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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

L Introduction and motivations

Several kinds of destructive geophysical flows

. =

: > N |
(Malpasset, France, 1959) Tsunami (Tohoku, Japan, 2011)

Flood (La Faute sur Mer, France, 2010) Mudslide (Madeira, Portugal, 2010)
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

L Introduction and motivations

The shallow-water equations and their source terms

1 kqlq| | .
A (h O | hu? + =gh? | = —ghd,Z — =2 (with ¢ = h
) + 0 (? + J1?) = ~gn0,2 "4 ih g = )

We can rewrite the equations as O, + 0, F(W) = S(IW), with W' = <Z>

m Z(x) is the known

water surface topography
7 coefficient
Z( ) channel bottom . . .
* m g is the gravitational

constant

X

m we label the water
discharge ¢ := hu
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L Introduction and motivations

Steady state solutions

Definition: Steady state solutions

W is a steady state solution iff ;W =0, i.e. 9, F(W) = S(W).

Taking ;W = 0 in the shallow-water equations leads to
0,q=0

2

¢ 1 5 kqlq|
| =— + =gh® ) = —gh0,Z — .
8<h+2g > gho, 7

The steady state solutions are therefore given by

q = cst = qo
2
w1, kqo|qol
Op| == + =gh® | = —gh0,Z — .
<h o9 ) g W
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L Introduction and motivations

A real-life simulation:
the 2011 Tohoku
tsunami.

The water is close to a
steady state at rest far
from the tsunami.

This steady state is not .

preserved by a I
non-well-balanced

scheme!
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

L Introduction and motivations

Objectives
Our goal is to derive a numerical method for the shallow-water
model with topography and Manning friction that exactly preserves
its stationary solutions on every mesh.

To that end, we seek a numerical scheme that:

is well-balanced for the shallow-water equations with
topography and friction, i.e. it exactly preserves and captures
the steady states without having to solve the governing
nonlinear differential equation;

preserves the non-negativity of the water height and handles
wet/dry fronts;

ensures a discrete entropy inequality;

can be easily implemented in an HPC environment.
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Introduction to Godunov-type schemes
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L Introduction to Godunov-type schemes

Setting: finite volume schemes

Objective: Approximate the solution W (x,t) of the system
oW + 0, F (W) = S(W), with suitable initial and boundary
conditions.

We partition the space domain in cells, of volume Az and of evenly
spaced centers x;, and we define:

mz, 1 and T, the boundaries of the cell 7;
2 2

m W, an approximation of W (z,t), constant in the cell ¢ and

. 1 Az /2
at time ", which satisfies 1" ~ / Wz, t")dx.
Az Ax/2

W(z,t)

I
Ti—1 331-7% €Ty IBZ.JF% Ti+1
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L Introduction to Godunov-type schemes

Godunov-type scheme (approximate Riemann solver)

As a consequence, at time t™, we have a succession of Riemann
problems (Cauchy problems with discontinuous initial data) at the
interfaces between cells:

W + 0, F(W) =S(W)
Wrifx < T
2

W(z,t") = { !

L
Wi if © > JU,H_%
n n
Wi i+1
Z; T, 1 Tit1

1+5

For S(W) # 0, the exact solution to these Riemann problems is

unknown or costly to compute ~» we require an approximation.
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L Introduction to Godunov-type schemes

Godunov-type scheme (approximate Riemann solver)
We choose to use an approximate Riemann solver, as follows.

L t R
)‘i+§ A /\i—&-%
|
|
wm
Lo
| 2
n n
Wi : it1
|
|

mV iﬁ}i is an approximation of the interaction between W/ and
2

"1 (i.e. of the solution to the Riemann problem), possibly made

of several constant states separated by discontinuities.
n )‘iL+l and )\il are approximations of the largest wave speeds of
2 2
the system.
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L Introduction to Godunov-type schemes

Godunov-type scheme (approximate Riemann solver)
t

WA (l‘, tn+1)
tn+1
wn
i
" z
Ti_1 T;

We define the time update as follows:

nt1 L [Pird oA n+1
W, = We (2, t"")dx.

