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e and time accuracy for finite volume schemes

The equations

2D conservation law with a source term

oW + div(F(W)) = S(W), where:

m W € R" is the vector of conserved variables
m F:R" = M, 2(R) is the physical flux

m S:R"” — R" is the source term

assume that the homogeneous system 0,W + div(F(W)) = 0 is
hyperbolic
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and time accuracy for finite volume schemes

An example: the shallow-water equations
A

water surface

channel bottom

\/

m h(z,t) > 0: water height
m u(z,t): water velocity

m Z(x): topography (shape of the channel bottom)
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2D shallow-water equations with topography

Oth + 0z (hu) 4 Oy (hv) =0
1
O(hu) + 0y <hu2 + §gh2) + 0y (huwv) = —gh0,Z
1
O¢(hv) + 0y (huv) + 0y (hv2 + §gh2) = —ghoyZ
h hu hv 0
W= |hul|, FW)= | hu® + 1gh? huv ,S(W) = | —gho.Z

hv huv hv? + %gh2 —gh0,Z
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L Introduction

Objectives and interrogations

Purpose of high-order accuracy

order p: mesh size divided by 2 = error divided by 2P

m have a better solution without refining the mesh

m decrease computational cost

Questions arise!

m how to achieve high-order accuracy?
m what does “better solution” mean?

m what about discontinuous solutions?
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First-order vs. High-order

Figure: Partial dam-break, 40000 cells.
Left: first-order scheme. Right: sixth-order scheme.
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m W(x,t) ~ W at time ¢", constant within cell ¢;

m F(W(z,t)) ~ F* at time t" on the interface between cells

1,
¢; and ¢j, with j € v; such that ¢; is a direct neighbor of ¢;

m S(W(z,t)) ~ S(W]') =: S (very naive treatment)

A first-order numerical scheme

VVZH—I — Win ’61‘]’
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Second-order extension: 1D illustration
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High-order extension: 1D illustration
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Goal of the polynomial reconstruction

given ¢ a component of W and a cell ¢; of center z;, we know:

m the uniform approximate solution ¢} at time ¢"
m the degree d of the polynomial reconstruction
m the stencil Sfl, made of Ny cells

within the cell ¢;, we need:

m a polynomial reconstruction @}'(x) at time ¢":
o (x) is a degree d polynomial

1
m the conservation property: m / o (x)dx = o)
7 [}
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d
set @' (x) = Z [a?(:p — a:z)k + ﬁk recall ’ / x)dx = @

m valid reconstruction for d = 0 ~~ ag + ﬁ? =l

ok

md>0~Vke[ld], 5{“=—ﬁ (x — 2;)Fda
il Je;

1
therefore ¢I'(z) = ¢! + Za [ - wz)k - W / (z — ﬂfz)kdx]
i| Je;

what is left to do:
determine the polynomial coefficients ai—“ using the stencil Sid’
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Construction of the polynomial in 2D

1
from the 1D formula and M} = Tl / (x — x;)*dz, we get:
C; ci

d
@) =@+ Y af (@)t — M|
|k|=1

the of are chosen to minimize the least squares error F;
between the reconstruction and ¢7, for all j in the stencil Sld:

2
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(d+1)(d+2)
2

overdetermined system < #Szd > -1

v minimizes (o) <= "X; X;0; = ' X;®; (normal equation)
if 1X; X; is invertible (depends on the choice of the stencil), then

a; minimizes F;(«;) <= a; = (tXiXi)_l XD,
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the polynomial rec bruction

Summary

d
Fh@) =i+ Y af |(@—w)F — M
k=1

with o; = (tXiXi)fl tX;®;, and where we have defined:

1
m MF= —/ (z —x;)*dx
|Ci| ci

Q= (90? - W?)jesid

1
X, = —/( Fda — / z;)*da
e J, & g

ke[l,d], jeS¢
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for finite volume schemes

scheme

|—High—order space accuracy

High-order accurate finite volume scheme
m High-order space accuracy
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|—High—order space accuracy

Mesh notations




|—High—order space accuracy

Resources at our disposal
Build a high-order scheme for 0;W + div(F'(W)) = S(W), using:

the polynomial reconstruction ﬁ\/zn(:z),

F(W)n;; ~F (Wf(m), Wf(m); nij), with F numerical flux;

R
1
(&, xr), a quadrature on e;;: el / f(x)dx ~ Zgrf(azr);
Cijl Jei; r=0
W(x,t) ~ W\Z"(x), for (z,t) € ¢; x [t",t"F1);
1 Q
(ng, zq), a quadrature on ¢;: m/ f(z)dx ~ anf(a:q);
il Je; 4=0

1 Iy
the conservation property W = Tl / Wi (z)dx.
(2 C;
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I—High—order space accuracy

The high-order scheme

n+1 __ n ’eij’ n
WPt = WP — AtY  CURFR 4 ALS;

|ci

JEV;

High-order numerical scheme

R Q
Wil =wp - Aty e SogFn, + Aty 1,8t
—~ =

e |ci| 4
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High-order accurate finite volume scheme

m High-order time accuracy
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I—High—order time accuracy

Runge-Kutta methods

rewrite the high-order numerical scheme as W = 7 (W™")

soal of the Runge-Kutta method

Obtain high-order time accuracy from a scheme that is
first-order accurate in time.

