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Abstract

This paper is devoted to the study of 4-dimensional abelian varieties over number
fields with the property that the Lie algebra of the image of some associated `-adic
Galois representation is Q`-isomorphic to c⊕ (sl2)3. Such varieties will be referred to
as ‘abelian varieties with `-adic Galois representation of Mumford’s type’. We show
that such abelian varieties have potentially good reduction at all prime ideals and
we determine the possible Newton polygons and the possible isogeny types of these
reductions.

Introduction

A Shimura variety ‘of Hodge type’ parametrizes a family (or families) of abelian varieties with

certain properties. The fact of being of Hodge type offers some powerful tools for the study of

a Shimura variety. If a Shimura variety of Hodge type is a moduli space for abelian varieties

of PEL type (that is, abelian varieties characterized by a polarization, endomorphisms and

a level structure), this is even more useful, since it then is the solution to a moduli problem

that can be formulated in any characteristic. This can be particularly useful for the study

of models in mixed characteristic.

An example due to Mumford shows that not all families of Hodge type are of PEL type.

He constructs 1-dimensional families associated to representations V of algebraic groups

G of the following type. One has Lie(G)Q
∼= cQ ⊕ sl3

2,Q
, where c ⊂ Lie(G) denotes the

1-dimensional centre, and the induced representation of Lie(G)Q on V ⊗ Q is the tensor

product of the standard representations. In this paper, we will refer to such a pair (G, V )

as being of Mumford’s type, cf. 1.2. If X/C is a fibre of one of Mumford’s families, then the

representation of its Mumford–Tate group on H1
B(X(C),Q) factors through a representation

of Mumford’s type. If the fibre in question is not of CM type, then this representation is

itself of Mumford’s type. Conversely, it can be shown that if X/C is an abelian variety

such that the representation of its Mumford–Tate group on H1
B(X(C),Q) factors through a

representation of Mumford’s type, then it arises as a fibre in one of Mumford’s families.
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If X is a fibre over a number field of a family of Mumford’s type associated to a pair

(G, V ), then, for any prime number `, the associated `-adic Galois representation factors

through G(Q`). Unless X is of CM type, the image is Zariski dense. Conversely, let F be

a number field and let X/F be an abelian variety such that Zariski closure of the image

of the Galois representation on V` = H1
ét(XF̄ ,Q`) is an algebraic group G`/Q` such that

(G`, V`) is of Mumford’s type. In what follows we will simply say that the `-adic Galois

representation associated to X is of Mumford’s type. The Mumford–Tate conjecture predicts

that the Mumford–Tate group of X then is of the above kind and therefore that X is a fibre

in a family of the type we consider. This means that, conjecturally, the abelian varieties

arising from Mumford’s construction are exactly those for which the associated `-adic Galois

representations are of Mumford’s type. Abelian varieties with a Galois representation of

this kind are the examples of the smallest dimension where the Mumford–Tate conjecture

is unsettled. Some evidence supporting the Mumford–Tate conjecture is provided by the

fact that if X is an abelian variety over a number field such that one associated `-adic

representation is of Mumford’s type, then all associated Galois representations are of this

kind, cf. lemma 1.3.

Shimura curves of Mumford’s type have been extensively studied. For the study of the

reduction of such a curve and of its and zeta- or L-functions, a comparison to a Shimura

curve of PEL type can be used. This has been done in work of Shimura, Morita and, more

recently, Reimann. The results have some implications for the reduction of a fibre over a

number field of a family of Mumford’s kind.

In the present paper, we study the reduction properties of abelian varieties over number

fields such that the associated Galois representations are of Mumford’s type. It is therefore

not unrelated to the Mumford–Tate conjecture, showing that many properties of the abelian

varieties in question can be derived from their Galois representations.

We briefly sketch the contents of the article.

In section 1, we introduce the notions of a representation of Mumford’s type and of

an abelian variety with associated `-adic Galois representation of Mumford’s type. Some

fundamental properties are established, notably the lemma on `-independence referred to

above. This lemma in fact states some well known results due to Serre and to Pink.

In section 2, we study the properties of good reduction of an abelian variety for which

the associated Galois representations are of Mumford’s type. It is shown in corollary 2.2

that any such abelian variety has potentially good reduction everywhere.

In section 3 we investigate the Newton polygons of certain crystalline p-adic representa-

tions of Gal(Qp/Q
nr
p ) factoring through a representation (Gp, Vp) of Mumford’s type. It is

shown in proposition 3.2 that there are only four possibilities. Imposing a finer condition

on the image of the Galois representation permits a refinement of the result. For example,

if Gp is split, then the only possible Newton polygons are 4 × 0, 4 × 1 and 8 × 1/2. The

precise results can be found in propositions 3.5 and 3.6. These results have rather obvious

implications for an abelian variety for which the associated Galois representations are of
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Mumford’s type, cf. 4.4.

In section 4, we investigate the possible isogeny types of a reduction of such an abelian

variety. The final result is stated in corollary 4.4, which is derived from proposition 4.1.

In 4.1, we use arguments going back to Serre to deduce the possible isogeny types of a

reduction at a finite place from properties of an associated `-adic Galois representation

satisfying appropriate conditions.
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1 Representations of Mumford’s type.