1
i-g

Since W, and W , are made of constant states, the above
2 2
integral is easy to compute.
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L Derivation of a 1D first-order well-balanced scheme

The HLL approximate Riemann solver

To approximate solutions of
W + 0, F (W) = 0, the HLL approximate
Riemann solver (Harten, Lax, van Leer
(1983)) may be chosen; it is denoted by
W2 and displayed on the right.

—Az/2

The consistency condition (as per Harten and Lax) holds if:

1 Ax/2 1 Azx/2
/ WA(At, z; W, Wg)dx / Wr(At, z; Wi, Wg)dz,

Az J_pgp2 T Ar ) oaup
Wthh giVGS WHLL = )\RWR — )\LWL _ F(WR) — F(WL) _ (hHLL> .
AR — AL AR — AL qHLL

Note that, if hy, > 0 and hg > 0, then hyyrr > 0 for |Ar| and |Ag| large enough.
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L Derivation of a 1D first-order well-balanced scheme

Modification of the HLL approximate Riemann solver

The shallow-water equations with the topography and friction
source terms read as follows:

atq+a< + gh2>+ ho, Z+quq\ 0.
hs
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

L Derivation of a 1D first-order well-balanced scheme

Modification of the HLL approximate Riemann solver

With Y'(¢,z) := x, we can add the equations 0;Z = 0 and
0:Y = 0, which correspond to the fixed geometry of the problem:

Bth+8xq:0,
2
¢ 1, kqlq|
0q+ 0, L+ —gh hd,Z .Y =0,
oY =0,
o7 = 0.
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L Derivation of a 1D first-order well-balanced scheme

Modification of the HLL approximate Riemann solver
With Y'(¢,z) := x, we can add the equations 0;Z = 0 and
0:Y = 0, which correspond to the fixed geometry of the problem:

Bth+8xq:0,
2
¢ 1, kqlq|
0q+ 0, L+ —gh hd,Z .Y =0,
oY =0,
o7 = 0.

\
The equations ;Y = 0 and 9;Z = 0 induce stationary waves
associated to the source term (of which ¢ is a Riemann invariant).

To approximate solutions of AL 0 AR
W + 0, F(W) = S(W), we thus use wi | Wi

the approximate Riemann solver

displayed on the right Wy Wg

(assuming A\, < 0 < AR).
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L Derivation of a 1D first-order well-balanced scheme

Modification of the HLL approximate Riemann solver

We have 4 unknowns to determine: W; = (Zf) and W = <h5>.
L

143

4R

AR

Wr
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L Derivation of a 1D first-order well-balanced scheme

Modification of the HLL approximate Riemann solver

*

*
We have 4 unknowns to determine: W = (Zf) and Wg, = (Zf)
L R

m ¢ is a 0-Riemann invariant ~~ we take q; = ¢ = ¢* (relation 1)
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[ ] /\RhE — /\Lh*L = (>\R — )\L)hHLL (relation 2),
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L Derivation of a 1D first-order well-balanced scheme

Modification of the HLL approximate Riemann solver

* *
We have 4 unknowns to determine: W = (Zf) and Wg, = (Zf)
L R

m ¢ is a 0-Riemann invariant ~~ we take q; = ¢ = ¢* (relation 1)

m The Harten-Lax consistency gives us the following two relations:
m Aphiy — Aphi = (Ar — Ap)hmrr (relation 2),
1 Az/2
mq* QHLL+)\—/\LAt/Am/2 S(Wn(x,t))dtdx
SAx
AR — AL

Ax/2 At
h ~
where S ~ AT A7 /AL/Q/ S(Wg(x,t))dt dx

then ¢* = qurr + (relation 3),
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L Derivation of a 1D first-order well-balanced scheme