A second-order example: Heun’s method

1

Wn+2 =

W'n—l—l _

(N
S
-
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ccurate finite volume scheme

I—High—order time accuracy

Strong-Stability Preserving Runge-Kutta methods

goal of a SSPRK method: if H is robust in some sense, then the
high-order time discretization SSPRK is also robust

Robustness examples

1D definition: total variation TV(W™) = Z (Wi, - W)
i
® non-negativity preservation: ¢f > 0= ¢! >0
m total variation diminishing: TV (W"*!) < TV(W™")
m total variation bounded: TV(W") < M = TV(W"tY) < M

m entropy preservation



rolume schemes

I—High—order time accuracy

Strong-Stability Preserving Runge-Kutta methods

Wmts = H(W™)

Wrts = H(W™ts)

1
Wt — 2
3 4

2
e (202

SSPRKS is third-order accurate in time: to get time accuracy of
order p, we set, instead of At,

max(p,3)
3

At = At

19 /29



acy for finite volume s

T Numerical experiments

Numerical experiments



The 2D shallow-water equations with topography and

friction
Oth + 0y (hu) + 0y (hv) =0
O(hu) + 0y <hu2 + %gh2> + 0y (huv) = —ghd,Z — kuvu? + v2h="s
0y (hv) + 0y (huv) + 0y <hv2 + %gh2> = —ghdyZ — kvvu? + vZh— 73

m robustness: we must have h > 0
m steady state solutions: Oh = 0y(hu) = O¢(hv) =0
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Order of accuracy assessment

es = COP, with p the order, es the error and 0 the mesh size
~ In(es) =InC + plnd, line of slope p

order 1

In (error)

order 2

In (mesh size)

_ In(es) — In(es)

1 | )
Inéd —Ind Cif ¢ = 26, thenpzw
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T Numerical experiments

The steady vortex

steady state without friction, where W depends only on 2% + /2

Velocity Norm

L 0.96 \0»4 L ‘0,8
1 0 1.17

0.88 O‘T‘Z

[

0.812

Figure: Left panel: free surface. Right panel: velocity norm (the
vortex flows clockwise). Space domain: [—3, 3]%.
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Order of accuracy assessment: steady vortex

N Lt L? L>

1024 | 6.37e-03 1.61e-02 — | 1.19e-01 —
4096 | 4.31e-03 0.56 | 1.08e-02 0.58 | 7.88e-02 0.59
16384 | 2.58e-03 0.74 | 6.43e-03 0.75 | 4.58e-02 0.78

Table: First-order scheme, height error.

N ! L2 L™

900 2.04E-05 5.22E-06 — | 7.84E-04
3600 | 3.07E-07 6.05 | 6.88E-07 6.25 | 9.94E-06 6.30
14400 | 3.93E-09 6.29 | 5.82E-09 6.88 | 5.53E-08 7.49

Table: Sixth-order scheme, height error.
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Radial friction experiment
steady state with friction, with a singularity at the origin

4 0.8 12 | 1.6 HHHQ 2

4
12 0917 249

-0.8 -04 0 0.
—
-12

Figure: Left panel: discharge in the z-direction. Right panel:
discharge in the y-direction. Space domain: [—0.3,0.3] x [0.4,1].
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Order of accuracy assessment: radial friction experiment

N ‘ h dx dy

900 2.37e-08 — | 8.00e-08 — | 1.12e-07 —

3600 | 3.77e-10 5.98 | 1.28e-09 5.96 | 1.82¢-09 5.94
14400 | 5.89e-12  6.00 | 1.99e-11 6.01 | 2.91e-11 5.96
57600 | 1.24e-14 8.89 | 2.06e-13 6.60 | 1.20e-13 7.92

Table: L' errors, sixth-order scheme.

N h 4z Ay

900 1.04e-07 — | 5.20e-07 — | 5.57e-07 —

3600 | 1.80e-09 5.86 | 8.15e-09 6.00 | 1.02e-08 5.77
14400 | 3.38e-11  5.73 | 1.25e-10 6.02 | 1.71e-10 5.89
57600 | 8.33e-13  5.34 | 2.26e-12 5.79 | 2.59e-12 6.05

Table: L errors, sixth-order scheme.
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21 --Order 1
--Order 6
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Figure: Free surface for the dam-break over a dry sinusoidal bottom:
reference solution and results of first-order and sixth-order schemes.
The gray area represents the topography. 100 cells were used.
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2D partial dam-break
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Simulation of the 2011 Japan tsunami
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n and possible improvements

Conclusion

m polynomial reconstruction of order d using a relevant stencil
m high-order space accuracy: integration of the equations

m high-order time accuracy: SSPRK methods

Going further

m the polynomial reconstruction may produce oscillations or
non-physical values (for instance h < 0): use the MOOD
method to lower the reconstruction degree

m a steady state is modified by the reconstruction: a
first-order well-balanced scheme will not stay well-balanced
when the high-order strategy is applied



Thank you for your attention!
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