1.1 Notations. For any field F , we denote by F̄ an algebraic closure of F and we write

GF = Gal(F̄ /F ). If v̄ is a valuation of F̄ , then IF,v̄ ⊂ GF is the inertia group of v̄. In case F

is a local field, we write just IF ⊂ GF for the inertia subgroup. For a number field or local

field F , we write OF for the ring of integers or the valuation ring, respectively.

Let p be a prime number. Denote by Qp the p-adic completion of Q, by Qnr
p the maximal

unramified extension of Qp contained in Qp, by Qph the unique extension of Qp of degree h

contained in Qnr
p and by Cp the completion of Qp. The Frobenius automorphism of any of

the fields Qnr
p and Qph will be denoted by σ.

If F is a field of characteristic 0 and p is a prime number, then GF acts on the set of

p-power roots of unity in F̄ . This action defines the cyclotomic character χp : GF → Z∗p.

When there can be no confusion as to the value of p, we write χ instead of χp. For i ∈ Z, we
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write Qp(i) for the one dimensional Qp-linear representation of GF where GF acts through

χip.

1.2 Representations of Mumford’s type. Let K be a field of characteristic 0, let G

be an algebraic group over K and let V be a faithful K-linear representation of G. We will

say that the pair (G, V ) is of Mumford’s type if

– Lie(G) has one dimensional centre c,

– Lie(G)K̄ ∼= cK̄ ⊕ sl32,K̄ and

– Lie(G)K̄ acts on VK̄ by the tensor product of the standard representations.

We do not require G to be connected.

If (G, V ) is of Mumford’s type, then there exists an alternating bilinear form on V

(unique up to a scalar) which is fixed by G up to a character. If moreover G is connected,

then there exists a central isogeny N : G̃ → G where G̃ is an algebraic group over K such

that G̃ ∼= Gm,K × G̃ss and G̃ss
K̄
∼= SL3

2,K̄ . The induced representation of G̃K̄ on VK̄ is

isomorphic to the tensor product of the standard representations. The Shimura varieties

and families of abelian varieties constructed by Mumford in [Mum69, §4] are associated to

Q-linear representations of Mumford’s type.

Let F be a field, ` a prime number and V` a Q`-vector space. We say that a continuous

Galois representation ρ : GF → GL(V`)(Q`) is of Mumford’s type if the Zariski closure G` ⊂
GL(V`) of ρ(GF ) has the property that (G`, V`) is of Mumford’s type. If X/F is a fibre of

one of the families of abelian fourfolds from [Mum69] which is not of CM type, then the

associated `-adic representations are of Mumford’s type.

1.3 Lemma. Let X be a 4-dimensional abelian variety over a number field F . For each

prime number `, let G` be the Zariski closure of the image of the `-adic Galois representation

of G` on V` = H1
ét(XF̄ ,Q`). Suppose that there exists prime number p such that (Gp, Vp) is of

Mumford’s type. Then (G`, V`) is of Mumford’s type for all ` and there are infinitely many

prime numbers ` such that Lie(G`)
ss is Q`-simple.

Proof. It follows from [Ser81] that, after replacing F by a finite extension, we can assume

that all G` are connected. Since

End(XF ′)⊗Z Qp
∼= EndGF ′ (Vp) = EndGp(Vp) = Qp

for any finite extension F ′ of F , one has End(XF̄ ) = Z, so EndG`(V`) = EndGF (V`) = Q`

for all `. For any prime number `, one deduces from Faltings’ theorem that G` is reductive

and from the facts that X is polarizable and End(X) = Z together with the classification

of semi-simple Lie algebras that Lie(G`) ∼= c⊕ sp8 or Lie(G`) ∼= c⊕ sl32. In the second case,

(G`, V`) is of Mumford’s type and in the first case G` = GSp8,Q`
. As [Ser81] and [Chi92, 3.10]
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show that the rank of G` is independent of `, one concludes that (G`, V`) is of Mumford’s

type for every `.

It follows from [Pin98, 5.13] that there exist a connected reductive group G over Q and

a representation V of G such that (G, V ) ⊗ Q`
∼= (G`, V`) for all primes ` belonging to a

set of primes of Dirichlet density 1. Of course, Lie(G) has one dimensional centre c and

Lie(G)Q
∼= cQ ⊕ sl3

2,Q
. The theorem of Pink cited above also implies that Lie(G)ss is Q-

simple. The conditions imply that for any maximal torus of Gss, the group GQ acts on the

associated root datum through {(±1,±1,±1)}o S3 and that the projection of the image to

S3 contains the 3-cycles. The Lie algebra Lie(G)ss
Q`

is Q`-simple if and only if the projection

to S3 of the image of GQ`
⊂ GQ in {(±1,±1,±1)} o S3 still contains these cycles. It thus

follows from the Chebotarev density theorem that the set of primes ` such that GQ`
has the

desired properties and where (G, V )⊗Q`
∼= (G`, V`) has density 1/3 (if the image of GF in

{(±1,±1,±1)}o S3 projects onto S3) or 2/3 (in the other case).

2 Good reduction

2.1 Proposition. Let F be a field, v a discrete valuation of F and let ` be a prime number

such that the residue characteristic at v is different from `. Suppose that X/F is an abelian

variety such that the representation of GF on V = H1
ét(XF̄ ,Q`) factors through a morphism

ρ : GF → G(Q`) for an algebraic group G ⊂ GL(V ) such that

– the pair (G, V ) is of Mumford’s type and

– Lie(G)ss is Q`-simple.