Modification of the HLL approximate Riemann solver

* *
We have 4 unknowns to determine: W = (Zf) and Wg, = (Zf)
L R

m ¢ is a 0-Riemann invariant ~~ we take q; = ¢ = ¢* (relation 1)

m The Harten-Lax consistency gives us the following two relations:
m Aphiy — Aphi = (Ar — Ap)hmrr (relation 2),
1 Az/2
mq* QHLL+)\—/\LAt/Am/2 S(Wn(x,t))dtdx
SAx
AR — AL

Ax/2 At
h ~
where S ~ AT A7 /AL/Q/ S(Wg(x,t))dt dx

then ¢* = qurr + (relation 3),

m next step: obtain a fourth relation
12/41



A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

L Derivation of a 1D first-order well-balanced scheme

Obtaining an additional relation

Assume that W, and W define a steady state, i.e. that they
satisfy the following discrete version of the steady relation
O, F(W)=S5(W) (where [X] = Xr — X1):

(e 4e) o

For the steady state to be preserved, it
is sufficient to have h% = hy, h% =h

* L ~ R R WL WR
and ¢* = qo.

Assuming a steady state, we show that ¢* = o, as follows:

SAx 1 911 Jrion =
* — —_— _— - - h, - SA = .
¢ =Lt M- T Xg—Ar (qo [h] i 7] x> ?2/41
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L Derivation of a 1D first-order well-balanced scheme

Obtaining an additional relation

In order to determine an additional relation, we consider the discrete
steady relation, satisfied when 1/ and Wy define a steady state:

2 1 1 g 9 ) B
i I —(h SAL
% (hR hL) + ) (<hR) (hL) ) SAx

To ensure that h} = hy, and h}; = hg, we impose that h} and hj;
satisfy the above relation, as follows:

1 1 g * * Q
b (= 7 ) + S0 = (b)) = e
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L Derivation of a 1D first-order well-balanced scheme

Determination of h} and h%

The intermediate water heights satisfy the following relation:

Bt — It -
g (RL) + 905 + W) (W — ) = SAa.
AR

Recall that ¢* is known and is equal to ¢y for a steady state.
Instead of the above relation, we choose the following linearization:

—(q")?

(Mg = hy) + (hL+hR)(hR hi) = SAx,
hrhr

which can be rewritten as follows:

—((]*)2 g «  pay_ T

[0
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L Derivation of a 1D first-order well-balanced scheme

Determination of h} and h%

With the consistency relation between h} and h}, the intermediate
water heights satisfy the following linear system:

a(hf — h}) = SAw,
ArhG — ALhE = OA\r — Ar)harr.

Using both relations linking A} and h},, we obtain
ArSAz
h* = h _—_ —
L HLL aOr =)’

/\L§A$
hi=h -
R HLL a(AR-—4XL)’
SAz
AR — AL’

16 /41
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L Derivation of a 1D first-order well-balanced scheme

Correction to ensure non-negative h} and hj

However, these expressions of 2} and h}, do not guarantee that the
intermediate heights are non-negative: instead, we use the following
cutoff (see Audusse, Chalons, Ung (2015)):

. ARSAz AR
(o 2225) ().

. Alj§131 AL
hy = h - 1——)h .
R mln(( HLL a()\R_)\L)>+,< /\R> HLL)

Note that this cutoff does not interfere with:
m the consistency condition Aghy, — ALh} = (Ar — AL)hurr;

m the well-balance property, since it is not activated when W, and
Wk define a steady state.
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L Derivation of a 1D first-order well-balanced scheme

Summary
The two-state approximate Riemann solver with intermediate states

Wi = <Z£) and W}, = <Zf) given by

ArSAz AR
hy = mi h - 1-— h
L mln(( HLL a(}\R_)\L)>+,( )\L> HLL)
. )\LSAQS’ )\L
Wy = h - 1——)h
A mm(( L a(AR—m) ( AR> H“)’

is consistent, non-negativity-preserving, entropy preserving and
well-balanced.

next step: determination of S according to the source term
definition (topography or friction).
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L Derivation of a 1D first-order well-balanced scheme

The topography source term
We now consider S(W) = SYW) = —ghd, Z:
the smooth steady states are governed by
2 1 _
Oy <q}‘;> + an(fﬁ) = —gh0, Z, q?) [h] + g[fﬂ] — S'Ax,

discretization

qDa <1>+g€)(h+Z)—0 QO[th]w[mZ]_o

We can exhibit an expression of g3 and thus obtain

st_ e (2] g WP
= 90, hpAr  2Azhy + hg

However, when Z; = Zr, we have S* # O(Ax), i.e. a loss of
consistency with S (see for instance Berthon, Chalons (2016)).

