Tt
2 n
+ F Wz dx
x xi_1+>\R 1At
o1
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La fully well-balanced scheme

|—Structure and properties of our scheme

A fully well-balanced scheme

m Structure and properties of our scheme
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La fully well ced scheme

|—Structure and properties of our scheme

The HLL scheme

our scheme is based on the HLL scheme (Harten, Lax, van Leer
(1983)), which uses the following approximate Riemann solver:

AL AR

WhLL
Wi, Wr

AeWr =MWy F(Wg) — F(Wy)
)\R — )\L )\R - )\L

where Wy =
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heme for the shallow-water model with topography and bottom friction

ced scheme

|—Structure and properties of our scheme

Modification of the HLL scheme

to include the source term contribution, we use the following
approximate Riemann solver (assuming Ay, < 0 < Ag) :

AL 0 AR

I@(L VLQ{

~+ 3 unknowns to determine: W; = <Z*> and Wg = (Z )
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ne for the shallow-water model with top phy and bottom friction

heme

|—Structure and properties of our scheme

Properties to be verified

we want our scheme to be:

consistent with the shallow-water equations, and

well-balanced for the friction steady states

consistency is done thanks to a theorem from Harten and Lax
(1983), which ensures that consistency holds if

Az/2

1/M/2W(x-w W)d—l/ W (z, At)d
Az A2 R Ata Ly VWR l'_Ax Awf2 xZ, Z,

i.e. the mean of the approximation by the Riemann solver is
equal to the mean of the exact solution to the Riemann problem
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La fully well-balanced scheme

|—Structure and properties of our scheme

Properties to be verified

ensuring the well-balancedness means enforcing that, if W™ is a
steady state, then Vi, VVZ-"Jrl =Wwp

AL 0 AR 0
Wil Wg

Wy, Wr - Wi Wr

we need W; = Wy and W} = Wg at the equilibrium
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A fully well-b d eme for the ow-water model with topogr

La fully well-balanced scheme

|—Structure and properties of our scheme

Properties to be verified

we therefore have the following relations between the unknowns:

m consistency gives us

u )\Rhf{ — )\Lhz :_()\R - AL)hHLL
. SAt
mq :qHLL_AR_AL

with hgr and qgrr defined earlier

m if equilibrium is reached, i.e. we have q;, = qr = qo and (4),
then for well-balancedness, we need:

=g =q
m h} = hp and h}, = hgr
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A fully well-b d eme for the ow-water model with topogr

La fully well-balanced scheme

|—Structure and properties of our scheme

What is left to do?

we have 3 unknowns ~» we need 3 equations

m we have 2 from consistency, provided we find a suitable
expression for §

m we need a third relation, between h} and h¥, that will
ensure the well-balancedness
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La fully well-balanced scheme

L The full scheme
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e for the shallow- er model with top y & bottom friction

ced scheme

L The full scheme

Determination of ¢*
SAt

recall ¢* = - —
q qHLL Mo — AL

we have to find a suitable expression of S that:
m is consistent with the source term

m ensures that ¢* = ¢ when the equilibrium is reached

we use S = —kg|g|/h~", with
m ¢ the harmonic mean of ¢;, and gr (note that § = qp at
equilibrium), and
m /7 a well-chosen representation of h~", depending on hr,
and hg, and ensuring the well-balancedness
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eme for the shallow-water model with tor y and bottom friction

cheme

L The full scheme

Determination of ¢*

to determine h~", we assume equilibrium and use the discrete
equivalents of (2) and (3):

1 h2 -
—q [5] +g[—2] = —kAxzqo|qolh™" (5)
Y L R L
W1 T kAzqo|qol (6)

where [X] denotes the jump of a quantity X, i.e.

X]=Xr—- XL
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La fully “heme

L The full scheme

Determination of ¢*

replacing qo|qo| with dog2 in (6), where dy = sgn(qo), yields
o[ (R
% n—1 n+2

therefore, when equilibrium is reached, we have an expression of
qo depending on hy and hg:

+g + kAxéoqg =0

2]
g
2 _ n+2
O
— k50A$
n—1
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ne for the shallow-water model with top phy and bottom friction

heme

L The full scheme

Determination of ¢*

injecting the new expression of gg in (5) ultimately yields:

- _ h2 hn—l
- _ do l [ ]77+2 [ ]—k?(S()ACC ’
EAx \ | h 2 [\ n—1
which we can inject into S = —kg|g|/h—", and then into
. . SAt
9 =qHLL 7/\1% AL
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d bottom friction

L The full scheme

Determination of A} and hj

two unknowns left ~» we need two equations

m we have A\php, — ApLh} = (Ar — AL)hprr from consistency
m we choose aphp, +aph} = SAz;
«, and ag to be determined to ensure well-balancedness

we determine «j, and ag such that:

m if S =0, we have h* = hyr = h}, (for stability)

. 1 h?
m if equilibrium is reached, i.e. SAz = —¢? [E] + g% (5),

we have hj = hr, and h}, = hg (to preserve steady states)
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A fully wi e for the shallow-water model with top phy and bottom friction
La fully me

L The full scheme

Determination of A} and hj

computing such oy and ap easily leads us to

~2

€(hyy—hi)=S8Az, witheé=—9 + 9 (h; + hp)
hihr 2

using the consistency relation, we eventually obtain

)\RSA:L'
hy = h -
L HLL f()\R_)\L)

)\LgA:IZ
Wy = hygrp — -
R HLL f(/\R_)\L)
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La fully well-balanced scheme

L The full scheme

Summary

we have presented an approximate Riemann solver leading to a
scheme that:

m is consistent with the shallow-water equations with friction

m is fully well-balanced for friction steady states
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LNumerical experiments

B Numerical experiments



A fully w me for the shallow-water model with top phy and bottom friction
LNumer

Well-defined Riemann problems

‘ 6
5 5
44 4
3 3
2 o)
) o
0 i 2 3 4 5 0 i 5 3 2 5

left: k=0 right: k=10
both Riemann problems have initial data Wy = (g) and

Wg = <(1)), on [0, 5], with 200 points, and final time 0.2s
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A fully ce ne for the shallow-water model with top phy and bottom friction
LNum

Riemann problems with a dry/wet transition

‘ TR
51 51
4 4
31 31
21 2
! 1
0 ] 2 3 4 5 0 4 5
left: k=0 right: k=10

both Riemann problems have initial data Wy = (g) and

Wg = <8), on [0, 5], with 200 points, and final time 0.15s
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— rvaron 1 @)
— rvaront2.6)
024
0.85
0.18
076
0.12
0.06
0.68
o
059
0.06:
051
02 04 0.6 058 i

K<l [>[5H] [+

small perturbation of a steady state solution
left: height; right: errors to the equilibrium
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A fully ce ne for the shallow-water model with top phy and bottom friction
LNum

A more complex test case, with topography

25

K<<l I> ] =]+

k=0.1, Wg, = (g) and Wg = (8), final time 3.5s
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and bottom friction

Two-dimensional extension

K<<l I> ] =]+

6 0
k=01, W =|[0] and Wr = | 0|, final time 3.5s
0 0
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A fully well-b ced s me for the s ow-water model with topogr

L Conclusion and perspectives

Conclusion

m well-balanced scheme for the shallow-water equations with
friction

m well-balancedness for friction and topography as well (not
presented here)

m Cartesian two-dimensional extension
m MUSCL extension with a MOOD technique

Perspectives

m higher order extension, using MOOD-like techniques to
stay well-balanced

m extend to general 2D meshes



A fully well-balanced scheme for the shallow-water model with topography and bottom friction
L Thanks!

Thank you for your attention!
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