Then X has potentially good reduction at v.

Proof. Write Ov for the local ring of F at v and IF,v̄ for the inertia group of a valuation v̄ of

F̄ extending v. After replacing F by a finite extension, we can assume that G is connected.

Let Y be any abelian variety over F and let ρY : GF → GL(H1
ét(YF̄ ,Q`)) be the associated

`-adic Galois representation. It follows from [GRR72, Exposé I, 3.6] that there exists a

finite extension F ′ of F such that the inertia group IF ′,v̄ acts unipotently and such that

(ρY (α)− id)2 = 0 for each α ∈ IF ′,v̄.
We compare this with the unipotent elements of G(Q`). If x ∈ G(Q`) is unipotent but

x 6= id, then, viewed as an element of G(Q`), it is the image by ‘tensor product’ of an element

(y1, y2, y3) ∈ SL2(Q`)
3, with each yi unipotent. Since the image of (y1, y2, y3) is GQ`

-invariant

and since there is at least one yi 6= id, it follows that all yi 6= id. Up to conjugation, we can

assume that for i = 1, 2, 3, one has

yi =

(
1 ai

0 1

)
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with ai ∈ Q`. As a1a2a3 6= 0, one easily computes that the index of nilpotency of x − id is

equal to 4.

As the Galois representation associated to X factors through G(Q`), the two above

statements imply that there exists a finite extension F ′ of F such that IF ′,v̄ acts trivially. It

follows from [ST68] that XF ′ has good reduction.

2.2 Corollary. Let X be a 4-dimensional abelian variety over a number field F and assume

that for some prime number ` the representation of GF on H1
ét(XF̄ ,Q`) is of Mumford’s type.

Then X has potentially good reduction at all places F .

Proof. Apply lemma 1.3 to find a prime number `′ where the conditions of proposition 2.1

are verified.

2.3 Corollary. Let X be an absolutely simple abelian fourfold over a number field F which

does not have potentially good reduction everywhere. Then the Mumford–Tate conjecture is

true for X.

Proof. With a little work, one derives from [MZ95, table 1] that the statement is true if

End(XF̄ ) 6= Z. We can therefore assume that End(XF̄ ) = Z.

Let ` be a prime number and let G` be the Zariski closure of the image of the Galois

representation on V` = H1
ét(XF̄ ,Q`). As in the proof of 1.3 one shows that either G` =

GSp8,Q`
or (G`, V`) is of Mumford’s type. By the hypothesis that X does not have potentially

good reduction everywhere and corollary 2.2, the second possibility is excluded and since

the Mumford–Tate group of X is contained in GSp8, the corollary follows.

3 Newton polygons

3.1 Preliminaries. Following Katz (cf. [Kat78, 1.3]), we recall the definition of Newton

polygons. Let α ∈ Q and r, s ∈ Z, s ≥ 1, such that α = r/s (in lowest terms). Define a

Qnr
p -module D(α) by D(α) = Qp[T ]/(T s−pr)⊗Qp Qnr

p and a σ-linear map Fr: D(α)→ D(α)

by Fr(x⊗ λ) = (Tx)⊗ (σ(λ)). Note that dimQnr
p
D(α) = s.

If D is a finite dimensional Qnr
p -vector space endowed with a σ-linear map Fr: D → D,

then there exist a finite sequence r1/s1 ≤ · · · ≤ rk/sk of rational numbers (with ri, si ∈ Z,

si ≥ 1 and ri, si relatively prime) and an isomorphism of Qnr
p -vector spaces with Fr-action

D ∼= ⊕ki=1D(ri/si). Let d = dimQnr
p
D and let (α1, . . . , αd) be the sequence of rational

numbers

(r1/s1 (s1 times), r2/s2 (s2 times), . . . , rk/sk (sk times)).

The αi are the Newton slopes of D and we define the Newton polygon of D as the piecewise

linear curve in R2 joining the points (0, 0), (1, α1), (2, α1 + α2), . . . , (d, α1 + · · · + αd) in
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this order. The break points of the Newton polygon are the points (i, α1 + · · · + αi) (for

0 < i < d), where αi < αi+1. These break points clearly have integral coordinates.

Suppose that F is a finite extension of Qnr
p . A filtered module over F is a finite dimen-

sional Qnr
p -vector space D endowed with a σ-linear map Fr: D → D and an exhaustive,

separated, decreasing filtration (Fili)i∈Z of D ⊗Qnr
p
F by sub-F -vector spaces. Since D is

finite dimensional, the filtration is of finite length.

As in 1.1, we write GF = Gal(F̄ /F ) = IF and we assume that C is a tannakian subcate-

gory of the category of continuous, finite dimensional, crystalline Qp-linear representations

of GF . Recall that a Qp-linear representation W of GF is crystalline if

dimQpW = dimQnr
p

(W ⊗Qp Bcrys)
GF ,

where Bcrys denotes the crystalline period ring constructed by Fontaine, see for example

[Fon94a]. We refer to [Fon94b] for more details and background. Following Fontaine,

cf. [Fon78], one can define several fibre functors on C.
First of all, one has the functor ωét sending an object of C to its underlying Qp-vector

space. If W is an object of C, then GF acts on the Qp-vector space ωét(W ). Let H be the

automorphism group of the functor ωét, by construction an algebraic group over Qp. Then

the action of GF on the ωét(W ) gives rise to a morphism ρ : GF → H(Qp) with Zariski dense

image.