19 /41



A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

L Derivation of a 1D first-order well-balanced scheme

The topography source term

Instead, we set, for some constant C > 0,

S g 2hphr (Z) | g [N}
hr +hp Az 2Az hr + hp’

. = {hR—hL if |hg — hi| < CAz,
sgn(hgp — hr) CAx  otherwise.

Theorem: Well-balance for the topography source term

If Wi, and Wg define a smooth steady state, i.e. if they satisfy

2
‘0 1 h 7
20 | = =0,
8| | +otn+ 2
then we have W; = Wy, and W, = Wg and the approximate
Riemann solver is well-balanced. By construction, the Godunov-type
scheme using this approximate Riemann solver is consistent,

well-balanced, non-negativity-preserving and entropy preserving.
20/41
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L Derivation of a 1D first-order well-balanced scheme

The friction source term
We consider, in this case, S(TW) = S/(W) = —kq|q|h™", where we
have set nn = 7.
The average of S/ we choose is S/ = —kq|g|h ", with
m ¢ the harmonic mean of q;, and ggr (note that ¢ = qp at the
equilibrium);
m /" a well-chosen discretization of A", depending on hz, and
hgr, and ensuring the well-balance property.

We determine /" using the same technique (with 1o = sgn(qo)):

2 1 o
0. () + §04(0) = ~baolaolh ™. 1] + 4107 = ~buoigi s
9. hn—1 o, pnt2 discretization [hn_l] [hn+2]
2 Uz T 2 2
— = k — == k A .
W1 9,10 qolqol, W01 "9, toqo Az
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L Derivation of a 1D first-order well-balanced scheme

The friction source term
The expression for g2 we obtained is now used to get:

= W n+2 M)<F}+Vﬂvﬂl}n+2>

2 [W+2] kAz \ |k 2 n—1[t2

which gives S/ = —kg|q|h—" (@ consistent with A~ if a cutoff
is applied to the second term of h=").

Theorem: Well-balance for the friction source term

If Wi, and Wg define a smooth steady state, i.e. verify

o (7] (AT
0 n—1 T n+2

= —kqo|qo| Az,

then we have W} = Wy, and Wj = Wg and the approximate
Riemann solver is well-balanced. By construction, the Godunov-type
scheme using this approximate Riemann solver is consistent,

well-balanced, non-negativity-preserving and entropy preserving.
22 /41
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L Derivation of a 1D first-order well-balanced scheme

Friction and topography source terms

With both source terms, the scheme preserves the following
discretization of the steady relation 0, F(W) = S(W):

1 _ .
% M - g[hQ] = S'Az + S/ Ax.

The intermediate states are therefore given by:

(S"+ SN Ax
Ar—Ap

. Ar(S"+ 5 Az AR .
hL—m1n<<hHLL ol =) +, 1 Iy hurr );

. AL(S"+ SHAx AL
hR—mln(<hHLL— Oé()\R—)\L) +, 1_E hHLL .

23/41
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L Derivation of a 1D first-order well-balanced scheme

The full Godunov-type scheme

t
wa (T tn+1)

tntl f > B T

N > [

e 1 Wi+% |

I I

R L

| A A |

I i~y ity I

I wr I
- I I .

