TD 1. Métriques riemanniennes.

Exercice 1. La sphère, en coordonnées stéréographiques.

On considère la sphère unité \mathbb{S}^n dans l'espace euclidien \mathbb{R}^{n+1} :

$$\mathbb{S}^n = \{(x_0, x_1, \dots, x_n)/x_0^2 + x_1^2 + \dots + x_n^2 = 1\}.$$

Soient O l'origine de \mathbb{R}^{n+1} , N = (1, 0, ..., 0), \mathcal{P} l'hyperplan d'équation $x_0 = 0$ et ϕ l'application qui à un point M de $\mathbb{S}^n \setminus \{N\}$ associe l'unique point d'intersection entre la droite (OM) et l'hyperplan \mathcal{P} . En identifiant \mathcal{P} à \mathbb{R}^n , on obtient ainsi une carte et donc des coordonnées $y_1, ..., y_n$.

- a. Faire un dessin.
- **b.** Ecrire une formule pour ϕ , puis $\psi = \phi^{-1}$.

Soit g la métrique riemannienne induite sur \mathbb{S}^n par le produit scalaire de \mathbb{R}^{n+1} .

c. En calculant ψ^*g , montrer que, dans la carte considérée, on a

$$g = 4\frac{dy_1^2 + \dots + dy_n^2}{(1 + |y|^2)^2},$$

où
$$|y|^2 = y_1^2 + \dots + y_n^2$$
.

d. Calculer la forme volume riemannienne associée à g, toujours dans cette carte.

Exercice 2. L'espace hyperbolique.

On considère l'espace de Minkowski $\mathbb{R}^{1,n}$: c'est \mathbb{R}^{n+1} muni de la forme quadratique $h = -dx_0^2 + dx_1^2 + \cdots + dx_n^2$. On note

$$H^{n} = \{x \in \mathbb{R}^{n+1} / -x_0^2 + x_1^2 + \dots + x_n^2 = -1 \ et \ x_0 > 0\}.$$

Pour tout x de H^n , on note g_x la restriction de h à l'espace tangent T_xH^n .

a. Expliquer pourquoi g définit une métrique riemannienne sur H^n .

Soient S = (-1, 0, ..., 0), \mathcal{P} l'hyperplan d'équation $x_0 = 0$ et ϕ l'application qui à un point M de H^n associe l'unique point d'intersection entre la droite (OM) et l'hyperplan \mathcal{P} . En identifiant \mathcal{P} à \mathbb{R}^n , on obtient ainsi une carte, à valeurs dans la boule unité \mathbb{B}^n de \mathbb{R}^n , et donc des coordonnées $y_1, ..., y_n$.

- **b.** Faire un dessin et écrire une formule pour ϕ .
- c. Montrer que, dans la carte considérée, on a

$$g = 4\frac{dy_1^2 + \dots + dy_n^2}{(1 - |y|^2)^2}.$$

Si on note a le point $(-1,0,\ldots,0)$ de \mathbb{R}^n , alors l'inversion

$$f: y \mapsto a + 2 \frac{y - a}{|y - a|^2}$$

réalise un difféomorphisme de \mathbb{B}^n sur le demi-espace $U = \{w \in \mathbb{R}^n / w_1 > 0\}.$

d. Montrer que dans les coordonnées données par w = f(y), on a

$$g = \frac{dw_1^2 + \dots + dw_n^2}{w_1^2}.$$

Exercice 3. Deux façons de voir un tore plat.

On définit une fonction $f: \mathbb{R}^n \to \mathbb{C}^n$ par $f(x_1, \dots, x_n) = (e^{ix_1}, \dots, e^{ix_n})$. Montrer que f passe au quotient en une isométrie de $\mathbb{R}^n/(2\pi\mathbb{Z})^n$ sur $\mathbb{S}^1 \times \dots \times \mathbb{S}^1$.

Ici, $\mathbb{R}^n/(2\pi\mathbb{Z})^n$ est muni de la métrique quotient (induite par la métrique euclidienne sur \mathbb{R}^n) et $\mathbb{S}^1 \times \cdots \times \mathbb{S}^1$ de la métrique induite par le plongement dans l'espace euclidien $\mathbb{C}^n = \mathbb{R}^{2n}$.

Exercice 4. Caténoïde et hélicoïde.

On s'intéresse à deux surfaces de \mathbb{R}^3 . La caténoïde \mathcal{C} est la surface paramétrée par

$$c(t, \theta) = (\cosh t \cos \theta, \cosh t \sin \theta, t),$$

où $t \in \mathbb{R}$, $\theta \in \mathbb{R}/(2\pi\mathbb{Z})$, tandis que l'hélicoïde \mathcal{H} s'obtient par

$$h(t, u) = (u\cos t, u\sin t, t),$$

où cette fois t et u décrivent \mathbb{R} . On munit \mathcal{C} et \mathcal{H} de la métrique induite par la métrique euclidienne de \mathbb{R}^3 .

Montrer qu'alors C et H sont localement isométriques (leurs métriques ont les mêmes expressions dans certaines coordonnées) mais pas isométriques.

Exercice 5. Existence, ou pas, de métriques lorentziennes.

- a. Montrer qu'une variété M possède une métrique lorentzienne si et seulement si son fibré tangent contient un sous-fibré en droites.
- **b.** En déduire que \mathbb{S}^2 ne porte pas de métrique lorentzienne.