Secondly, one defines a Qnr
p -valued fibre functor ωcrys,Qnr

p
on C by

ωcrys,Qnr
p

(W ) = (W ⊗Qp Bcrys)
GF

for each object W of C. Since W is a crystalline representation of GF , it follows from the

definition that ωcrys,Qnr
p

(W ) is a filtered module of dimension dimQpW . This implies in

particular that one can speak of the the Newton polygon of ωcrys,Qnr
p

(W ). We will also refer

to this Newton polygon as the Newton polygon of W . It has has break points in Z2.

The third definition, which can be found in [Fon78, §6] is more complicated. Let h be

an integer and suppose that D is a filtered module with Newton slopes in (1/h)Z. For each

α ∈ (1/h)Z, put Dα = {d ∈ D | Frhd = phαd} and

Λh(D) =
⊕

α∈(1/h)Z

Dα.

One verifies that Λh(D) is a Qph-vector space (with Qph as in 1.1) and that the natural map

Qnr
p ⊗Q

ph
Λh(D)→ D is an isomorphism.

We return to the category C and assume that there exists an integer h such that each

object W of C has all its Newton slopes in (1/h)Z. Then ω′crys,Q
ph

= Λh ◦ ωcrys,Qnr
p

is a

Qph-valued fibre functor on C. For any object W of C one has

ω′crys,Q
ph

(W ) =
⊕
α

ω′crys,Q
ph

(W )α
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for α running through the Newton slopes of W . Let H be the automorphism group of

ω′crys,Q
ph

, it is an algebraic group over Qph . If follows from [Fon78, 6.4] that there exists a

cocharacter

µN,h : Gm,Q
ph
−→ H,

called the Newton cocharacter, such that, for any object W of C and each slope α ∈ Q of W ,

this cocharacter makes Gm act on ω′crys,Q
ph

(W )α through the cocharacter ·hα. See [Pin98,

§2] for the case where F is a finite extension of Qp.

It follows from [Fon94b, 5.1.7] that every crystalline representation V of GF is Hodge–

Tate. Let us recall what this means. The group GF operates on Cp by continuity and we

endow V ⊗Cp with a ‘twisted’ GF action, g(v ⊗ c) = ρ(g)(v)⊗ g(c). Put

V {i} = {v ∈ V ⊗Cp | g(v) = χ−i(g)v}

and V (i) = V {i}⊗Qp Cp for each i ∈ Z.1 The fact that V is Hodge–Tate means by definition

that the natural injection ⊕i∈ZV (i)→ V ⊗Cp is an isomorphism. It follows from [Fon94a]

and [Fon94b] that the Hodge–Tate decomposition of V ⊗Cp gives the associated graded of

(D ⊗Qnr
p
F )⊗F Cp for the ‘filtered module filtration’ on D ⊗Qnr

p
F .

3.2 Proposition. Let G be an algebraic group over Qp and V a Qp-linear representation

of G such that (G, V ) is of Mumford’s type. Let F be a finite extension of Qnr
p and let

ρ : GF → G(Qp) a continuous, polarizable, crystalline representation of Hodge–Tate weights

0 and 1. Then the Newton polygon of ρ is either

– 4× 0, 4× 1 or

– 2× 0, 4× 1/2, 2× 1 or

– 0, 3× 1/3, 3× 2/3, 1 or

– 8× 1/2.

Proof. The Zariski closure of ρ(GF ) has a finite number of connected components, so we

can replace F by a finite extension such that this Zariski closure is connected. We can thus

assume that G is connected.

Since V has Hodge–Tate weights 0 and 1, one has V ⊗ Cp = V (0) ⊕ V (1) and the

existence of a polarization implies that dimV (0) = dimV (1) = 4. The Hodge polygon of

D = (V ⊗ Bcrys)
GF therefore has slopes 4 × 0, 4 × 1 so the fact that the Newton polygon

lies above the Hodge polygon (cf. [Fon94b, 5.4]) implies in that all Newton slopes of D are

≥ 0. The fact that V is polarizable implies that if α is a Newton slope of D, then 1− α is

a Newton slope of D of the same multiplicity. It follows that all Newton slopes lie in [0, 1]

1Note the sign which may cause confusion because Qp(1)(−1) = Qp(1) and Qp(1)(i) = 0 for i 6= −1.
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and that the sum of the Newton slopes is equal to 4. It is easily checked that the conditions

that the Newton polygon has integral break points, that all Newton slopes lie in [0, 1] and

that the slopes α and 1− α occur with the same multiplicity imply that all Newton slopes

are in (1/12)Z.

Let C be the tannakian subcategory of RepGF generated by V and Qp(1). The above

arguments imply that all objects of C have their Newton slopes in (1/12)Z. Let H be

the automorphism group of the functor ω′crys,Qp12
introduced in 3.1. We have the Newton

cocharacter

µ = µN,12 : Gm,Qp12 −→ H

as in loc. cit. and since H is a Galois twist (in fact even an inner twist) of the automorphism

group of ωét, we deduce a cocharacter µ : Gm,Qp
→ GQp

.