QLZ,% X; l‘i+7

1 (%
We recall Wt = A/ o WA (z,t"!)dz: then
x

1
-2

oo 2 o)t o)

which can be rewritten, after straightforward computations,
At 0

0
1 Co ey Eed | (0 Y Y (i
Az \" "3 ‘T2 2 2
9 2 24/ //a1
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L Derivation of a 1D first-order well-balanced scheme

Summary

We have presented a scheme that:

m is consistent with the shallow-water equations with friction and
topography;

m is well-balanced for friction and topography steady states;

m preserves the non-negativity of the water height;

m ensures a discrete entropy inequality;

m is easily implemented in a HPC solution;

m is not able to correctly approximate wet/dry interfaces due to the
. .. 7 L.
stiffness of the friction kq|q|h™"3: the friction term should be
treated implicitly.

next step: introduction of this semi-implicit scheme

25 /41
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L Derivation of a 1D first-order well-balanced scheme

Semi-implicit finite volume scheme

We use a splitting method with an explicit treatment of the flux
and the topography and an implicit treatment of the friction.

explicitly solve O,W + 8, F (W) = SY(W) as follows:
nJr% A 0
W =W — " " t
i i T Az <fz+2 Fio ) + ((st) + (S,
3 it+3
implicitly solve 9;W = S7 (W) as follows:
nts
0 = —kalal (R )™
IVP: et -
q(zit") = q;

h?“ =h
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A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

L Derivation of a 1D first-order well-balanced scheme

Semi-implicit finite volume scheme
Solving the IVP yields:

1y "3
ntl _ (hy™h)ng; "2
q; =

.
(R 4+ k At ‘q;HQ |

We use the following approximation of (h?“)”, which provides us
with an expression of ¢! that is equal to gy at the equilibrium:

i

242 +1
o SE a1
(i = T kAt
(h )Fl + (h )Hl
2 2

m semi-implicit treatment of the friction source term
~~ scheme able to model wet/dry transitions

m scheme still well-balanced and non-negativity-preserving

27 /41



A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

L Two-dimensional and high-order extensions

Two-dimensional and high-order extensions



A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

L Two-dimensional and high-order extensions

Two-dimensional extension
2D shallow-water model: 0, + V - F(W) = S(W) + S/ (W)

8th+V-q:0
k
g+ V- (q§q+ Zgh?l ) :—ghVZ—q}ynq”

. =

to the right: simulation
of the 2011 Japan
tsunami

28 /41
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L Two-dimensional and high-order extensions

Two-dimensional extension

C; Cj

space discretization: Cartesian mesh & [T M

With ]-'z”j = F (W), W”; n;;) and v; the neighbors of ¢;, the scheme reads:

W =W - Aty |e”|f”+—2(st)

JEV; JEV;

. . +1 . -
VVZ—”+1 is obtained from Win 2 with a splitting strategy:

n+i
h;H'l — hi 2

Oth =

1
RS P+l T3
o= —kalgln | gt - M4

(4 kAt gl 2

29/41
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L Two-dimensional and high-order extensions

Two-dimensional extension

The 2D scheme is:

m non-negativity-preserving for the water height:
Vi€ Z, kP >0 = VieZ, h!' >0

m able to deal with wet/dry transitions thanks to the
semi-implicitation with the splitting method,;

m well-balanced by direction for the shallow-water equations with
friction and/or topography, i.e.:
m it preserves all steady states at rest,
m it preserves friction and/or topography steady states in the
x-direction and the y-direction,

m it does not preserve the general 2D steady states such that
V.qg=0.

next step: high-order extension of this 2D scheme

30/41
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L Two-dimensional and high-order extensions

High-order extension: the basics, in 1D

n
wnr i+1

W,

17—

Ti—1 Z; Ti41

i— 1 r;, 1
13 i+3

W € Py: constant (order 1 scheme)
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L Two-dimensional and high-order extensions

High-order extension: the basics, in 1D

mn
. Wik
Wh(x n
14/;1 7 ( ) i1
wh
1—1 n
Wi
xr
Ti—1 X Ti+1

WZ?‘ € Py: linear (order 2 scheme)
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L Two-dimensional and high-order extensions

High-order extension: the basics, in 1D

mn
Wh(x n
14/;1 7 ( ) i1
wh
1—1 n
Wi
x
Ti—1 X Ti+1

Tieg Titl
V[//?” € P4 polynomial (order d 4+ 1 scheme)
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L Two-dimensional and high-order extensions