As N : G̃ → G is a central isogeny, there exists a positive integer k such that the k-th

power µk : Gm,Qp
→ GQp

lifts to a cocharacter µ̃ : Gm,Qp
→ G̃Qp

. As G̃Qp
decomposes as a

product, one has µ̃ = (µ̃0, µ̃1, µ̃2, µ̃3), where µ̃0 : Gm,Qp
→ Gm,Qp

and µ̃i : Gm,Qp
→ SL2,Qp

for i = 1, 2, 3. This implies that there exist rational numbers n0, n1, n2, n3 such that the

Newton slopes of V are n0 ± n1 ± n2 ± n3. The sum of the Newton slopes of V is equal to

4, so n0 = 1/2. One can assume that n1 ≥ n2 ≥ n3 ≥ 0 and as the slopes of V are in [0, 1]

one must have n1 + n2 + n3 ≤ 1/2. We distinguish 4 cases.

If ni = 0 for i = 1, 2, 3, then the Newton polygon is 8× 1/2.

The second possibility is that n1 = n2 = n3 > 0. In this case, 0 ≤ 1/2 − 3n1 < 1/2 is

the smallest slope of V . It is of multiplicity 1, so it is an integer and hence n1 = 1/6. The

Newton polygon of V is 0, 3× 1/3, 3× 2/3, 1.

In the third case, we assume that n1 = n2 > n3. If n3 6= 0 then the smallest slopes of V

are 0 ≤ 1/2 − 2n1 − n3 < 1/2 − 2n1 + n3 < 1/2, both of multiplicity 1, so both are 0 and

hence n3 = 0. It follows that n3 = 0 and that 0 ≤ 1/2 − 2n1 < 1/2 is the smallest slope

of V , of multiplicity 2. We conclude that n1 = 1/4 and that the Newton slopes of V are

2× 0, 4× 1/2, 2× 1.

In the fourth case, we assume that n1 > n2. The representation of GF on End(V ) belongs

to C and as L = Lie(G)ss ⊂ End(V ) is a G-stable subspace, it is an object of C as well.

The Newton slopes of L are ±2ni for i = 1, 2, 3 (each with multiplicity 1) and 3 × 0. In

this case, 0 < 2n1 ≤ 1 is a slope of L with multiplicity 1. It follows that n1 = 1/2 and

since n1 + n2 + n3 ≤ 1/2 also that n2 = n3 = 0. The Newton polygon of V is therefore

4× 0, 4× 1.

3.3 Remark. The assumption that ρ is polarizable means that there exists a non-degen-

erate alternating bilinear GF -equivariant map V × V → Qp(−1), where Qp(−1) is as in 1.1.

In our case, there is an alternating form 〈·, ·〉 on V (unique up to scalars) which is fixed by

G up to a character, cf. 1.2. If one has 〈ρ(g)x, ρ(g)y〉 = χ−1(g)〈x, y〉 for all g ∈ GF and all

x, y ∈ V , then V is polarizable.
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3.4 Let us keep the notations and hypotheses of 3.2 and let us assume that G is connected.

We will refine the results of proposition 3.2 according to the nature of the decomposition of

Lie(G)ss in Qp-simple factors.

As explained in [Ser78, 1.4], the Hodge–Tate decomposition V ⊗ Cp = V (0) ⊕ V (1) is

given by a cocharacter

µ = µHT : Gm,Cp → GCp

such that V (i) is the subspace of V ⊗Cp where µ acts via ·i : Gm → Gm. By the theorem of

Sen, see [Ser78, Théorème 2], the Zariski closure (over Qp) in G of the image of µ is equal

to the Zariski closure in G of ρ(GF ).

Let G̃ and N : G̃ → G be as in 1.2. As N : G̃ → G is a central isogeny, there exists

a positive integer k such that the k-th power µk : Gm,Cp → GCp lifts to a cocharacter

µ̃ : Gm,Cp → G̃Cp . One has µ̃ = (µ̃0, µ̃1, µ̃2, µ̃3), where µ̃0 : Gm,Cp → Gm,Cp and µ̃i : Gm,Cp →
SL2,Cp for i = 1, 2, 3. The fact that VCp is the direct sum of two eigenspaces for µ and hence

for µk implies that the tensor product of the standard representations of the factors of G̃Cp is

the direct sum of two eigenspaces for µ̃, so exactly one of the µ̃i (for i = 1, 2, 3) is non-trivial.

This proves the following proposition.

3.5 Proposition. Let G be an algebraic group over Qp and V a Qp-linear representation

of G such that (G, V ) is of Mumford’s type. Let F be a finite extension of Qnr
p and let ρ : GF →

G(Qp) a continuous, polarizable, crystalline representation with Hodge–Tate weights 0 and

1 as in 3.2. Assume moreover that G is connected. Then the image of the composite map

prµ : Gm,Cp

µ−−−→ GCp −−−→ Gad
Cp

∼=−−−→
(
PSL2,Cp

)3

projects non-trivially to exactly one of the factors.

If Lie(G)ss is not Qp-simple, then Gad is not Qp-simple and the image of ρ(GF ) in Gad(Qp)

projects non-trivially to exactly one of the factors.