High-order extension: the polynomial reconstruction
polynomial reconstruction (see Diot, Clain, Loubére (2012)):

d
W) =W+ 3 af|(@— @)t - Mf]
|k|=1

1
= We have M} = H/ (x — 2;)*dx such that
C; ci

. 1 =
the conservation property is verified: il / Wi (z)dx = W
C; ¢

Ci

[lesz [¢s?
m The polynomial coefficients af are chosen to minimize the least squares

error between the reconstruction and WJ”, for all j in the stencil Sid. 12 /a1
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L Two-dimensional and high-order extensions

High-order extension: the scheme

High-order space accuracy

R Q
Wit = wp—ary” Gl e e L ArS Ty, (8", +(SN2y)
=) q=0

JEY; ‘cl,

—

_ ]:‘(ﬁ/'\i”(ar), Wf(‘ﬂ“)? nj)

n (SH7, =S (Wp(zy)  and  (SH)P, = 8T (Wi(zy))

m F

ij,r

We have set:
m (&, 04)r, a quadrature rule on the edge e;;;
m (7)q,%q)q, @ quadrature rule on the cell ¢;.

The high-order time accuracy is achieved by the use of SSPRK
methods (see Gottlieb, Shu (1998)).
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L Two-dimensional and high-order extensions

Well-balance recovery (1D): a convex combination

reconstruction procedure ~~ the scheme no longer preserves
steady states

Well-balance recovery

We suggest a convex combination between the high-order scheme
Wro and the well-balanced scheme Wy 5:

Wit =0} (Wgo)M T + (1 — 01)(Ww )P,

with 0" the parameter of the convex combination, such that:
m if 07" =0, then the well-balanced scheme is used;

m if 07" =1, then the high-order scheme is used.

next step: derive a suitable expression for ¢!
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L Two-dimensional and high-order extensions

Well-balance recovery (1D): a steady state detector

Steady state detector

qr, = 4r = qo,
steady state solution: 2 2
490 q0 () 2 t f
=———=+=(h h7) — (8" +S")Azxz =0
hR hL 9 ( R L) ( )
4 — a4 Qi1 — 47
steady state detector: ¢} = ! " =1 4L Z+1n !
(€17 1 €17 1
=3 9 +3 9
0
" = 0 if there is a steady state Lo
between W, W and iR 5
. . WB H
~> in this case, we take 0" =
n
~> otherwise, we take 0 < 6" <1 %
mAx MAx
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L Two-dimensional and high-order extensions

MOOD method

High-order schemes induce oscillations: we adapt the MOOD
framework (Multidimensional Optimal Order Detection) to get rid
of the oscillations and to restore the non-negativity

preservation (see Clain, Diot, Loubére (2011)).

MOOD loop

compute a candidate solution W€ with the high-order scheme
determine whether W€ is admissible, i.e.

m if h° is non-negative (PAD criterion)

m if W€ does not present spurious oscillations (DMP and u2 criteria)

where necessary, decrease the degree of the reconstruction or set
60=0

compute a new candidate solution
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Numerical simulations
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L Numerical simulations

Pseudo-1D double dry dam-break on a sinusoidal bottom

27 ~-Thefa 2

1.8 —Topography| 1.8
—FreeSurface

1.6 1.6
14 14
1.2 12

1 .o W mmi NG e '
0.8 : 0.8 :
0.6 o 0.6 :
04 : 0.4 |
0.2 : 0.2

0 : 0

The IP’\;VB scheme is used in the whole domain:
m near the boundaries, steady state at rest ~ well-balanced scheme;
m away from the boundaries, far from steady state ~» high-order scheme;
m center, dry area ~» well-balanced scheme.
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L Numerical simulations

Order of accuracy assessment

To assess the order of accuracy, we take the following exact steady
solution of the 2D shallow-water system, where r = !(x, y):

2k —1
hotig T g
[l T 2]