3.6 Proposition. With notations and hypotheses as in proposition 3.5, let Gad
1 be the Qp-

simple factor of Gad such that ρ(GF ) projects non-trivially to Gad
1 (Qp). Then the possible

Newton polygons of ρ are 8× 1/2 and

1. 4× 0, 4× 1 in case
(
Gad

1

)
Qp

∼= PSL2,Qp
,

2. 2× 0, 4× 1/2, 2× 1 in case
(
Gad

1

)
Qp

∼= PSL2
2,Qp

,

3. 0, 3× 1/3, 3× 2/3, 1 in case
(
Gad

1

)
Qp

∼= PSL3
2,Qp

.

Proof. Let G1 be the connected component of the inverse image of Gad
1 in G and let G̃1

be the connected component of its inverse image in G̃. One has G̃1 = Gm × G̃ss
1 and

G̃ss
1,Qp

∼= SLn
2,Qp

with n = 1 in the first case, n = 2 in the second and n = 3 in the third.

After replacing F by a finite extension, one can assume that ρ factors through G1(Qp).
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We will prove the proposition along the lines of the proof of proposition 3.2. Let C be the

tannakian subcategory of RepGF generated by V and Qp(1), let HQp12 be the automorphism

group of the functor ω′crys,Qp12
introduced in 3.1 and let

µ = µN,12 : Gm,Qp12 −→ HQp12

be the Newton cocharacter. As in loc. cit., HQp12 is a inner form of the automorphism group

of ωét and we deduce a cocharacter µ : Gm,Qp
→ G1,Qp

.

If Gad
1,Qp

∼= PSL2,Qp
, then G1,Qp

∼= GL2 so, with the notations of the proof of propo-

sition 3.2, n2 = n3 = 0 and it follows that the Newton polygon is either 4 × 0, 4 × 1 or

8× 1/2.

In the second case distinguished in the proposition, one shows in the same way that

n3 = 0, which leaves 3 possible Newton polygons, namely 4× 0, 4× 1 or 2× 0, 4× 1/2, 2× 1

or 8 × 1/2. Assume that the Newton polygon is 4 × 0, 4 × 1, so that n1 = 1/2 and n2 = 0.

In that case, 3.1 furnishes a Qp-linear fibre functor ω′crys,Qp
whose automorphism group HQp

is an inner form of a subgroup of G1. This means that there is a GQp-equivariant inclusion

Lie(H)ss
Qp
⊂ Lie(G1)ss

Qp

∼= sl2
2,Qp

.

The action of GQp on the right hand side does not fix any factor. The Newton cocharacter

is a map µN,1 : Gm,Qp → HQp and this implies (with the notations of the proof of 3.2) that

n1 = n2. This is a contradiction, proving that in this case the Newton polygon is either

2× 0, 4× 1/2, 2× 1 or 8× 1/2.

We finally consider the third case of the proposition and assume that the Newton slopes

are 4×0, 4×1 or 2×0, 4×1/2, 2×1, which implies that n1 > 0 and n3 = 0. The construction

of 3.1 provides the fibre functor ω′crys,Qp2
over Qp2 , its automorphism group HQp2

and the

Newton cocharacter µN,2 : Gm,Qp2
→ HQp2

. As above, HQp2
is an inner form of a subgroup

of G. Since GQp2
acts transitively on the factors of Lie(G)ss

Qp

∼= sl3
2,Qp

, this implies that

n1 = n2 = n3, contradiction.

4 Isogeny types

4.1 Proposition. Let p be a prime number and F a finite extension of Qp with ring of

integers O and residue field k. Suppose that X/O is an abelian scheme such that, for some

prime number `, the Galois representation on V = H1
ét(XF̄ ,Q`) factors through a morphism

ρ : GF → G(Q`) for an algebraic group G ⊂ GL(V ) such that (G, V ) is of Mumford’s type

and such that Lie(G)ss is Q`-simple. Then either

– the Newton polygon of the geometric special fibre Xk̄ has slopes 8 × 1/2 and Xk̄ is

isogenous to
(
X(1)

)4
, where X(1)/k̄ is an elliptic curve, or

– Xk̄ is isogenous to a product of an elliptic curve and a simple abelian threefold
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– or Xk̄ is simple.

Proof. If ` = p, then the proposition follows from 3.6, so we can assume that ` 6= p.

After replacing F by a finite extension, we can assume that k has even degree over its

prime field, that G is connected and that all elements of ρ(GF ) are congruent to id modulo

`2. As one has G̃(Q`) = Gm(Q`)× SL2(Q`)
3, the second condition implies that any element

of ρ(GF ) lifts uniquely to an element of G̃(Q`) congruent to id modulo `2. Uniqueness of

the lift implies that it actually lies in G̃(Q`) so ρ lifts uniquely to a map ρ̃ : GF → G̃(Q`)

satisfying the same congruence condition as ρ. Again by uniqueness of the lifting, ρ̃ is a

group homomorphism.

Let Frob ∈ GF be a geometric Frobenius element in GF , which means that Frob induces

on k̄ the inverse of the map x 7→ xq, where q = |k|. Put π = ρ̃(Frob) ∈ G̃(Q`) and define

T̃ ⊂ G̃ as the Zariski closure of the subgroup of G̃(Q`) generated by π. The congruence

condition on ρ̃(GF ) implies that the subgroup of (Q`)
∗ generated by the eigenvalues of π does

not contain any root of unity other than 1 and hence that T̃ is connected. It follows that T̃

is a torus of G̃. To get rid of the scalars, we perform the following construction. We have
√
q ∈ Z by assumption and let T̃ ′ be the Zariski closure of the subgroup of G̃(Q`) generated

by α = π/
√
q. Thus, T̃ ∼= Gm,Q`

× T̃ ′, where Gm,Q`
is the group of scalars in G̃ and T̃ ′ is a

torus of G̃ss ⊂ G̃. Let T ⊂ G̃ss be a maximal torus (over Q`) containing T̃ ′.

There exists an isomorphism X(T ) ∼= Z3 such that the weights of the representation of

T on V correspond to the elements (±1,±1,±1) ∈ Z3. The natural action of GQ`
on X(T )

induces an action on Z3 stabilizing the set of weights {(±1,±1,±1)}. This GQ`
-action on Z3

therefore factors through the group {±1}3
o S3 acting naturally on Z3. As G̃ss is Q`-simple,

one can assume (possibly after multiplying by −1 on one of the coordinates) that the image

of GQ`
in {±1}3

o S3 contains a cycle of S3 of length 3.

The element α ∈ T (Q`) defines a GQ`
-equivariant map ev : X(T ) → (Q`)

∗. Since the

weights of the representation of T on V correspond to the elements (±1,±1,±1) ∈ Z3, the

images ev(±1,±1,±1) are the eigenvalues of α on V . It follows that the ev(±1,±1,±1) are

in Q and have all complex absolute values equal to 1. Here, and just for the duration of this

proof, Q denotes the algebraic closure of Q in Q`. It follows that the image of ev actually

lies in (Q)∗. As T̃ ′ is defined as the Zariski closure of the subgroup of G̃(Q`) generated by

α, it follows that ker(ev) is the kernel of the natural surjection X(T )→ X(T̃ ′). We use this

surjection to identify X(T̃ ′) with Z3/ ker(ev). For any element (x1, x2, x3) ∈ Z3, we denote

its image in X(T̃ ′) by (x1, x2, x3)′.

The map ev induces an injective map ev′ : X(T̃ ′) → (Q)∗ ⊂ (Q`)
∗ which we can use

to define an action of GQ on X(T̃ ′) extending the action of GQ`
. This action stabilizes

{(±1,±1,±1)′} ⊂ X(T̃ ′). All complex absolute values of the eigenvalues of α on V are

equal to 1, so it follows that ev(P )ev(P ) = 1 for every complex conjugation · in GQ and for

every vertex P = (±1,±1,±1) of the cube. This implies that all complex conjugations act

on X(T̃ ′) by inversion (multiplication by −1).
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In what follows, we fix a p-adic valuation v on Q, normalized by v(q) = 1. The composite

ϕ = v ◦ ev′ : X(T̃ ′)→ Q is Z-linear, but in general neither GQ-equivariant nor injective.

4.2 Lemma. Let x ∈ X(T̃ ′). If ϕ(σ(x)) = 0 for all σ ∈ GQ, then x = 0.

Proof. First assume that x lies in the subgroup M of X(T̃ ′) generated by {(±1,±1,±1)′}.
All absolute values of ev′(x) ∈ (Q)∗ are equal to 1, except maybe the p-adic ones. As σ runs

through GQ, ϕ(σ(x)) runs through all p-adic valuations of ev′(x), so these are all 0. It follows

that ev′(x) is a root of unity. Since ev′(M) ⊂ (Q)∗ does not contain any root of unity other

than 1, one has ev′(x) = 1. The injectivity of ev′ implies that x = 0.

The general case follows because X(T̃ ′) is free and M ⊂ X(T̃ ′) is of finite index.

Since ker(ev) is stable under the GQ`
-action, the fact that the image of GQ`

in {±1}3
o S3

contains a cycle of length 3 implies that we have the following possibilities for ker(ev).

A. ker(ev) = Z3 = X(T )

B. ker(ev) = {(x1, x2, x3) ∈ Z3 | x1 + x2 + x3 = 0}

C. ker(ev) = {(x, x, x) | x ∈ Z}

D. ker(ev) = {0}

The cases B. and C. can only occur if the image of GQ`
in {±1}3

o S3 is contained in

{±(1, 1, 1)} × S3. We consider the possibilities A.–D. for ker(ev) one by one and prove the

proposition in each case.

In case A., all elements of {(±1,±1,±1)} are mapped to 1 ∈ (Q)∗, so π =
√
q, all Newton

slopes are equal to 1/2 and X is isogenous to (X(1))4, where X(1) is the elliptic curve over k

corresponding to the Weil number
√
q.

In case B., X(T̃ ′) is a free Z-module of rank 1. Let w = (1, 1, 1)′ ∈ X(T̃ ′), x = (−1, 1, 1)′,

y = (−1,−1, 1)′ and z = (−1,−1,−1)′. One has w − x = x − y = y − z, so it follows that

ϕ(w − x) = ϕ(x − y) = ϕ(y − z) and that ϕ(w) = −ϕ(z). As lemma 4.2 implies that

ϕ(w) 6= 0, the only possibility up to sign is that ϕ(w) = 3λ, ϕ(x) = λ, ϕ(y) = −λ and

ϕ(z) = −3λ with λ ∈ Q, λ > 0. The Newton slopes of Xk are

(−3λ+ 1/2), 3× (−λ+ 1/2), 3× (λ+ 1/2), (3λ+ 1/2)

so the facts that the slopes are in [0, 1] and that the Newton polygon has integral break

points imply that λ = 1/6.