With k = 10, this solution is depicted below on the space domain

[—0.3,0.3] x [0.4, 1].
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L Numerical simulations

Order of accuracy assessment

led = llqll. Pai
L? errors with lea| —=llall. P5
respect to the le6f
le-6 .
number of cells ‘
le-8 |
top graphs: les| 1
2D steady Letol
H H Ll L L le-10 | L L
solution with 5 o — o
topograph
Pograpny tes| gl P
bottom graphs: teor = |qf, PX®
le-8 |
2D steady sl |
solution with 1ol & 6
friction and 1 lelof 4 1
topography le12f 1 L
le-12 | 4
163 Te 163 1ed
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L Numerical simulations

2011 Tohoku tsunami

EECEOWAN © Sensor 1

= Sensor 1 - Sensor 2

" Sensor 3

= Sensor 3

Tsunami simulation on a Cartesian mesh: 13 million cells, Fortran
code parallelized with OpenMP, run on 48 cores.
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L Numerical simulations

2011 Tohoku tsunami

P H e
racCliriC UCcall

nch

e (Vladivostok) SENT)

Sea of Japan

0 500 1,000 1,500 2,000 2,500

1D slice of the topography (unit: kilometers). 3941



A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

L Numerical simulations

2011 Tohoku tsunami

39/41



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

L Numerical simulations

2011 Tohoku tsunami

physical time of the simulation: 1 hour

=
vV »

Free Surface Free Surface
-150 075 0.00 075 150 -150 075 0.00 075 150
—-— u — ;
first-order scheme second-order scheme
wall time: ~ 1.1 hour wall time: ~ 2.7 hours
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L Numerical simulations

2011 Tohoku tsunami

Water depth at the sensors:

m #1: 5700 m; 0.2
m #2: 6100 m; 0.1
m #3: 4400 m.

Graphs of the time variation 0

of the water height (in meters).
data in black, order 1 in blue, order 2 in red

T T

0.6 s 0.2
0.4 2
0.2 1 01
0 —
~0.2 x x 0
0 1,200 2,400 3,600 0
Sensor #1

| |
1,200 2,400 3,600
Sensor #2

T T

| |
1,200 2,400 3,600
Sensor #3
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L Conclusion and perspectives

Conclusion

m We have presented a well-balanced, non-negativity-preserving and en-
tropy preserving numerical scheme for the shallow-water equations with
topography and Manning friction, able to be applied to other source
terms or combinations of source terms.

m We have also displayed results from the 2D high-order extension of this
numerical method, coded in Fortran and parallelized with OpenMP.

This work has been published in international journals:

V. M.-D., C. Berthon, S. Clain and F. Foucher.
"“A well-balanced scheme for the shallow-water equations with topography”.
Comput. Math. Appl. 72(3):568-593, 2016.

V. M.-D., C. Berthon, S. Clain and F. Foucher.
"“A well-balanced scheme for the shallow-water equations with topography
or Manning friction”. J. Comput. Phys. 335:115-154, 2017.

C. Berthon, R. Loubére, and V. M.-D.
"“A second-order well-balanced scheme for the shallow-water equations with
topography”. Springer Proc. Math. Stat., 2018.

C. Berthon and V. M.-D.
"“A simple fully well-balanced and entropy preserving scheme for the shallow-water
equations”’. Appl. Math. Lett. 86:284-290, 2018. 40/41
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L Conclusion and perspectives

Work in progress and perspectives

Work in progress

m high-order simulation of the 2011 Tohoku tsunami
m application to other source terms:

m Coriolis force source term
m breadth variation source term

Long-term perspectives

m ensure the entropy preservation for the high-order scheme (use of
an e-MOOD method)

m simulation of rogue waves
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L Thanks!

Thank you for your attention!
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LAppendices

The discrete entropy inequality

The following non-conservative entropy inequality is satisfied by the
shallow-water system:

2
IV + 0,GOV) < LSV): nW) = &+ 905 6wy = (L gn).

At the discrete level, we show that:

Ar(g —nr) — AL(np —nL)+(Gr — Gr) < ZZZ SAz+O(Az?).