It follows that π has 4 distinct eigenvalues on V . The action of GQ on the set of eigenvalues

corresponds to a Z-linear action of GQ on X(T̃ ′) stabilizing the set {w, x, y, z} and any

complex conjugation corresponds to the inversion. This implies that there are two orbits for

the action of GQ, so Xk has two non-isomorphic isogeny factors (possibly with multiplicities

> 1). In the classification of isogeny classes abelian varieties over Fq by Weil numbers, cf.
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[Tat69], the first factor corresponds to ev(1, 1, 1)
√
q ∈ Q. This is an algebraic number of

degree 2 and by the formulas of [Tat69], Théorème 1, the corresponding abelian variety is

an elliptic curve X(1)/k with Newton slopes 0, 1. The other simple factor corresponds to

ev(−1, 1, 1)
√
q, so it is an abelian variety with slopes 3 × 1/3, 3 × 2/3. It is therefore an

absolutely simple abelian threefold X(3)/k and Xk ∼ X(1) ×X(3).

In case C., X(T̃ ′) is a free Z-module of rank 2. We see that (1, 1, 1)′ = (−1,−1,−1)′ = 0.

The Weil number
√
q = ev(1, 1, 1)

√
q corresponds to an isogeny factor X(1)/k of Xk which

is an elliptic curve with Newton polygon 2× 1/2.

The image of GQ in {±1}3
o S3 contains a cycle of length 3 and this element induces a

cyclic permutation of {(−1, 1, 1), (1,−1, 1), (1, 1,−1)}. Since complex conjugation acts by

inversion, this implies that GQ acts transitively on

{ev(±(−1, 1, 1)), ev(±(1,−1, 1)), ev(±(1, 1,−1))} ⊂ (Q)∗.

It follows that ev(−1, 1, 1)
√
q is a Weil number of degree 6 over Q, and since it corresponds

to an isogeny factor of Xk, the corresponding abelian variety is a simple abelian threefold

X(3)/k. This proves that Xk ∼ X(1) ×X(3) in this case.

For case D., one shows in the same way as above that the orbit under GQ of ev(−1, 1, 1)

contains

{ev(±(−1, 1, 1)), ev(±(1,−1, 1)), ev(±(1, 1,−1))} ⊂ (Q)∗,

so there are one or two orbits for the action of GQ on {ev(±1,±1,±1)} and ev(−1, 1, 1)
√
q is

a Weil number of degree 6 or 8. Therefore, either Xk is simple, or Xk ∼ X(1) ×X(3), where

X(i)/k is simple of dimension i (for i = 1, 3).

This proves the proposition for the isogeny type of X. Our arguments still hold after

replacing F , and hence k, by any finite extension, so the same statement is true for Xk̄.

4.3 Remark. In this remark we assume that ` 6= p and that the Newton polygon of Xk

is not 8× 1/2.

The above arguments imply that if Xk is simple, then each eigenvalue of its Frobenius au-

tomorphism is of degree 8 over Q. This implies that End(Xk) is commutative, so EndQ(Xk)

is a number field of degree 8. In fact, the proof of proposition 4.1 implies that this is true

for k sufficiently large, but if EndQ(Xk) is a number field of degree 8, then the same thing

is true for the endomorphism algebra of a model of Xk over a subfield of k.

If Xk is reducible, then Xk ∼ X(1) ×X(3) and either the Weil numbers corresponding to

X(1) and to X(3) are both of degree 2 or the Weil number of X(3) is of degree 6 and the Weil

number corresponding to X(1) is of degree 1 or 2. In this case, EndQ(Xk) = D1 × D2 for

division algebras D1 = EndQ(X(1)) and D2 = EndQ(X(3)). Either

– D1 and D2 are number fields of degrees 2 and 6 respectively or

– D1 is a quaternion division algebra over Q and D2 is a number field of degree 6 or
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– D1 is a number field of degree 2 and D2 is a division algebra of dimension 9 over its

2-dimensional centre.

4.4 Corollary. Let X be a 4-dimensional abelian variety over a number field F and assume

that for some prime number `, the representation of GF on H1
ét(XF̄ ,Q`) is of Mumford’s type.

Then X has potentially good reduction at any non-archimedean place v of F . For any such

v, we have the following possibilities.

1. The reduction of X at v is isogenous to the fourth power of a supersingular elliptic

curve and the Newton polygon of this reduction is 8× 1/2.

2. The reduction of X at v is absolutely simple or geometrically isogenous to a product of

an elliptic curve and an absolutely simple abelian threefold. The Newton polygon of the

reduction of X at v is either 4× 0, 4× 1 or 2× 0, 4× 1/2, 2× 1 or 0, 3× 1/3, 3× 2/3, 1.

Proof. Combine lemma 1.3, corollary 2.2 and propositions 3.2 and 4.1.

4.5 Remark. Suppose that X/F is as in the corollary. If the image of the representation

of GF on H1
ét(XF̄ ,Qp) is known, then a stronger result on the possible Newton polygons of

the reduction of X at a place v of residue characteristic p follows from proposition 3.6.
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Université de Rennes 1

Campus de Beaulieu

35042 Rennes Cedex

France

e-mail: noot@univ-rennes1.fr

http: http://www.maths.univ-rennes1.fr/~noot

2UMR CNRS 6625