_ AR
. M N . h* = h - SA - . < <
main ingredients: B hp =NRHLL TaOr — A

(and similar expressions for h}, and ¢*)

® (Ar —AL)nmrr < Arnr — AL — (Gr — GL)
from Harten, Lax, van Leer (1983)
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LAppendices

Verification of the well-balance: topography

0.5

0 ‘ |—Initial Free Surface|

5 10 15 20 25

The initial condition is at rest; water is injected through the left
boundary.
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LAppendices

Verification of the well-balance: topography

2 .
v
1.5
1
0.5
—Exact Free Surface
0 - Approximate Free Surface

5 10 15 20 25

The non-well-balanced HLL scheme converges towards a numerical
steady state which does not correspond to the physical one.
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LAppendices

Verification of the well-balance: topography

2 .
et™
1.5
1
0.5
—Exact Free Surface
- Approximate Free Surface
0 -WB Free Surface

5 10 15 20 25

The non-well-balanced HLL scheme yields a numerical steady state
which does not correspond to the physical one. The well-balanced
scheme exactly yields the physical steady state.
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LAppendices

Verification of the well-balance: topography

2
1.95
—Exact Free Surface
- Approximate Free Surface
1.9 ~Well-balanced Free Surface
5 10 15 20 25

The non-well-balanced HLL scheme yields a numerical steady state
which does not correspond to the physical one. The well-balanced
scheme exactly yields the physical steady state.
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LAppendices

Verification of the well-balance: topography

transcritical flow test case (see Goutal, Maurel (1997))

1 1
0.8 0.8
0.6 0.6
04 04
0.2 l 0.2
OU 5 10 15 20 25 O(J 5 10 15 20 25

left panel: initial free surface at rest; water is injected from the left boundary

right panel: free surface for the steady state solution, after a transient state

L' L? L™

U2 errors on ¢ 1.47e-14 1.58e-14 2.04e-14
o= > +gh+Z) errorson® 1.67e-14 2.13e-14 4.26e-14
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LAppendices

Verification of the well-balance: friction

0.9
'|,
0.8 0.9
0.84
0.7
0.74
0.64
0.6
0.5 T T T T 0.5 T T T T 1
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

left panel: water height for the subcritical steady state solution

right panel: water height for the perturbed steady state solution



A high-order well-balanced scheme for the shallow-water equations with topography and Manning friction

LAppendices

Verification of the well-balance: friction

091 9e-167
0.81
6e-161
0.7
3e-161\
0.6
=3 H
055 02 04 0.6 0.8 i %

left panel: convergence to the unperturbed steady state

right panel: errors to the steady state (solid: &, dashed: q)
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LAppendices

Perturbed pseudo-1D friction and topography steady state

0.6 0.6

0.4 0.4

0.2 0.2

| h | lal
| L L? L~ | L L? L>

Py | 1.22e-15 1.71e-15 6.27e-15 | 2.34e-15 3.02e-15 9.10e-15
P; | 5.01e-05 1.47e-04 1.16e-03 | 2.32e-04 2.63e-04 1.18e-03
PYB | 8.50e-14 1.05e-13 3.35e-13 | 2.82e-13 3.37e-13  6.76e-13
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LAppendices

Riemann problems between two wet areas

° 6’
5 5]
44 4
3 N
2 o]
% i 2 3 4 5 1 i 2 3 4 5

left: k=0 left: k=10

both Riemann problems have initial data Wy, = (g) and

Wg = (é) on [0, 5], with 200 points, and final time 0.2s
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LAppendices

Riemann problems with a wet/dry transition

6’ = Approximate Height = =Reference Height
51

4

31

2,

N

0 i 2 3 4 5 4 5

left: k=0 left: k=10

both Riemann problems have initial data Wy, = (g) and

Wgr = (8) on [0, 5], with 200 points, and final time 0.15s
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Double dry dam-break on a sinusoidal bottom

0.1

“1--Order 1
...Order 6
—Reference
—Topography

e, c”’:“
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